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Abstract—Regular physical activity plays a significant role in
reducing the risk of obesity and maintaining people’s health con-
ditions. Among all the physical activities, walking is a commonly
recommended intervention for combating lifestyle diseases. The
capability to accurately measure the energy expenditure of walk-
ing provides foundations to base the corresponding intervention.
In this paper, we develop a set of signal processing and statistical
pattern recognition techniques to estimate energy expenditure of
walking in real-life settings using mobile phones. We examine the
robustness of our proposed techniques to variations in location
on the human body and across body types. We show that our
proposed techniques can estimate step frequencies for three
common locations of phone usage and achieve promising energy
expenditure estimation accuracy with limited training data.

I. INTRODUCTION

Behavior and lifestyle choices are the key factors that
contribute to the increasing prevalence of chronic diseases
and premature deaths in our modern society. In particular,
the worldwide obesity phenomenon and associated diabetes
are becoming the main epidemic of the 21st century [1].
Largely as a result of changes in the modern lifestyle, this
growing phenomenon is placing a heavy burden on today’s
healthcare system [2]. In the face of the current obesity
epidemic, research findings suggest that encouraging physical
activities especially walking on a daily basis so as to reduce
sedentary behaviors has been playing a significant role in
effectively reducing the risk of obesity [3].

Equipped with powerful communication, sensing and com-
putational capabilities in portable forms, wireless mobile
technologies are able to continuously monitor people’s daily
physical activities and thus have the great potential to raise
people’s awareness of their sedentary lifestyle and promote
behavior change to prevent obesity and its associated chronic
diseases [4]. Therefore, in recent years, significant research
efforts have been made to develop signal processing and
pattern recognition techniques that use sensors embedded
inside wearable and mobile devices to track daily physical
activities and estimate the corresponding energy expenditure
(EE) [5], [6], [7], [8], [9]. Among all the sensors used in
this research field, inertial sensors (accelerometers and/or
gyroscopes) and electrocardiography (ECG) sensors are the
most widespread. The inertial sensors are very sensitive to the
motion of human bodies and thus have been widely used for
recognizing physical activities and estimating EE. For ECG
sensor, the heart rate extracted from ECG signals has been
proved to have a strong correlation with EE [10]. However,
many mental and physiological activities such as stress could
also affect heart rate [11], which makes ECG not a reliable
source to infer EE information. Furthermore, wearing a ECG
sensor is intrusive in people’s daily life, making it impractical
to collect EE information on a daily basis.

In this paper, we present a practical solution for estimating
an individual’s energy expenditure using mobile phones in
real-life ambulatory settings. We specifically focus on es-
timating energy expenditure due to walking in free living
conditions. This is because walking is the most common type
of activity among people who are physically active [12] and a
commonly recommended intervention for combating lifestyle
diseases. Specifically, we use the accelerometer and gyroscope
present in mobile phones to describe intensity of walking.
Mapping movement descriptors measured with such sensors to
energy expenditure from walking can be framed as a regression
problem. There are two main challenges in this domain. The
first challenge is identifying suitable descriptors of walking
that are robust to mobile phone placement on individuals. The
second challenge is accurately predicting energy expenditure
from walking given minimal or no information about an
individual. To tackle these issues, we propose an algorithm
that robustly estimates an individual’s energy expenditure
regardless of the location in which the mobile phone is carried.
In addition, we use body weight as a similarity measure to
minimize training data. By doing so, we aim to expand the
the state of the art in energy expenditure with mobile phones
using inertial sensors alone in free living scenarios.

II. METHODS

A. Energy Expenditure Prediction as a Regression Problem
Given a D-dimensional descriptor of movement xnp

∈
RD×1 measured with a mobile phone for a time epoch np and
a certain anthropometric characteristic Anthp, for person p,
our goal is to determine the energy expended ynp

∈ R for that
epoch. Consider a test population consisting of P participants.
For each person p, from this population, we collect training
data points in the form of input-output pairs

{
xnp , ynp

}Np

np=1
.

Using these data, we build a statistical model that indicates
what the statistical distribution of energy expenditure, i.e.,
p
(
ynp
|xnp

,Anthp

)
is given their movement and anthropo-

metric characteristics. This is framed as a regression problem:(
xnp

,Anthp

) p(ynp |xnp ,Anthp)
→ ynp

.

B. Robustness Across Locations
1) Capture of Center of Mass Movement: Walking is a

quasi-periodic (periodic in the short term, with period grad-
ually changing in the long term) physical activity involving
highly correlated movement of limb segments. This periodic
nature can be captured using an inverted simple pendulum
model [13]. According to the inverted pendulum model, a
person is modeled as a point mass connected to a rigid beam
with the foot as a pivot. During each leg’s stance phase, the
point mass vaults over the pivot point while the other leg



swings when not in contact with the ground. This is repeated
alternately between legs. Thus the center of mass of the body
moves up and down in a cyclical fashion. The typical usage of
a mobile phone include conditions where it is stowed away in
a fixed location like a pocket, placed next to the ear for a call
or looked at constantly so as to access an application. In these
scenarios, phone movement is coupled with the periodic up-
down movement of the center of mass. Given that the up-down
movement is quasi-periodic, the change in vertical position
over a short time instant can be represented using a set of sine-
waves. The double-differential of this signal, namely, vertical
acceleration will also be cyclic and thus can be represented by
the same set of sine waves. Tracking the vertical acceleration
could thus provide a robust signal to describe overground
walking intensity across multiple locations.

2) Capture of Vertical Acceleration: The principle behind
calculating the vertical acceleration on the phone depends on
converting the local accelerations on the phone to a canonical
reference frame in the world coordinate space and extracting
the vertical acceleration from this frame. We use the phone’s
sensors to calculate a unit quaternion q = {q0, q1, q2, q3} to
provide the orientation of the phone. We used the default ori-
entation sensor available within the Android operating system
to determine this quaternion.

Given the quaternion q, we calculated the z axis components
of direction cosines of the normals of the three planes of the
phone (corresponding to x, y and z directions) with respect to
the world coordinate frame using the transformation:

{n̂x, n̂y, n̂z} =

 2(q1q3 − q0q2)
2(q0q1 + q2q3)

q20 − (q21 + q22 + q23)

where n̂x,n̂y and n̂zare the corresponding z axis components.
After calculating {n̂x, n̂y, n̂z}, we then obtained the vertical

acceleration av , by calculating the weighted sum of triaxial
accelerations using the z axis components as weights:

av =
ax |n̂x|+ ay |n̂y|+ az |n̂z|
|n̂x|+ |n̂y|+ |n̂z|

The intuition behind this approach was that when a particu-
lar local axis of the phone is vertical (say Y-axis) with respect
to the world frame the magnitude of that z-axis component
(n̂y) would be close to 1. By virtue of orthogonality, the other
components would be close to zero. Thus this weighting factor,
would provide maximum weightage to the z-axis acceleration.
The use of a weighted sum allows a smooth location in
transitional cases where the phone is diagonal. This results in
the normalized vertical acceleration data. Figure 1a illustrates
typical raw data when the phone is placed in one’s back
pocket. Figure 1b illustrates the values of z-axis components
of the direction cosines of the three planes. Based on these
components, we calculate the vertical acceleration time series
shown in light grey in figure 1c.

The resultant time series was then passed through a band-
pass filter with cut-off frequencies [1, 2.1] Hz. For the back
pocket, the resultant series is shown in black in figure 1c. In
order to extract the frequency component from the weighted
data, we considered a ten second window of samples, sub-

tracted the mean of the data from each point within that
window and extracted a 1024 point periodogram. In this
periodogram, the walking frequency was associated with the
largest peak within [1, 2.1] Hz (as shown in figure 1d). This
frequency corresponding to the value of the maximum peak is
used as a representation of movement intensity for walking.

C. Predicting EE with Minimal Training Data

1) Weight as a Similarity Measure: Given a robust de-
scriptor of movement, we use the principle that individuals
with similar anthropometric descriptors, in particular, similar
body weights, will expend the similar amounts of energy given
the same movement. Using weight as a descriptor of simi-
larity between individuals, we utilize a previously validated
hierarchical linear model [14] to predict energy expenditure.
Weight-based approaches have been used by Altini et. al [15]
to normalize across populations. We extend previous work by
understanding what kind of data are best suited for learning a
regression model for an individual with limited training data.

2) Generalized Energy Prediction using Hierarchical Mod-
els: To consolidate information across people, we adopt a two-
level approach with hierarchical linear models (HLMs) [16].
For each person p, we model each output energy expenditure
value, ynp as linearly dependent on a representation of move-
ment intensity xnp . In our case, the xnp is the step frequency
of walking. This can be expressed as:

ynp ∼ N
(
ynp ;w

T
p xnp , β

−1
p

)
,

∀np ∈ {1, 2, . . . Np} .

βp is a noise term.
We are also given each participant’s weight Weightp.

We model top-down dependence of each person’s model
parameters,wp on their weight Weightp, i.e. each component
{wp,l}Dl=1 of wp follows the relation:

wp,l ∼ N
(
wp,l;k

T
l Weightp, α

−1
p I
)
,

l ∈ {0, 1, . . . , D} .

αp is a noise term.
This model enforces consistency among P local regression

models through the population-level parameters {kl}Dl=1. The
complete log-likelihood function is:

L = log

P∏
p=1

p (Yp,wp|k, αp, βp)

=

P∑
p=1

(
Np

2
logβp +

M

2
logαp

−
(
βp
2
‖Yp −Xpwp‖2

+
αp

2

L∑
l=1

∥∥wp,l −WeightTp kl

∥∥2)+ const

)
To maximize this likelihood, each and αp and βp must

achieve the right balance by being as large as possible while
minimizing the relative sum of intra-person least squares
error terms ‖Yp −Xpwp‖2 and the inter-person least-squared
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(a) Raw accelerometer data
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(b) Z components of vertical axes
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(c) Normalized data and resultant time series after filtering
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(d) Normalized FFT obtained from filtered signal

Figure 1: Illustration of normalization technique used to track the vertical component of acceleration. The phone was worn in
the back pocket.

terms
∥∥wp,l −WeightTp kl

∥∥2. The inter-person error de-
scribes how accurate a model learned from other participants
can be in predicting energy expenditure ynp

. The intra-person
error approximates how close the a model learned from that
particular participant can predict ynp

. This model is trained
using an EM-like algorithm [17].

3) Prediction: Given the model, we predict energy values
for a new person P +1 with morphological parameters given
by PhysP+1, using the equation:

wP+1,l ∼ N
(
wP+1;WeightTP+1kl, α

−1
P+1

)
,

∀l ∈ {1, 2, . . . D} .
ynP+1

∼ N
(
ynP+1

;wT
P+1xnP+1

, β−1P+1

)
,

∀np+1 ∈ {1, 2, . . . NP+1} .

We set αP+1 and βP+1 to be the average of αp’s and
βp’s over all people. It can be seen that to instantiate a
model, it is enough to know the weight of a person. This
model instantiation will be the result of consolidation across
multiple users. The model can then be used to predict energy
expenditure values given a movement descriptor xnP+1

4) Determination of the Optimal Dataset: The above model
relies on collecting samples of movement, weight and energy
expenditure from a large number of participants to learn
model parameters. One issue that arises when training such
a hierarchical linear model is what is the optimal training
dataset from which an accurate model can be obtained. When
training regression models for walking, one can use example
information from an indoor setting (using a treadmill) or an
outdoor setting (overground walking). The given model was
previously validated in predicting energy expenditure from
treadmill walking. Our goal was to extend previous work by
studying how treadmill walking-based models compare with
models learned when only free living walking data are used.
For this purpose, we learned separate models using treadmill
data and free living data and evaluated them for accuracy.

III. EXPERIMENTAL EVALUATION

A. Data Collection and Preprocessing

We performed two separate data collections related to
validating the frequency estimation and energy expenditure es-
timation sections of our work. All participants signed informed



(a) Data collection for frequency detection. Three positions were measured: in back
pocket, in hand, and on phone call

(b) Example of indoor and outdoor data recording sessions
for energy expenditure. Phone position is shown in the
solid black box, metabolic unit is shown in the dotted
black box.

Figure 2: Illustration of data recording procedures for frequency detection and energy expenditure estimation

consent forms and the study was approved by the Institutional
Review Board of the University of Southern California. In both
data collections, accelerometer, gyroscope and rotational data
were recorded with a Galaxy Nexus S or Nexus 4 smartphone.
All kinematic data were collected at 50 Hz.

1) Frequency Estimation: To evaluate robustness of fre-
quency detection to location, we collected information about
participants walking at different step frequencies with the
phone kept at different locations. Five participants (3 male,
2 female) participated in the study. The average age was
29.5±13.47 yrs (Max = 49.0 yr, Min = 20.0 yr), average height
was 1.74±0.1 m (Max = 1.86 m, Min = 1.57 m), average
weight was 62.5±4 kg (Max = 66 kg, Min = 56.7 kg).

Figure 2a illustrates the three locations for which phone data
were collected. Each participant was asked to place their phone
at a certain location and walk to the beats of a metronome
for one minute. The purpose of a metronome was to provide
a reliable ground truth for step frequency. All participants
walked on a level floor, indoors. The three locations chosen
were: in hand (as if using a mapping application), on phone
call and in back pocket. These locations were chosen because
they corresponded to the most common typical placement
locations of a phone. Metronome frequencies were set at
frequencies of 80, 90, 100, 110 and 120 bpm (corresponding to
1.33, 1.5, 1.67, 1.83 and 2 Hz respectively). These frequencies
represented the absolute minimum and maximum step frequen-
cies that could be considered walking across all participants.
While walking, the phone collected triaxial accelerations, rota-
tional rates and orientation information. Thus each participant
generated 15 one minute samples of walking at five different
step frequencies with the phones at three different locations.

Given each one minute sample, approximately 10 seconds of
each sample in the beginning and end were cropped to remove
transients. Each sample was then preprocessed as described in
section II-B2.

2) Energy Expenditure Estimation: To evaluate robustness
across people for energy prediction, we placed the phone in

a belt-clip and asked participants to walking at a self-selected
speeds outdoors. Data were collected from a population of
24 participants (16 male, 8 female). The average age was
25.9±4.4 yrs (Max = 33.0 yr, Min = 18.0 yr), average height
was 1.74±0.07 m (Max = 1.85 m, Min = 1.60 m), average
weight was 68.6±6.4 kg (Max = 81.7 kg, Min = 55.9 kg) .

Energy expenditure ground truth was measured using the
Oxycon Mobile Metabolic unit from Carefusion. The cart was
worn as a backpack fitted to the comfort of the participant.
The metabolic unit reported participants’ V̇ O2, V̇ CO2, and
calorie data at the frequency of every breath. Calories were
estimated using the Weir equation [18]. Data collection was
carried out in two sessions - indoor and outdoor. In the indoor
session, each participant was asked to walk on a treadmill at
three speeds - 2.5, 3.0 and 3.5 mph for five minutes per speed
and two minutes of settling time for each speed. In the outdoor
session, each participant was asked to walk on the university
athletic track at a self-selected speed for approximately 20
min. Figure 2b illustrates the data collection procedure for the
energy expenditure section.

The kinematic sensor data were first preprocessed to obtain
the normalized time series as described in section II-B2. At
the end of this step, each participant had a time series of
normalized vertical acceleration and energy expended for both
indoor and outdoor walking. Each of these time series were
split into ten second epochs. A 1024-point FFT and average
energy expenditure were then calculated for that epoch. A peak
detection algorithm was used to determine the maximum peak
and thus step frequency for that epoch. For the purposes of
this study, only the constant walking sections were considered.
Thus for each participant, a dataset consisted of examples
of step frequency and energy expenditure calculated across
epochs in both treadmill and outdoor settings.

B. Comparison Methodology for EE Estimation Algorithms
Given a participant p, out of a population of P participants,

our aim was to determine the optimal dataset to obtain accurate



Metronome
Frequency (Hz)

In Back
Pocket

On
Phone

In Hand

1.33 4.54 14.04 7.25
1.5 1.82 4.46 1.82
1.67 50.37 6.05 7.02
1.83 49.89 2.55 6.86

2 49.26 3.46 5.33

Table I: Average percentage error in frequency estimation
across five participants at five metronome frequencies with
the phone held in three locations.

estimates of energy expenditure from outdoor walking. For
this, we considered three potential sources of data. In the first
dataset, participant p’s treadmill data alone was used to train
a regression model. This was a special case of a hierarchical
regression model with only one participant and hence no top-
level dependence was required. This dataset was labeled -
Indoor individual. In the second dataset, treadmill data from
all P participants were used to train a hierarchical linear
model. This dataset was labeled - indoor consolidated. In the
third dataset, for participant p, outdoor walking information
from the remaining P − 1 participants were used to train an
hierarchical linear model. This dataset was labeled - outdoor
consolidated. The three models described were used to obtain
energy expenditure predictions using participant p’s data as test
data. The normalized root mean squared error was calculated
using the root mean squared error of predictions and dividing
by the median value of the test data. This was done to obtain a
percentage-like measure of algorithm performance. This was
repeated across all participants and the errors were average
across all participants.

C. Results
1) Frequency Estimation: Table I shows the percentage

error in prediction when walking at five different step fre-
quencies averaged across five participants. It can be seen that
in 11 out of 15 cases, the proposed algorithm has a frequency
prediction error of less than 8%. We also note than in 3 out
of 15 cases, the error is high as 50%. This mainly occurred at
higher step frequencies in the back pocket. The main reason for
this high error rate was that at these frequencies and position,
for a subset of participants, the dominant peak occurred at
half the step frequency instead of the actual step frequency.
For these step frequencies, both the actual frequency and
half of its value occur within the eligible frequency band.
One reason for this could be that there exist biomechanical
differences in walking at those step frequencies. Frequency-
based approaches suffer from the difficulty in distinguishing
harmonics from the fundamental frequency. One technique to
avoid this is to use smoothing from historical data to determine
a step frequency. We aim to extend this work across more
participants to further examine this case.

2) Energy Expenditure Prediction: Figure 3a illustrates
the relative performance of different dataset. Using outdoor
information from the remaining participants showed the lowest
normalized root mean squared error (p<0.05 per participant).
Using indoor data, whether it just from one participant or
all participants resulted in higher errors. Figure 3b shows
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(a) Comparison of algorithms when trained on different datasets
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(b) An example trace of energy expenditure prediction for a simple
participant by different algorithms
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step frequencies in the sample individual

Figure 3: Illustration of energy expenditure prediction perfor-
mance as compared across different algorithms.



an example trace for a single participant walking for ap-
proximately 20 minutes. The ground truth energy expended
during this period is shown in grey. The predicted energy
expenditure when using consolidated data from all participants
when walking overground is shown with squares. Similar
predictions when using consolidated data from the same
participant and all participants walking on a treadmill are
shown with the solid line and diamond lines respectively. It
can be seen that the treadmill data under-predict the energy
expended when walking in outdoor settings. To understand
whether this was due to the algorithms or due to the data
itself, we examined the frequency versus energy plot for indoor
and outdoor walking. Figure 3c shows the energy expended
versus step frequency plot for the same participant in both
indoor (shown with circles) and outdoor scenario (shown with
crosses). The graph shows that for the same or similar step
frequencies, a participant expends more energy in overground
walking than treadmill walking. Similar results were obtained
for other participants with minor variations. This suggests that
in order to use treadmill data for outdoor predictions, one has
to account for this difference in energy costs between treadmill
and overground walking.

Another observation that could be seen from the trace is that
the energy expenditure predicted using step frequency remains
fairly constant whereas the energy expenditure has a number
of transients. This could be because of natural variations in the
displacement of the mask, low resolution of the FFT (resulting
in quantized step frequency values) or lack of modeling due
to transients. We aim to explore this in future work.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a set of signal processing and
statistical pattern recognition techniques to estimate energy
expenditure from free living walking using one’s mobile
phone. We addressed the two issues of position indepen-
dent descriptors of walking and accurately predicting energy
expenditure from walking given limited training data using
frequency-based descriptors and hierarchical models of en-
ergy expenditure respectively. The frequency-based features
proposed were robust along a number of locations but were
sensitive to harmonics. Datasets collected in outdoor settings
resulted in better results than datasets from indoor settings due
to differences in the energy costs of walking.

Although the algorithms proposed here have been vali-
dated on overground, level walking, we believe that that
are a a number of ways to extend this work. We plan on
extending the validation of the frequency-based technique
on a larger population and across more locations on the
body. We also aim to develop more robust algorithms to
avoid false positives in frequency detection. We also plan on
improving the resolution of frequency-based monitoring with
higher resolution FFTs. While the current approach focused
on modeling energy expenditure due to walking, we envision
that the models developed could be extended to other common
physical activities such as running, jogging, and walking
up/downstairs as well. Our current work was limited in that
it did not take into account the transient nature of energy
expenditure with variation in step frequency. We plan on
expanding our modeling capability to include transients. This

will involve transient frequency monitoring and regression for
non-stationary signals.
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