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Abstract—In this paper, GeoFL develops a hierarchical fed-
erated learning (FL) framework to address the unique chal-
lenges in large-scale geo-distributed scenarios. The key idea is
to deploy multiple aggregators to geo-distributed clients and
aggregate the local model and the global model efficiently
and effectively. By assigning each aggregator as a relay layer,
GeoFL can elaborately aggregate the geo-distributed clients
and systematically determine when to upload the model to
the central server based on bandwidth to efficiently update
the global model under inadequate and heterogeneous WAN
bandwidth constraints. GeoFL designs three key components to
optimize the inefficient model aggregation and cope with the non-
importance model updates. It further addresses the statistical
heterogeneity across geo-distributed aggregators by considering
the clients’ graph relationship, delivering an end-to-end client-
aggregator-server architecture for large-scale clients. Compared
with existing works, our results on large-scale real-life datasets
show that GeoFL speeds up the training process by 1.4×–8× and
reduces 6%–80% unnecessary communication rounds between
the aggregator and the central server.

I. INTRODUCTION

Recently, more and more large machine learning models
require diverse and sufficient datasets collected across much
wider geographical areas in different cities, countries, or
even continents for training. For example, Google Landmarks
Dataset v2 (GLDv2) [1] is a worldwide dataset, containing
over 5M images collected from over 200k human-made and
natural landmarks across 246 of the 249 countries for widely-
adopt image retrieval [2] and instance recognition [3] tasks.
However, traditional centralized training raises significant con-
cerns regarding end-user privacy [4]. On the other hand, cross-
device federated learning (FL) enhances the privacy of user
data by training models locally at a client and aggregating
the model updates at a central server [5]–[8]. Unfortunately,
the single-layer client-server architecture most existing FL
studies adopt is not capable of supporting FL at such geo-
distributed scale due to significantly heterogeneous network
connections [9].

In this work, we bridge this critical gap and propose
GeoFL, a framework for efficient geo-distributed cross-device
federated learning. As shown in Figure 1, GeoFL adopts a
hierarchical architecture where clients located in wide ge-
ographical areas first communicate with edge servers (i.e.,
aggregators) via mobile network, whereas the communication
between aggregators and the central server is conducted over
Wide Area Network (WAN).

AggregatorClients Client Comm. Central Server WAN Comm.

Fig. 1: Overview of geo-distributed cross-device federated
learning.

Although a few hierarchical FL frameworks have been
proposed [10], [11], these frameworks are not designed for
geo-distributed FL given that they did not use real-world WAN
bandwidth measurements to identify the distinctive character-
istics of geo-distributed FL, making their proposed techniques
fall short in the geo-distributed setting. The underpinning
principle behind GeoFL is to consider the inadequacy and
heterogeneity of WAN bandwidths and involve bandwidth-
efficient and heterogeneity-aware schemes to enhance the
efficiency of geo-distributed FL.

The design of GeoFL involves three key challenges.

• Challenge #1: Scheduling Aggregation under Inade-
quate and Heterogeneous WAN Bandwidth. We ob-
serve that WAN bandwidth between aggregators and the
central server is inadequate and heterogeneous. Since
GeoFL aims to optimize the trade-off between the re-
turn (i.e., the global model’s time-to-accuracy) and the
aggregator-server communicating cost, how to schedule
the central server’s communication with multiple aggre-
gators represents the first challenge.

• Challenge #2: Buffered Model Updates on Aggrega-
tors. Although an adaptive aggregator-server communi-
cation approach can fully optimize the time efficiency
for model aggregation, the global model could have been
updated several times when receiving the trained local
model update from a certain aggregator. Therefore, it is
necessary to minimize the impact, which can otherwise



result in biases for the global model training.
• Challenge #3: Aggregator Heterogeneity. Aggregators

are by nature heterogeneous. This is because aggregators,
with varying population sizes, connect clients holding
distinct data distributions. Therefore, it’s essential to in-
corporate an optimized model aggregation strategy when
updating the global model from multiple aggregators to
avoid low-quality aggregation in non-IID situations.

To address the first challenge, GeoFL employs an
importance-aware buffer for each aggregator and quantization
for model updates so that aggregators can determine when
to upload model updates to the central server and reduce
communication costs. Specifically, we quantify the importance
of model updates and measure them at each aggregator.
Aggregators can buffer continuous model updates until their
importance reaches an adaptive importance threshold related
to aggregators’ bandwidth, thus balancing the impact of aggre-
gators’ model updates and avoiding unnecessary aggregator-
server communication. Quantized model updates further speed
up FL training by reducing the bits of parameters.

Second, to avoid the issue of some aggregators not reaching
the importance threshold for a long time, which prevents the
global model from receiving timely updates of all clients,
GeoFL designs an update up-bound for each aggregator. Once
the local training rounds reach this limit, the aggregator can
actively request to upload its local model. GeoFL also assigns
a tuned weight for its model aggregation at the central server
to mitigate the model bias.

Besides, GeoFL tackles aggregator heterogeneity in popu-
lation size and client data distributions. By assigning different
sizes of participants per aggregator, the central server can adapt
its local training pace for a globally uniform participant se-
lection. GeoFL also considers the dynamic graph relationship
across clients with non-IID and unbalanced data to optimize
model aggregation.
System Implementation and Evaluation Results. We have
built the prototype of GeoFL on the public benchmark [12]
and conducted comprehensive evaluation on the real-life mo-
bile scenarios with massive geo-distributed clients, including
image classification (OpenImage [13]), landmark recognition
(Google Landmark [14]), voice command recognition (Google
Speech [15]), activity recognition (HARBox [16]) and next-
word prediction (StackOverflow [17]). We compare GeoFL
against three baselines: HierFAVG [10], HierFAVG-Async, and
Async-HFL [11]. Our results on different large-scale real-
life datasets show that GeoFL can significantly accelerate
the global model training process and reduce unnecessary
communication rounds between aggregators and the central
server, thereby considerably saving communication bandwidth.

In summary, our work makes three major contributions:

• To the best of our knowledge, GeoFL is the first FL
framework that considers largely geo-distributed clients
in constrained bandwidth environments. GeoFL uses real-
world WAN bandwidth measurements to demonstrate the
distinctive challenges of geo-distributed FL.

Fig. 2: Average WAN bandwidth measured across ten global
Amazon EC2 sites, the mean network bandwidth of mobile
clients, and aggregators’ population sizes.

• We propose the design of geo-distributed aggregators,
which incorporate local clients’ communication and adap-
tively upload quantized important model updates to the
central server with less communication cost. Additionally,
we also present the design of non-importance model
updates tuning and graph-based model aggregation to
mitigate model bias issues.

• We have implemented GeoFL and evaluated it with exten-
sive experiments. Compared with existing works, GeoFL
speeds up the training process by 1.4×–8× and reduces
6%–80% unnecessary communication rounds between
the aggregator and the central server with various tasks.

II. EMPIRICAL STUDY AND MOTIVATION

A. Geo-Distributed WAN Measurement

To understand the unique characteristics of designing geo-
distributed FL systems, we conduct experiments to measure
the bandwidths of WAN on a global scale. To do so, we
measure the WAN bandwidth for each pair of Amazon Elastic
Compute Cloud (EC2) sites located at 10 different regions
across the globe – Tokyo, Ireland, London, Paris, Frankfurt,
Seoul, Singapore, Mumbai, São Paulo, and Virginia. The
selection of site locations is determined by the clients’ geo-
distribution in Figure 1 and aims to cover the spread of clients
best. We use iperf3 [18] to measure the WAN bandwidth
and report the average over 100 communication rounds. We
compare the WAN bandwidth of the aggregators we measure
with the clients’ network bandwidth which are profiled with
real-life measurements on mobile platforms [12], [19], [20].
Additionally, we extract the clients’ landmark coordinates
from the Google Landmarks Dataset-v2 (GLDv2) [1], the
largest landmark dataset, and assign them to the nearest
aggregator to compare the population size of aggregators.

Figure 2’s bar chart displays the average WAN bandwidth
between each aggregator and the remaining nine aggregators,
as well as the average network bandwidth from clients on
mobile devices, with error bars indicating standard error. The
line chart shows the population sizes of the ten aggregators.
We have three key observations as follows.
Observation #1: Inadequacy of WAN Bandwidths in Com-
parison to Mobile Network. The WAN bandwidths between
two different sites are much more inadequate compared to



(a) Geo-distribution of clients. (b) Clients’ local computation. (c) Client-aggregator communication. (d) Aggregator-server communication.

Fig. 3: Performance of naive geo-distributed cross-device FL systems.

the mobile network bandwidth obtained from real-life mobile
device measurement [12], [19], [20]. For example, the average
mobile network bandwidth for all clients is 171 Mibit/s, while
the average WAN bandwidth between Virginia and the other
nine aggregators is only 32 Mibit/s.
Observation #2: Heterogeneity of WAN Bandwidths. For
sites that are geographically close (e.g. Ireland, London,
Paris, and Frankfurt in Europe), their mutual WAN bandwidth
benefits from the geographical proximity, which makes their
respective average WAN bandwidth relatively higher than the
other six aggregators. For example, the average bandwidth
from Paris to the other nine aggregators is 106 Mibit/s, while
São Paulo is only 33 Mibit/s.
Observation #3: Unbalanced Populations across Aggrega-
tors. The clients’ geo-locations extracted from GLDv2 have
up to 180k coordinates. The populations within aggregators
from various geographic locations are notably unbalanced.
For example, Frankfurt contains more than 50% of clients’
coordinates, while Seoul and Tokyo account for less than 1%.

B. Limitation of Naive Geo-Distributed FL

The inadequacy and heterogeneity of WAN bandwidths
directly impact the performance of FL systems when deployed
in geo-distributed settings. To identify the factors affecting
geo-distributed FL design and quantify their impact, we study
the communication and computation performance of a naive
geo-distributed FL system, which has a central server (marked
as a cube in Figure 3(a)) deployed in Frankfurt and five
aggregators (marked as cylinders in Figure 3(a)) deployed in
Ireland, Paris, Mumbai, São Paulo, and Virginia distributed
across four continents.

Given that we extract 180k coordinates from GLDv2, rep-
resenting 180k clients, we choose Frankfurt as the central
server due to its shortest accumulated distance to all the
aggregators and clients, Additionally, we assign clients to the
nearest aggregator based on their distance to each of the
five different aggregators, with the client number scattered
across five aggregators ranging from 4k to 120k. Figure 3(a)
depicts client locations with colored circles of different sizes.
We acquire clients’ device and network bandwidth infor-
mation from mobile device measurement studies [12], [19],
and we follow standard FL profiling [20] to emulate the
device computation runtime during local FL training using
data from AI Benchmark [21]. Clients participating in the FL

process collaboratively train a 168MB Transformer model [22]
with 21M parameters, and communicate with aggregators via
mobile networks, while aggregators use measured WAN to
communicate the model with the central server.

We measure three key metrics that affect the efficiency per-
formance of geo-distributed FL systems in such a hierarchical
structure: (1) client computation time of local FL training; (2)
client-aggregator communication time via mobile network; (3)
aggregator-server communication time via WAN.

Figure 3(b) shows the distribution of local computation
time of participated geo-distributed clients. As shown, the
computation time of one local training round for all clients
falls within [0.097s, 1.283s], and a significant portion of the
client population has a device runtime of less than 0.4s.

We map the mobile device bandwidth measurements from
existing FL frameworks to our geo-distributed clients based
on client-aggregator distance, and examine the average time
spent on model transmission between clients and aggregators
during each round of FL training. Figure 3(c) illustrates the
cumulative distribution function (CDF) of the client-aggregator
communication time. As shown, 99% of client-aggregator
communication time across the five aggregators is less than
3s and the median is only 0.5s.

We adopt the WAN bandwidth measured in §II-A to eval-
uate the communication overhead between each aggregator
and the central server. Figure 3(d) shows the CDF of the
aggregator-server communication time via WAN. The medium
aggregator-server communication time (3.2s) is 6.4× longer
than the medium client-aggregator time (0.5s). Moreover, we
notice that the heterogeneity of WAN bandwidths across geo-
distributed aggregators directly translates to the heterogeneity
of aggregator-server communication time via WAN. Specif-
ically, the medium communication time for Frankfurt-São
Paulo link with narrower WAN bandwidth is 5s. This is 8.62×
longer than the Frankfurt-Paris link (0.58s) with relatively
wider WAN bandwidth.

It is obvious that in naive geo-distributed FL systems, the
efficiency is most significantly affected by the communication
time between aggregators and the server over the WAN, espe-
cially if each training round’s global model requires waiting
for the central server to aggregate the locally trained models
from clients under all aggregators through such insufficient
and heterogeneous WAN bandwidth. The results motivate us
to design GeoFL that takes real-world WAN bandwidth into
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Fig. 4: The architecture of GeoFL.

account to minimize time consumption as much as possible.

III. SYSTEM OVERVIEW

Figure 4 illustrates the overall architecture of GeoFL, which
has three key components. First, given the unbalanced popula-
tion distribution, geo-distributed aggregators in GeoFL enable
their large-scale clients to participate in FL training propor-
tionally to population sizes and can leverage dynamic graph
relationships between client models to perform graph-based
aggregation, thereby enhancing local models and mitigating
the impact of imbalanced data distribution (§IV-C).

Second, to address the factors significantly affecting geo-
distributed FL systems, GeoFL measures and calculates the
importance of model updates at each aggregator and uses
an importance-aware buffer with adaptive thresholds related
to WAN bandwidth to determine when to upload model
updates. Once the importance of the model updates exceeds
the adaptive threshold, aggregators can quantize the model
update and send it to the central server (§IV-A), thus saving the
precious WAN bandwidth between aggregators and the central
server while reducing the aggregation latency.

In addition, to prevent the importance of each aggregator’s
model update from failing to reach the threshold and causing
model bias due to too many local training rounds, GeoFL sets
an up-bound for aggregation rounds so that model updates can
be quantized and uploaded promptly. At the same time, the
central server also tunes the uploaded model weights according
to the updated degree of different aggregators (§IV-B). In the
following, we describe these components in detail.

IV. DESIGN OF GEOFL

A. Importance-aware Quantized Model Update

This section focuses on reducing the communication cost of
GeoFL by letting aggregators only send important quantized
model updates to the central server. We first measure the
importance of model updates at each aggregator in a real-life
FL dataset for image classification [13] when deploying a geo-
distributed FL system with three aggregators in Ireland, Vir-
ginia, and Mumbai and the central server in Frankfurt. Then,
GeoFL shows the design of an importance-aware buffer and

the quantization for each aggregator’s model communication
to the central server.

1) Model Update Importance Measurement: In FL systems,
the importance of model updates is determined by the extent
to which each update contributes to overall model perfor-
mance [23], which typically involves assessing the model
differences each update brings by distance metrics, such as the
L2 norm or cosine distance. L2-norm can reflect the change
in the absolute value of the model parameters, and cosine
distance can show the direction difference between the two
model parameters, which respectively reflect the changes of
the model parameters in different dimensions, and existing
work usually focuses on one of them to sample [24]–[26].

To fully utilize the information from different metrics, we
combine the two. On the one hand, we calculate the rate of
parameter change between the global model and aggregator
model under the L2 norm (L). On the other hand, we calculate
the normalized cosine similarity of the two models’ parameters
(Cosnorm) by adjusting the range of original cosine distance
from [−1, 1] to [0, 1]. When Cosnorm is closer to 1, it means
that the similarity between the two models is higher, and on
the contrary, it is lower. We define importance as S on the
weighted average of L and (1 − Cosnorm) to measure the
importance of model update from each aggregator.

Given three geo-distributed aggregators (i.e., Ireland, Mum-
bai, and Virginia) with the central server in Frankfurt, in order
to observe the variation in the importance of model updates
over training rounds, we calculate the importance at each
aggregator after it aggregates local client models and make
the aggregator immediately send the update to the central
server without waiting for the other aggregators. We also
measure the communication time between each aggregator and
the central server each round. Figure 5(a) shows that most
model update importance values fall within [0.5%, 5%] and
approach zero as SGD evolves. Besides, we further notice
that the communication time between each aggregator varies,
with aggregators that are further away from the central server
having lower bandwidth and thus longer communication time
shown in Figure 5(b). For instance, Virginia takes an average
of about 4s to communicate model updates each time, while
Ireland only requires around 1s. However, being agnostic to
the models’ importance wastes the precious WAN bandwidth
by communicating those “unimportant” models. GeoFL pro-
poses an importance-aware model buffer to accumulate these
model updates for each aggregator until they are important
enough and quantizes the model updates before sending. As
such, we can shrink the communication time by reducing the
communication overhead of the aggregator-server directly.

2) Importance-aware Model Buffer and Quantization: To
determine the best time to upload the model for each ag-
gregator, GeoFL proposes to find the sweet point between
aggregation efficiency and communication cost. Given our
importance metric, an intuitive way is to set an importance
threshold by which the aggregator can determine whether to
upload the model or accumulate it in its buffer. However,
as training converges, model update importance approaches



(a) Round-varying importance. (b) Communication time cost. (c) With GeoFL’s importance buffer. (d) Fewer rounds and time.

Fig. 5: The importance of the model updates from aggregators and the communication costs for communicating with the central
server (Frankfurt).

zero, and a fixed threshold can only hinder aggregations after
certain points, leading to sub-optimal performance. Also, the
WAN bandwidth heterogeneity of different aggregators will
also affect the best upload time. GeoFL designs an adaptive
importance threshold at the training round ri as below:

Si = max
(
Smin, S0 × (α− (1− α)×Bi)

(ri)
)
, (1)

where S0 and Smin denote the pre-defined importance thresh-
old and the lower bound, respectively. As the number of local
training rounds increases, the decay factor α (defaulted 0.95)
works with the aggregator’s normalized WAN bandwidth Bi to
control the reduction speed of S0. Higher bandwidth promotes
a faster decay. Figure 5(c) presents the adaptive importance
threshold for each aggregator. We also adopt quantization,
which is used to convert the model parameters from Float32 to
target bits so that the total number of uploaded bits could be
reduced [27], to reduce communication time. When the local
model aggregated by the aggregator reaches the importance
threshold, GeoFL quantizes the model update parameters to
Float16 and sends it to the central server, thus achieving 2×
saving with almost no impact on model accuracy [28].

We further measure the importance of uploaded model
updates and their communication time to evaluate the effec-
tiveness of GeoFL’s importance-aware buffer and quantization.
As shown in Figure 5(c), each aggregator could accumulates
model importance under the buffering strategy, uploading only
upon reaching the adaptive threshold. Thus, with the same lo-
cal training rounds in Figure 5(a) and 5(c), the design reduces
the number of communication rounds and time significantly in
Figure 5(d). Especially for aggregators with lower bandwidth
(Mumbai and Virginia), the number of upload times is reduced
more, thereby better reducing WAN overhead.

B. Handling Non-importance Model Updates

With GeoFL’s importance-aware quantized model aggre-
gation, the global model could have been updated several
times before aggregating certain aggregators’ updates as non-
importance updates are not uploaded. Meanwhile, the local
training rounds between two adjacent communications for
each aggregator with the central server also affect the model
divergence. We present the side-effect of GeoFL’s buffer on
increasing local training rounds and tune the non-importance
model updates by elaborately designing the model uploading
and aggregation pipeline to mitigate these effects.

1) Side-effect of GeoFL’s Buffer: We use the same method-
ology in §IV-A but record the local training rounds between
the aggregator’s adjacent communications to the central server.
As illustrated in Figure 6(a), GeoFL maintains a list of the
local training rounds for each aggregator. These rounds should
be neither too large nor too small, as larger rounds reduce
the effectiveness of global model aggregation, while smaller
rounds undermine time efficiency due to the frequent use of
inadequate WAN bandwidth for model communication. A sole
importance-aware buffer shrinks too fast in Figure 5(c) so that
Ireland with the local training rounds as 1 in Figure 6(a). In
contrast, the model update importance increases slower for
Mumbai and Virginia, resulting in the larger local training
rounds in Figure 6(a).

2) Non-importance Model Updates Tuning: GeoFL re-
solves the issue in §IV-B1 from both the aggregators and
central server sides. First, the aggregator can upload the local
model when its local training round reaches the pre-defined up-
bound R0 (default 5), ensuring constrained model divergence
between the local and global model for each aggregator.
Meanwhile, to coordinate GeoFL’s importance-aware buffer
and account for non-uploaded “unimportant” updates, we add
R0 to Equation 1 and tune the importance threshold as follows:

Si = max
(
Smin, S0 × (α− (1− α)×Bi)

(ri/R0)
)
. (2)

We show the impact of incorporating two strategies on time
cost in Figure 6(b). Given the same local training rounds, it re-
duces aggregator-server communications from 16 (Figure 5(d))
to 8 (Figure 6(b)), while keeping local training rounds within
R0. Second, GeoFL designs a tuned global model aggregation
upon receiving the update from an aggregator a to control its
impact on the global model. The central server maintains a
list of per-aggregator models and each aggregator’s number
of involved global rounds since its last communication to the
central server [29]. Upon receiving the update from aggregator
a, we first derive the aggregator set A∗, whose models have
been aggregated to the central server after aggregator a’s last
communication. Then, we obtain the involved global training
rounds vector G for each aggregator in A∗, with the maximum
value corresponding to aggregator a. Eventually, we derive the
aggregated model Ma, which will be distributed to aggregator



(a) w/o up-bound. (b) with up-bound.

Fig. 6: Aggregators’ local training rounds for model updates.

a for the next training round as follows:

Ma =
∑
i∈A∗

ciMi, where ci =
(Gi + 1)−β∑

k∈A∗(Gk + 1)−β
, (3)

where ci with the hyper-parameter β (e.g., 0.2) measures the
contribution of a model update [29].

C. Graph-based Model Aggregation

Despite GeoFL designs strategies to enhance aggregator-
server communication, aggregators’ model can be inferior by
simply aggregating client models with different distributions,
as it neglects the high degree of non-IID and unbalanced
clients within aggregators. Aggregators across diverse ge-
ographical areas inherently exhibit heterogeneity, including
population sizes and client data distributions (e.g., photos
taken in different locations). The similarities and differences in
data distribution among clients can be reflected by their local
model parameters. Exploring the relationships between their
parameters can adjust the model contribution of distributions
with different proportions. Graph networks are effective for
capturing dependencies among data [30], and we design them
to catch parameter correlations among clients. As shown
in Figure 7, GeoFL adapts its training strategy to balance
participating clients from each aggregator and employs graph
networks to dynamically explore graph relationships between
clients. Through graph networks, the connection weights be-
tween clients can be learned. The aggregator can weight
each client’s model based on the parameters of neighboring
nodes, enabling nodes with similar distributions to contribute
more. Thus, geo-distributed aggregators can optimize model
aggregation based on their own distribution.

To enhance each aggregator’s model, GeoFL adapts its
training strategy from top to down. Given the total number
of clients, the central server first assigns different numbers of
participating clients for each aggregator, which is proportional
to its population size. Then, for client models uploaded to the
aggregator, the aggregator quantifies the similarity among the
uploaded client parameters based on their pairwise Euclidean
distances and constructs an initial adjacency matrix Aij :

Aij = N


√√√√ d∑

k=1

(pik − pjk)2

 , (4)

where pik and pjk are the parameter vectors of clients i and j
respectively, d is the dimensionality of the parameter vectors,
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Fig. 7: Graph-based Model Aggregation.

and N represents the normalization function applied to the
distances. This adjacency matrix is subsequently refined by
the Graph Attention Network (GAT) [31], which consists of
several GATConv layers endowed with attention mechanisms.
GAT applies attention across multiple heads to dynamically
capture and update client relationships, iteratively updating the
adjacency matrix to emphasize more relevant connections and
reduce the impact of less relevant ones by using Mean Squared
Error (MSE) loss LMSE to optimize:

LMSE =
1

n2

n∑
i,j=1

(Âij −Aij)
2, (5)

where n is the number of clients and Âij is the computed ad-
jacency matrix from the GAT output. Once the GAT processes
the graph structure, Graph Convolutional Network (GCN) [32]
layers utilize the adjacency matrix to guide the aggregation of
client model parameters. The aggregators employ graph con-
volution, aggregating neighboring nodes to reconstruct each
uploaded client update based on the learned graph structure
and aggregate the reconstructed models to obtain an enhanced
model. This design refines the aggregation mechanism, allow-
ing the system to adaptively optimize learning outcomes based
on the evolving relationships in clients’ data distributions.

V. EVALUATION

In this section, we evaluate the performance of GeoFL with
the aim to answer the following questions.
• Q1 (§V-C): Does GeoFL outperform status quo? If so, what
are the reasons?
• Q2 (§V-D): How effective is each key component incorpo-
rated in GeoFL?
• Q3 (§V-E): How is the performance GeoFL affected by
diverse hyper-parameters?

A. System Implementation
We implement GeoFL using the FedScale framework [12]

and deploy it on 32 NVIDIA Tesla P100 GPUs to em-
ulate large-scale real-life FL scenarios. We obtain clients’
geo-locations from the landmark coordinates provided
by GLDv2 [1]. We consider mobile devices as clients
and incorporate computation resources, network through-
put/connectivity, and availability of clients extracted from
real-world mobile device measurements into client-aggregator
communication [19]–[21]. We further acquire aggregator-
server network bandwidth with our real-world measurements
on Amazon EC2 instances in different regions.



TABLE I: Synopsis of datasets, types, and ML models.
Dataset Type Model # of Clients

OpenImage [13] Image MobileNet [34] 7,903
Google Speech [15] Audio ResNet-34 [35] 2,187

Landmarks-User-160k [14] Image EfficientNet [36] 1,262
HARBox [16] IMU Customized [33] 121

StackOverflow [17] Text Albert-v2 [37] 342,477

B. Experimental Methodology

Tasks, Datasets, and Models: We evaluate GeoFL on five
real-world datasets with different data types and scales de-
signed for five categories of FL applications. Each dataset re-
lies on the collection information to indicate the corresponding
clients (e.g., USER ID for each data sample). Thus they can
vary in data quantities, distribution, and outputs and are usually
Non-IID [20], [33]. Table I summarizes data types and models
for each dataset, and we list the details of each task below.

• Image Classification. OpenImage [13] contains 1.1 mil-
lion images from around 7,903 clients, which play a
critical role in enabling worldwide machines to identify
what objects are present in the image.

• Speech Recognition. Google Speech Dataset [15] encom-
passes over 100,000 voice commands from 2,187 clients,
aimed at assisting the training and evaluation of keyword
recognition systems across different manufacturers.

• Landmark Recognition. Landmarks-User-160k [14], con-
taining 160k images of 2,028 landmarks from 1,262
users, facilitates the development of large-scale landmark
recognition systems without the need to upload or store
private user photos centrally.

• Human Activity Recognition. HARBox [16] collects
34,115 samples of 9-axis IMU data from 121 users’
smartphones via crowdsourcing for scalable and robust
human activity recognition.

• Natural Language Processing. StackOverflow dataset [17]
collects the posts, votes, tags, and badges on StackOver-
flow for the next-word predictions, with 42 million data
samples from 342,477 clients.

Parameters Settings: We use three aggregators in Ireland,
Virginia, and Mumbai, with the central server in Frankfurt.
Regarding client selection, 30 to 90 participating clients in
total are selected, depending on the number of feasible clients
in each dataset. Each client trains for 5 local steps with a
mini-batch size of 16 per training round. The initial learning
rate for clients is 4e− 5 for customized DNN model [33] and
Albert [37] and 0.04 for other models. We set decay factor α as
0.95 for the importance threshold in Equation 2, with an initial
value S0 from 0.4% to 20% for different tasks. The up-bound
local training round for each aggregator is R0 = 5. GAT is
trained for 20 iterations to generate the adjacency matrix for
each global aggregation, and GCN consists of 2 layers.
Baselines: We compare GeoFL against three baselines under
the same geo-distributed FL configuration.

• HierFAVG [10]. HierFAVG adopts the hierarchical ar-
chitecture, in which the central server cannot start the
next-round training until it aggregates all the local model
updates from its geo-distributed aggregators.

• HierFAVG-Async. HierFAVG-Async is a variant of Hier-
FAVG and it keeps all aggregators running based on their
best-effort communication and the central server updates
its global model once it receives the model updates.

• Async-HFL [11]. Async-HFL is the state-of-the-art asyn-
chronous FL method where clients upload updates after
completing 5 epochs on all local data, while the ag-
gregators upload after 20 updates. Unlike the other two
baselines and GeoFL, Async-HFL trains all local samples
of selected clients for 5 epochs, whereas the other three
methods use the same mini-batch size of each training
round with a fixed local training iteration.

Evaluation Metrics: We demonstrate the performance using
these metrics:
(1) Target final accuracy after testing accuracy stabilizes. We
adopt perplexity for the next-word prediction task, which is
better when lower [33].
(2) End-to-end clock time and global training rounds required
to reach target final accuracy. The wall clock time includes
the local computation overhead and the time duration of
aggregation communication.

C. Overall Performance

Table II summarizes the final accuracy, corresponding train-
ing wall clock time, and rounds for all four FL frameworks in
terms of five different tasks. The detailed results are described
as follows:
GeoFL speeds up the wall clock time to reach the target
final accuracy. GeoFL achieves the final target accuracy in
less time and demonstrates superior or comparable accuracy
compared with all baselines. For example, GeoFL reaches
the target final accuracy 8× (2.11h to 0.28h), 2× (0.66h
to 0.28h), and 7× (1.95h to 0.28h) faster than HierFAVG,
HierFAVG-Async, and Async-HFL in terms of wall-clock time
on OpenImage [13], while the speedup is 5× (10.20h to
2.10h), 2× (4.00h to 2.10h), and 7× (15.37h to 2.10h) on the
Google Speech [15]. Besides, GeoFL achieves about 1.56%
(67.55% to 69.11%) higher final accuracy on OpenImage
in comparison with HierFAVG, while our final accuracy on
Google Speech increased significantly by 15.92% (49.53% to
65.45%) compared to Async-HFL.

These speedups with the wall clock time reduction stem
from the GeoFL’s specially designed update strategy on the
aggregator-server communication. GeoFL’s importance-aware
quantized model updates enable aggregators to decide the
timing of uploads based on dynamic importance thresholds,
avoiding waiting for stragglers in aggregators in each training
round and reducing communication rounds for non-importance
updates to the central server. The up-bound on local training
models further prevents excessive local training rounds. Thus,
it can reach the final accuracy with less wall-clock time than
three baselines, and the speedup is at least 1.4× (3.06h to
2.16h) and at most 8× (2.11h to 0.28h) for various tasks.
In addition, the significant boost in performance of GeoFL
can be attributed to its model update tuning capability and



TABLE II: GeoFL’s performance summary on its final accuracy, training time, and rounds compared with the HierFAVG,
HierFAVG-Async, and Async-HFL baselines.

Dataset HierFAVG HierFAVG-Async Async-HFL GeoFL
Accuracy Time Round Accuracy Time Round Accuracy Time Round Accuracy Time Round

OpenImage [13] 67.55% 2.11h 280 66.90% 0.66h 410 65.04% 1.95h 240 69.11% 0.28h 80
Google Speech [15] 65.00% 10.20h 130 63.86% 4.00h 320 49.53% 15.37h 430 65.45% 2.10h 90

Landmarks-User-160k [14] 42.83% 13.35h 800 41.38% 6.12h 2310 36.05% 9.33h 850 43.20% 3.50h 750
HARBox [16] 69.24% 10.06h 440 66.87% 3.06h 840 68.56% 3.59h 260 69.40% 2.16h 380

StackOverflow [17] 36.92 6.66h 280 37.12 2.28h 580 37.45 3.92h 260 36.38 1.39h 200

ability to resolve aggregator heterogeneity. Unlike HierFAVG,
which treats updates from all aggregators equally each round,
and HierFAVG-Async, which continuously aggregates non-
importance model updates, as well as Async-HFL that suf-
fers from greater convergence impacts due to larger model
interaction delays, GeoFL can aggregate model updates from
different aggregators more effectively.
GeoFL achieves the target final accuracy with much
fewer communication rounds. Compared with HierFAVG,
HierFAVG-Async, and Async-HFL, GeoFL can use the least
number of communication rounds to achieve the target final ac-
curacy. Table II shows HierFAVG-Async has a larger number
of communication rounds since it has to use its aggregator-
server communication bandwidth frequently. For example,
HierFAVG-Async on Landmarks-User-160k [14] needs up to
2,310 global communication rounds, which uses more re-
sources than the other three methods. In contrast, GeoFL only
requires 750 global communication rounds by constricting the
communication between its aggregator and the central server.
It reduces communication rounds by 68% and saves precious
WAN resources.

Although Async-HFL requires fewer global communication
rounds on HARBox [16] compared to GeoFL, it is because
it trains their entire local data for 5 epochs with each client
update, allowing them to complete faster on relatively small
datasets. However, when facing large-scale datasets, even
with more global communication rounds than GeoFL, they
cannot achieve GeoFL’s performance. We attribute such an
improvement to GeoFL’s importance-aware model uploading,
which can reduce unnecessary communication rounds. Com-
pared with the three baselines, GeoFL significantly reduces
communication rounds and the reduction ranges from 6% (800
rounds to 750 rounds) to 80% (410 rounds to 80 rounds),
which greatly saves the communication cost between the
aggregator and the central server.

D. Component-wise Analysis

We break down GeoFL’s designs for client-aggregator-
server communication and evaluate their effectiveness using
OpenImage [13] with a random client selection strategy.
Without importance-aware quantized model updates (§IV-A),
aggregators only upload model updates without quantization
to the central server when reaching non-importance model
updates’ up-bound. Removing up-bound (§IV-B), model up-
dates from aggregators are only uploaded to the central server
when their importance exceeds the adaptive threshold. Without
graph-based model aggregation (§IV-C), each aggregator’s
model update is simply averaged for coordination.

(a) Time-to-accuracy. (b) Round-to-accuracy.

Fig. 8: GeoFL’s performance on OpenImage [13] without
importance-aware quantized updates (IQU), up-bound (UB),
and graph-based aggregation (GA).

Figure 8(a) shows that GeoFL degrades when any compo-
nent is removed. Without importance-aware quantized updates,
aggregators may miss the optimal time to upload important
models, resulting in reduced accuracy, and not using quanti-
zation can increase communication costs and hinder the speed
of model training. Lacking non-importance model updates’
up-bound causes the training pace between the aggregator
model and the global model to be too different, and the
original accuracy cannot be achieved even if more rounds
are performed. Furthermore, ignoring aggregator heterogeneity
and the correlations among clients can diminish the aggregated
model’s quality by imbalances, thereby reducing accuracy even
with more time. With all components, GeoFL can achieve the
best performance.

E. Sensitivity Analysis

Impact of Parameters: To evaluate GeoFL’s several critical
parameters, we measure the impact of different values in
a certain range. We examine pre-defined initial importance
threshold (S0) and local training up-bound (R0). Note that
the setting of S0 varies by task and we sweep the importance
range of each task to select the appropriate value. We take
HARBox [16] as an example to illustrate. Here we choose
three different values for S0 and R0 to measure respectively
as shown in Figure 9. Although the importance threshold will
change with time, the importance of model update will be
insufficient if S0 is too small, and if it is too large, it will
miss the opportunity to upload the important model in time,
thereby reducing the accuracy. It is the same for R0. Thus we
select S0 to be 0.01 and R0 to be 5 for HARBox [16].
Impact of Number of Participating Clients: We evaluate
the different number of participating clients in each training
round for GeoFL’s performance. Similarly, we deploy three
aggregators and use OpenImage [13] as an example. As we can



(a) Time-to-accuracy. (b) Round-to-accuracy.

Fig. 9: Impact of pre-defined initial importance threshold (S0)
and up-bound (R0) on HARBox [16].

see in Figure 10, GeoFL achieves higher final accuracy with
more participating clients per round, which is consistent with
existing FL framework [20]. With more clients participating
(e.g., 300), the data becomes more heterogeneous, requiring
more training rounds to learn this diversity, which may slow
initial accuracy growth. Nevertheless, involving more partic-
ipants allows the model updates on the aggregator to better
reflect the global data distribution, and GeoFL can leverage
graph relationships of client models to optimize the model
aggregation on the aggregator and mitigate the negative im-
pacts of aggregator heterogeneity, ultimately achieving higher
accuracy (e.g., 71.62%).

VI. RELATED WORK

Efficient FL. Due to its privacy-preserving nature, FL is a
highly promising technology in areas such as agriculture [38]–
[40], wireless network [41], [42], and advanced sensing [43]–
[46]. Efficient FL aims to speed up the global model train-
ing by reducing the number of training rounds or the per-
round time consumption, corresponding to its computation
and communication optimization respectively. Most works
focus on the efficiency ML model training, with various
designs of loss optimizers [47], aggregation strategies [48], and
knowledge distillation [49]. Asynchronous FL can also achieve
efficient FL by allowing all clients to keep running based
on the results of best-effort communication [11]. Although
it avoids stragglers for time efficiency but has to account for
convergence analysis [50], resolving the staleness with biased
model [51]. Several works also propose to personalize the
model efficiently [52]. On the other hand, FL communication
optimization focuses on model compression (e.g., sparsifica-
tion [53], federated dropout [54]) and parameter adaption [55]
for communication.
Client Heterogeneity and Selection. The data and system
heterogeneity of clients [5] in FL make it distinct from existing
well-matured distributed learning paradigms [56], [57]. Clients
have Non-IID data samples, especially for mobile scenarios
with edge devices [16], [58]. Additionally, clients’ devices also
demonstrate system heterogeneity in computation resources
and communication bandwidth [20], resulting in straggler
participants. Guided client selections have been proposed to
resolve client heterogeneity [20], [33]. The key is designing
a utility function to measure the impact of clients’ data and
system resources, allowing the coordinator to select “good”

(a) Time-to-accuracy. (b) Round-to-accuracy.

Fig. 10: Impact of participating clients on OpenImage [13].

clients for the next training round [59]. GeoFL builds on top
of the clients and can be incorporated with existing client
selection strategies readily.

VII. CONCLUSION

In this paper, we present GeoFL, a geo-distributed cross-
device FL framework based on the hierarchical architecture.
By assigning aggregators between clients and the central server
as the relay layer, aggregators can consciously determine when
to upload the model to the central server based on their
WAN bandwidth, allowing for more efficient communication.
It further considers the heterogeneity across geo-distributed
aggregators, delivering an end-to-end client-aggregator-server
architecture for large-scale clients. Compared to the baselines,
our results on large-scale real-world datasets show that GeoFL
speeds up global model training by 1.4× to 8× and reduces
6% to 80% unnecessary communication rounds between ag-
gregators and the central server to save bandwidth resources
across various models and tasks.
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