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as the Artificial Intelligence of Things (AIoT). In this survey, we provide a systematic and comprehensive review of AIoT
research. We examine AIoT literature related to sensing, computing, and networking & communication, which form the
three key components of AIoT. In addition to advancements in these areas, we review domain-specific AIoT systems that are
designed for various important application domains. We have also created an accompanying GitHub repository, where we
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maintained and updated with new research as it becomes available. As both IoT and AI become increasingly critical to our
society, we believe AIoT is emerging as an essential research field at the intersection of IoT and modern AI. We hope this
survey will serve as a valuable resource for those engaged in AIoT research and act as a catalyst for future explorations to
bridge gaps and drive advancements in this exciting field.
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1 INTRODUCTION
The proliferation of the Internet of Things (IoT) such as smartphones, wearables, drones, and smart speakers, as
well as the gigantic amount of data they capture, have revolutionized the way we work, live, and interact with
the world. Equipped with sensing, computing, networking, and communication capabilities, these devices are
able to collect, analyze and transmit a wide range of data including images, videos, audio, texts, wireless signals,
physiological signals from individuals and the physical world. In recent years, advancements in Artificial Intelli-
gence (AI), particularly in deep learning (DL)/deep neural network (DNN), foundation models, and Generative
AI, have propelled the integration of AI with IoT, making the concept of Artificial Intelligence of Things
(AIoT) a reality. The synergy between IoT and modern AI enhances decision making, improves human-machine
interactions, and facilitates more efficient operations, making AIoT one of the most exciting and promising areas
that have the potential to fundamentally transform how people perceive and interact with the world.
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Fig. 1. Overview of AIoT.

As illustrated in Figure 1, at its core, AIoT is grounded on three key com-
ponents: sensing, computing, and networking & communication. Specifically,
AIoT utilizes a variety of onboard sensors such as cameras, microphones,
motion and physiological sensors to collect data from individuals and the
physical world. The collected sensor data are processed by modern AI al-
gorithms for a variety of tasks such as classification, localization, anomaly
detection, and many others. Lastly, the networking & communication com-
ponent of AIoT ensures the reliable transmission of the sensor data and/or
the computed outcomes to the cloud, edges or other nearby AIoT devices.
Compared to conventional IoT, the computing component of AIoT is concen-
trated on AI-oriented compute tasks. Moreover, the sensing and networking
& communication components of AIoT are AI empowered. It is these two key
distinctions that allow AIoT to empower billions of everyday devices with breakthroughs brought by modern AI.
Besides advancements in the three key components, domain-specific AIoT systems have been proposed and

developed across a wide range of application domains. For example, in the domain of healthcare, AIoT systems
enable remote patient monitoring, facilitate disease diagnosis on site, and act in the form of assistive technology
that helps people with disabilities. In the domain of Augmented, Virtual, and Mixed Reality, AIoT systems enable
3D tracking to provide immersive user experiences. In the domain of video streaming and analytics, AIoT systems
have been developed to enhance video quality and optimize video processing efficiency. All these developed
domain-specific systems demonstrate the potential of AIoT on revolutionizing a wide range of industries.

The overarching goal of this survey is to provide a systematic and comprehensive review of AIoT research. As
shown in Figure 2, we organize the literature of AIoT in a taxonomy consisting of four main categories: sensing,
computing, networking & communication, and domain-specific AIoT systems. Specifically,

• Sensing: Sensing serves as the foundation of AIoT. In §2, we survey AI-empowered sensing mechanisms
and techniques in AIoT that cover research directions related to motion sensing, wireless sensing, vision
sensing, acoustic sensing, multi-modal sensing, earable sensing, and Generative AI for sensing.

• Computing: Computing is the brain of AIoT. In §3, we survey fundamental compute tasks that lie at
the core of AIoT, covering topics related to on-device inference, offloading, on-device training, federated
learning, and AI agents for AIoT.

• Networking & Communication: Networking and communication serve as the backbone of AIoT. In §4,
we survey AI-empowered networking and communication techniques related to a variety of networks
including cellular/mobile networks, Wi-Fi networks, visible light communication, and LoRa/LoRaWAN.

• Domain-specific AIoT Systems: The advancements in sensing, computing, networking & communication
lay the foundation for the development of AIoT systems designed for specific application domains. In §5,
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we survey these AIoT systems in important application domains including healthcare and well-being, video
streaming and analytics, autonomous driving, as well as augmented, virtual, and mixed reality.
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Fig. 2. Taxonomy of Artificial Intelligence of Things (AIoT) literature.
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Sensing Type Contact
Type

Computation
Requirement

Privacy-
Intrusive Range Advantages Disadvantages

Motion Sensing Contact Lightweight Low Short Low power,
cost-effective

Require body contact,
sensitive to location,
limited information

Wireless Sensing Contactless Heavy Low Medium to
Long

Can penetrate walls,
large coverage area

High computational cost,
signal interference from

other devices

Vision Sensing Contactless Heavy High Medium to
Long

Rich information,
versatile applications

Privacy concerns, high
computational cost,
sensitive to lighting

conditions and occlusions

Acoustic Sensing Contactless Lightweight High Short to
Medium

Rich information,
versatile applications

Privacy concerns, affected
by background noises

Multi-Modal
Sensing Both Heavy Variable Variable Combine strengths of

multiple sensors, robust
Complex integration, high

computational cost

Earable Sensing Contact Lightweight Variable Short
Close proximity to

signal sources, versatile
applications

Limited to what can be
measured at the ear,
sensitive to ambient

noises and ear positioning

Table 1. Comparison of different sensing modalities.

Wehave established aGitHub repository to organize the papers featured in the survey at https://github.com/AIoT-
MLSys-Lab/AIoT-Survey. We will actively maintain the repository and incorporate new research as it emerges.
Although there are several surveys on topics relevant to AIoT [21, 30, 89, 94, 168, 196, 233, 324, 329], they

focus on some specific aspects of AIoT. In contrast, this survey provides a holistic view of AIoT research. More
importantly, we primarily focus on literature on sensing, computing, networking & communication, and domain-
specific AIoT systems that are built upon modern AI techniques such as DL, foundation models, and Generative AI.
We hope this survey along with the GitHub repository could serve as valuable resources to help researchers
and practitioners gain a comprehensive understanding of AIoT research and inspire them to contribute to this
important and exciting field.

2 SENSING

2.1 Motion Sensing
Motion sensing involves the use of motion sensors such as Inertial Measurement Unit (IMU) sensors (i.e.,
accelerometers, gyroscopes, and magnetometers) attached to the individuals to capture various types of motions
such as arm postures, body movements, and physical activities. As summarized in Figure 3, depending on the
sensing tasks, existing works on AI-empowered motion sensing can be grouped into two categories: human
activity recognition, and arm tracking.
Human Activity Recognition. One of the most important tasks of motion sensing is human activity recognition
(HAR). Most existing HAR frameworks are limited to a few predefined activities and require prior knowledge or
labeled data for supervised training. To address this limitation, Liu et al. [160] introduce Lasagana, an unsupervised
learning-based HAR framework that extracts common bases of human motions in an unsupervised manner,
creating a universal multi-resolution representation for common human activities. Their prototype system
achieves 98.9% precision in activity classification and nearly 100% recall with about 90% precision in activity
indexing. Another major limitation of existing motion sensing-based HAR frameworks is that machine learning
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Motion Sensing
Human Activity Recognition Lasagana [160], Akbari and Jafari [5], SenseHAR [105], LIMU-BERT [289]

Arm Tracking ArmTroi [171], RTAT [167]

Wireless Sensing

RFID Sensing

Wi-Fi Sensing

mmWave Sensing

LTE Sensing

LoRa Sensing

Vision Sensing

Human Activity Recognition Mosaic [234]

Image Enhancement MobiSR [134], Starfish [96], MicroDeblur [135]

Object Detection
EagleEye [309], LAPD [223], LiquidHash [241],
Mozart [281], UltraDepth [280], ODDS [193]

Eye Tracking EMO [269], GazeGraph [129], ASGaze [25]

Pose Estimation MobiPose [330], RoFin [338]

Acoustic Sensing

Localization DeepRange [185], Owlet [67], DeepEar [301]

Movement Tracking
VSkin [244], Mao et al. [186], Ipanel [34], BreathListener [296],
FM-Track [145], SVoice [65], Experience [144]

Emotion Recognition DeepEar [131], Georgiev et al. [69], Mic2Mic [187]

Keyword and Event Detection Min et al. [192], SoundSieve [198]

Multi-Modal Sensing

Human Activity Recognition
Radu et al. [215], Li et al. [149], Leite and Xiao [137],
VMA [97], Cosmo [204], CMA [344]

Human and Object Identification
XModal-ID [125], RF-Camera [170], Capricorn [265],
Vi-Fi [161], RFVibe [228]

Tracking milliEgo [177], ImmTrack [44]

Localization RFusion [19], ELF-SLAM [180]

Speech Enhancement UltraSE [243], Wavoice [169], VibVoice [88]

Earable Sensing

Facial Expression Sensing BioFace-3D [271], FaceListener [239]

User Authentication EarGate [64], MandiPass [162]

Sound Localization ClearBuds [31], Zandi et al. [315], DeepEar [301]

Generative AI for Sensing LLMSense [205], Penetrative AI [287], MEIT [254]

Fig. 3. Summary of topics related to sensing.

(ML) algorithms trained on specific sensors require retraining upon any system configuration changes, such as
adding a new sensor. To address this limitation, Akbari and Jafari [5] propose a training scheme for the newly
added sensors to identify human activities that were previously detected by existing sensors. As another line of
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Fig. 4. Illustration of AI-empowered motion sensing pipeline.

research, Jeyakumar et al. [105] target the device heterogeneity problem, which encompasses variations in sensor
types, data formats, and sampling rates, leading to lower activity recognition performance in real-life scenarios.
To address this issue, they propose a DL-based HAR framework named SenseHAR, which allows sensor fusion
while being robust to device heterogeneity. SenseHAR offers easy calibration for new devices, allowing seamless
integration and utilization of different devices with varying sampling frequencies, sensors, and applications. Xu
et al. [289] tackle the challenges of limited labeled data and device placement diversity in HAR. They propose
LIMU-BERT, a lightweight DL-based HAR framework that employs self-supervised learning to extract general
features from unlabeled sensor data. It adopts the key principles of the BERT framework for motion sensing and
a classifier consisting of three stacked Gated Recurrent Units (GRU). The model’s efficiency and ability to learn
robust features make it suitable for real-time applications on mobile devices.
Arm Tracking. Another important task of motion sensing is arm tracking, which uses motion sensors to track
the movements, positions, and posture of an individual’s arm. Most arm tracking systems require attaching
multiple sensors to an individual’s arm, which can limit flexibility and have a negative impact on the overall
user experience. To address this issue, Liu et al. [171] propose ArmTroi, a real-time 3D arm skeleton tracking
system that uses a single motion sensor worn on the wrist. ArmTroi adopts an attention and recurrent neural
network (RNN)-based network, which is lightweight and suitable for mobile and real-time applications. The
authors also prototype the system on LG smartwatches, Google Glass, and Samsung Galaxy S7. ArmTroi achieves
real-time arm tracking with 92.7% gesture recognition precision, and demonstrates its efficacy through fitness and
gesture-based control applications. As another line of research, the differences among accelerometers, gyroscopes,
and magnetometers of the IMU sensors as well as the heavy computation costs incurred by DL models make it
challenging to leverage all of these sensors for accurate and real-time arm tracking. To address this issue, Liu
et al. [167] propose RTAT, a real-time arm tracking system that utilizes a Bidirectional Long Short-Term Memory
(BiLSTM)-based multitask neural network to track both the orientation and location of an arm simultaneously.
RTAT also incorporates an attention mechanism to dynamically learn the importance of different IMU sensor
streams to achieve high accuracy and low latency.

2.2 Wireless Sensing
Wireless sensing uses wireless signals to sense individuals and objects in the environment in a contact-free
manner. As summarized in Figure 5, based on the frequency bands wireless signals belong to, existing works
on AI-empowered wireless sensing can be grouped into five categories: RFID sensing, Wi-Fi sensing, mmWave
sensing, LTE sensing, and LoRa sensing.

2.2.1 RFID Sensing. Radio Frequency Identification (RFID) is a technology that employs an RFID tag and reader,
enabling the retrieval of information from the tag using radio frequency (RF) signals emitted by the reader. By
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RFID Sensing Li et al. [150], FaHo [288], EUIGR [313], RF-EATS [80], RFGo [18], ShakeReader [43]

Wi-Fi Sensing

Human Activity Recognition EI [113], RF-Net [50], SiFall [107]

3D Human Mesh Construction WiPose [114], Wi-Mesh [264]

Indoor Localization DLoc [10], LocGPT [347]

Imaging WiSIA [140]

Gesture Recognition
CrossSense [328], Widar3.0 [350], OneFi [273], RF-URL [238],
Wang et al. [258], SLNet [302], RF-Diffusion [38], UniFi [172]

Respiration Monitoring FarSense [320], MultiSense [319]

mmWave Sensing

Human Activity Recognition SPARCS [213], SynMotion [339]

3D Human Mesh Construction
mmMesh [298], m3Track [123],
M4esh [297], mm3DFace [278]

Voice Reconstruction WaveEar [284]

Object Recognition Fusang [87]

Indoor Mapping milliMap [178]

Temperature Monitoring ThermoWave [32]

LTE Sensing
Traffic Monitoring Feng et al. [62]

Soil Moisture Monitoring Feng et al. [63]

LoRa Sensing Sen-fence [276], ChirpSen [275]

Fig. 5. Summary of topics related to wireless sensing.

attaching RFID tags to individuals or objects, RFID can be deployed for sensing tasks such as localization, object
tracking, and classification. Li et al. [150] utilize an RFID sensing system for activity recognition in the medical
environment by attaching RFID tags to objects in clinical settings and recording the Received Signal Strength
(RSS) from these tags. These collected data subsequently serve as the input for a convolutional neural network
(CNN), enabling the recognition of activities that involve the usage of certain objects. While this approach
effectively identifies activities using RFID, the received signal comprises both the Line of Sight (LOS) signal and
multiple reflections from obstacles. This complicates the localization task, making it challenging to determine
which signal accurately represents the RFID tag’s location In response to this issue, Xu et al. [288] introduce an
algorithm that transforms the RFID signal into a hologram that encapsulates the probable location of the tag. A
CNN is then employed to accurately identify the tag’s actual position within this hologram. The accuracy of
existing RFID systems is significantly impacted by the subjects and the surrounding environmental conditions. In
the context of gesture recognition, some studies consider environmental variations but often neglect the impact
on the user. To address this issue, Yu et al. [313] develop a discriminator DNN, which identifies the user and its
environment in the data. Simultaneously, it also has gesture labeling DNN, which predicts the probability of
gestures. Through adversarial training of both DNNs, the gesture labeling DNN learns to create representations
that are indistinguishable from the domain discriminator, resulting in a gesture recognizer that is independent of
the user and environment. Ha et al. [80] introduces RF-EATS, a system designed to noninvasively sense food
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Fig. 6. Illustration of AI-empowered wireless sensing pipeline.

and liquids within closed containers using passive RFID tags. The authors attach the RFID tag to the liquids
and detect whether this liquid is fake or not. To manage the diversity in environmental conditions, the study
employs Variational Autoencoders (VAE) to synthesize multiple samples. A classifier is then trained to distinguish
counterfeit liquids using these augmented datasets. Bocanegra et al. [18] design an RFID reader system capable of
simultaneous multi-tag reading via an array of deployed antennas. To determine whether an RFID tag is within
the checkout area, they also utilize a neural network, training it in a supervised manner using data captured from
the reader. Ultra-high-frequency (UHF) RFID is more appealing to retailers because it can rapidly scan multiple
RFID-tagged items, substantially increasing operational efficiency; however, smartphones currently lack direct
communication capabilities with UHF RFID tags. To bridge the gap, Cui et al. [43] introduce ShakeReader, a
system designed to enhance interaction between smartphones and UHF RFID-tagged items without requiring
hardware modifications to existing RFID systems or smartphones. ShakeReader enables users to obtain item-
specific information by performing predefined gestures, such as shaking the smartphone near the RFID tag. The
system utilizes a reflector polarization model to analyze the backscattered signal from the tag, which is affected
by the smartphone’s gestures. This model accounts for both the signal propagation and the polarization changes
caused by the reflection from the smartphone, enabling the detection of specific gestures using the RFID reader
even with a single tag.

2.2.2 Wi-Fi Sensing. Wi-Fi sensing takes advantage of the ubiquitous Wi-Fi signals and their associated hardware
to detect and interpret human movements or changes in the environment. Depending on the sensing tasks,
existing works on AI-empowered Wi-Fi sensing can be grouped into the following categories.
Human Activity Recognition. One important task of Wi-Fi sensing is human activity recognition (HAR).
The major challenge in device-free human activity recognition is that wireless signals are highly influenced by
the specific environment and individual characteristics of the human subject, leading to poor generalization
of models across different subjects and environments. To address this challenge, Jiang et al. [113] propose EI
for HAR that learns domain-independent features from activity data collected in different domains. EI accepts
multiple types of input signals, including Wi-Fi Channel State Information (CSI). The DL model of EI incorporates
an adversarial network, including a CNN-based feature extractor, an FC-layer-based activity recognizer that
predicts activity type from extracted features, and a domain discriminator that predicts the domain. Ding et al.
[50] present RF-Net, a metric-based meta-learning approach for one-shot human activity recognition using Wi-Fi
that can perform the recognition in a new environment with only one observation per label. RF-Net classifies a
new observation in new environments by calculating a weighted sum of all the labels in the training dataset. The
weights are given by the similarity between the query observation and all the data in the support dataset of the
new environment. Lastly, Ji et al. [107] propose SiFall to formulate the fall detection problem as adaptive anomaly
detection out of normal repeatable human activities instead of seeking features to characterize fall activity.
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3D Human Mesh Construction. 3D human mesh construction in Wi-Fi sensing refers to the creation of
three-dimensional representations of the human body using Wi-Fi signals. Jiang et al. [114] present WiPose, a 3D
human pose skeleton construction framework that recovers human joints on both limbs and torso of the human
body using commercial Wi-Fi devices. WiPose records CSI using a single antenna transmitter with multiple
distributed receivers and designs an LSTM-based deep learning model that accepts the sequence of Doppler
Frequency Shift (DFS) profile transformed from non-overlapping CSI segments and outputs a series of features.
The learned features from LSTM are regarded as the rotation of human body joints and fed to the forward
kinematics layers to calculate the actual joint locations based on a given skeletal structure. Wang et al. [264]
present Wi-Mesh, which further improves the 3D human mesh construction task with DNN based on GRU and
self-attention. Wi-Mesh leverages a commodity 3-antenna transmitter and two receivers with 9 antennas in an
L shape to record CSI. Received signals at the specific antenna array can be used to calculate the 2D AoA of
the signal reflections based on phase shift, providing spatial information about the objects and environment.
Wi-Mesh generates thirty 2D AoA spectrums per second and extracts only human images by subtracting the
static components in consecutive images since the human body is moving. Wi-Mesh tracks way more body
locations than WiPose and also outperforms WiPose with an average joint location error of 2.4cm and body
vertices location error of 2.81cm, though using more complicated antenna arrays.
Indoor Localization. Indoor localization in Wi-Fi sensing refers to the process of using Wi-Fi signals to
determine the position of objects or individuals within indoor environments. Unlike outdoor localization, which
commonly relies on GPS (Global Positioning System), indoor localization requires a different set of technologies
and methodologies due to challenges such as the unavailability of GPS signals indoors, multi-path reflection, and
interference fromwalls and other structures. Thus, indoor localization remains a "last-mile" problemwhen forming
a positioning system without blind spots. Wi-Fi has been broadly utilized to address the indoor localization
problem. Ayyalasomayajula et al. [10] present DLoc, a DL-based wireless localization algorithm and an automated
mapping platform MapFind, which altogether forms a positioning system with a map inspired by outdoor
localization services. MapFind constructs location-tagged maps of the environment and generates training data
for DLoc. Together, they solve the active indoor localization scenario in which off-the-shelf Wi-Fi devices like
smartphones can access a map of the environment and estimate their position by sending packets to surrounding
Wi-Fi access points with respect to that map. While deep learning approaches for indoor localization rely on
high-quality training samples and are hard to adapt to varied scenarios, Zhao et al. [347] propose LocGPT,
which is a specialized Generative Pre-training Transformer (GPT) variant that excels in generating profound
contextual insights, to explore the underlying principles of indoor localization. The model is configured with 36
million parameters tailored for transfer learning. To facilitate the benchmarking, training, and transfer learning
in indoor localization, they have established Ray, the first 3D indoor localization dataset on a scale of millions,
including RFID, Wi-Fi, and BLE samples. LocGPT achieves near-par accuracy when fine-tuned with merely half
the conventional dataset, which shows its superiority in transfer learning within the indoor localization domain.
Imaging.Wi-Fi imaging exploits the capabilities of Wi-Fi signals to create images of objects or humans in the
environment. Li et al. [140] present a Wi-Fi imaging system WiSIA that is capable of simultaneously detecting
and segmenting objects and humans within the imaging plane using commodity Wi-Fi devices. WiSIA leverages
two receivers with three orthogonal antennas sharing the same transmitter antenna as the imaging model on
the object side to record CSI that contains the changes in the Wi-Fi signal of both amplitude and phase. WiSIA
incorporates a conditional Generative Adversarial Network (cGAN) to refine the boundaries in an image-to-image
translation fashion. WiSIA achieves 0.9 in similarity and tagging accuracy for all five tested objects which is
comparable to the state-of-the-art computer vision and acoustics imaging while outperforming the state-of-the-art
vision-based method in conditions with darkness or obstructions.
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Gesture Recognition.Wi-Fi signals can be used in the gesture recognition task by analyzing the variations in
the Wi-Fi signal caused by human body movements. Zhang et al. [328] propose CrossSense, a system designed to
improve the scalability and efficiency of WiFi-based gesture recognition. The primary challenge addressed is the
need for extensive, site-specific training data collection, which is labor-intensive and impractical for large-scale
deployments. CrossSense tackles this by using machine learning to generate synthetic training samples from
existing measurements, allowing these samples to be effectively used across different environments. Zheng et al.
[350] propose Widar3.0, a Wi-Fi-based zero-effort cross-domain gesture recognition system. Widar3.0 calculates
the body-coordinate velocity profile (BVP) of gestures from CSI at the lower signal level, which represents power
distribution over different velocities and is unique from gesture to gesture while independent from the domain.
On this basis, Widar3.0 adopts a one-fits-all model based on CNN, GRU, and dense layers that requires only
one-time training but can adapt to different data domains. Similar to Widar3.0, OneFi [273] proposes to use
velocity distribution which can be derived from DFS as the unique feature that describes a gesture. It adopts a
backbone based on self-attention, noted as Wi-Fi Transformer, as the gesture recognition framework. To avoid
model re-training, OneFi adopts a lightweight one-shot learning framework based on transductive fine-tuning and
opens up a new direction for one-shot (or few-shot) learning in Wi-Fi-based gesture recognition. Song et al. [238]
present RF-URL, an unsupervised representation learning framework for human gesture recognition tasks. RF-URL
combines signal-processing-based RF sensing with learning-based RF sensing by using a contrastive framework.
Experimental results indicate that RF-URL pre-training model is capable of extracting general information for
gesture recognition and applying it effectively across different datasets. Wang et al. [258] carry out an in-depth
study on the domain variation problem in Wi-Fi-based gesture recognition task, which can alter multi-path
effects and introduce noise into wireless signals. These variations, including changes in the environment, can
lead to significant performance degradation in Wi-Fi sensing applications due to the resulting fluctuations in
wireless signal patterns. To mitigate these effects, the authors propose a robust framework based on conformal
prediction, which quantifies the similarity between testing and training data without the need for retraining
or generating new features. Yang et al. [302] propose SLNet, an architecture for enhancing wireless sensing
applications through the integration of deep learning and spectrogram analysis. SLNet utilizes neural networks
to generate super-resolution spectrograms, addressing the limitations of traditional time-frequency uncertainty.
This design improves the accuracy of Wi-Fi-based gesture recognition, human identification, fall detection, and
breathing estimation tasks. Experiments demonstrate that SLNet achieves superior performance with reduced
computational demands, making it suitable for practical deployment on edge devices. Chi et al. [38] introduce
RF-Diffusion, a novel approach to generating high-quality, time-series radio frequency (RF) data using diffusion
models. The proposed methodology involves training RF-Diffusion with a real-world dataset to generate synthetic
RF signals of the designated type. These synthetic samples are then integrated with the original dataset, and
collectively employed to train the wireless sensing model. The authors highlight that RF-Diffusion when used as
a data augmentation tool, leads to substantial improvements in Wi-Fi-based gesture recognition accuracy. This
enhancement is attributed to the model’s ability to produce diverse and high-quality RF data that enriches the
training datasets of existing systems.
RespirationMonitoring.Wi-Fi signals can be used for respiration monitoring by analyzing the subtle variations
in wireless signals caused by the movement of a person’s chest during breathing. Existing methods of respiration
monitoring are limited by short sensing ranges, susceptibility to noise, and issues with phase offset stability. To
overcome these limitations, Zeng et al. [320] introduce FarSense, a system for enhancing Wi-Fi-based respiration
sensing. FarSense leverages the CSI ratio from two antennas to overcome the limitations of existing methods that
rely on individual CSI readings. By using the CSI ratio, FarSense cancels out most of the noise and phase offset
issues, significantly extending the sensing range. The system combines the amplitude and phase information of
the CSI ratio to address the "blind spots" problem and improves the sensitivity of detecting subtle respiration
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signals. Zeng et al. [319] present MultiSense, a system for accurately monitoring the respiration patterns of
multiple individuals simultaneously using commodity Wi-Fi devices. MultiSense overcomes the challenges faced
in existing methods by leveraging multiple antennas on Wi-Fi devices and modeling the multi-person respiration
sensing problem as a Blind Source Separation (BSS) problem. MultiSense cancels out time-varying phase offsets
and removes background static signals, allowing for robust separation and continuous monitoring of detailed
respiration patterns.

2.2.3 mmWave Sensing. Millimeter Wave (mmWave) sensing refers to the use of electromagnetic waves with
wavelengths in the millimeter range, typically between 30 GHz and 300 GHz frequency band, for a variety of
sensing tasks. The high frequency, short wavelength, and broadband capacity make mmWave more sensitive to
minor reflection distance variations, and thus can provide finer sensing resolution. At the same time, mmWave
has limited penetration capabilities so it can easily be attenuated or blocked by obstacles. As such, mmWave
sensing often requires a direct line-of-sight between the transceivers and the sensing target. Depending on the
sensing tasks, existing works on AI-empowered mmWave sensing can be grouped into the following categories.
Human Activity Recognition. The capability of mmWave signals to capture micro-motions and micro-
vibrations of different human body parts makes it feasible for the task of human activity recognition (HAR). Pego-
raro et al. [213] introduce SPARCS for mmWave-based HAR. It focuses on extracting micro-Doppler signatures of
human movement from irregular and sparse Channel Impulse Response (CIR) samples. This approach leverages
the inherent sparsity of the mmWave channel to reduce sensing overhead drastically while integrating seamlessly
with existing communication protocols. By formulating micro-Doppler extraction as a sparse recovery problem,
SPARCS achieves high-quality human activity recognition with significantly lower overhead compared to existing
methods, demonstrating its applicability and efficiency in real-world scenarios. While research on introducing DL
to mmWave-based human activity recognition achieves promising performance, collecting and labeling mmWave
datasets for such tasks is difficult and expensive. To close the gap, Zhang et al. [339] present SynMotion which
synthesizes mmWave signals at high quality using widely available vision-based human motion datasets with the
coordinates of body skeletal points and designs a few/zero-shot synthetic-to-real transfer learning framework for
downstream human activity recognition.
3D Human Mesh Construction. mmwave signals can also be used for 3D human mesh construction by
providing detailed information about the human body contours and structure. Xue et al. [298] present mmMesh,
a DL-based real-time 3D human mesh construction framework to model the moving subject with commercial
portable mmWave devices. mmMesh utilizes range and angle information to remove noisy reflections from
static objects in the IF signals collected by commercial devices and generate the 3D point clouds as input
to the DL model. Kong et al. [123] propose 𝑚3𝑇𝑟𝑎𝑐𝑘 to enable simultaneous tracking of the 3D postures of
multiple users leveraging a single commercial mmWave device.𝑚3𝑇𝑟𝑎𝑐𝑘 obtains the Range-Doppler-Profile of
the IF signals by range-FFT and doppler-FFT that contains information on the users and background objects.
It distinguishes multiple users and backgrounds by sliding a convolutional kernel along the range bins of the
Range-Doppler-Profile and performing convolution operations to detect the ranges that contain users. Xue et al.
[297] develop𝑀4𝑒𝑠ℎ for multi-subject 3D human mesh reconstruction. The tracking scheme of𝑀4𝑒𝑠ℎ integrates
techniques adopted by mmMesh and𝑚3𝑇𝑟𝑎𝑐𝑘 , including subject detection, 3D point cloud generation for each
subject, and per-subject mesh reconstruction. Similarly, Xie et al. [278] propose mm3dFace to move towards the
reconstruction of human face. It proposes to leverage commercial mmWave radar to reconstruct 3D human faces
that continuously express facial expressions in a passive manner. mm3dFace captures human face information
from the recorded IF signal. By applying range-FFT to the IF signal and AoA calculation, it obtains the range
profile, azimuth profile, and elevation profile, which together form a Range-Angle-Profile in the three-dimensional
space. The three-dimensional profile captures the side view and frontal view of human faces.
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Voice Reconstruction. Voice Reconstruction refers to the process of capturing and reconstructing the human
voice by detecting subtle vibrationswithmillimeter-wave signals. Xu et al. [284] proposeWaveEar, which leverages
mmWave devices to enable noise-resilient speech sensing for voice-user interface (VUI) in environments with
audible and inaudible interference. The authors conducted an in-depth study of human voice generation to obtain
insights into voice vibration caused by the integrated effort of three physiological organs, e.g., lungs, vocal cords,
and articulators. WaveEar designs a low-cost mmWave probe that employs a phased directional array to locate
the speaker by throat vibration and then transmits mmWave signals towards the near-throat region of the speaker
and processes the reflected signal for voice reconstruction.
Object Recognition. The broadband nature of mmWave makes it also suitable for object recognition. He et al.
[87] present Fusang, a system that adopts commercial off-the-shelf mmWave devices for accurate and robust
3D object recognition. Fusang leverages the large bandwidth of mmWave radars to capture a unique set of
fine-grained responses reflected by objects with different shapes. It generates the High-Resolution Range Profile
(HRRP) from the IF signal and constructs two novel graph-structured features, as the HRRP data of different
objects in the spectrum is not always distinguishable. Fusang extracts the set of formants that denotes the peaks
in the HRRP envelope and iteratively bisects the frequency bands to a point when there is no more than one
formant falling in each subband to build a binary tree with subbands that contain formants as leaf nodes.
Indoor Mapping. Indoor mapping using mmWave involves creating detailed maps or spatial representations
of environments using the data obtained from mmWave radar sensors. State-of-the-art mapping approaches
are mainly based on optical sensors, such as lidar and cameras. One of the advantages of mmWave over optical
sensors is its ability to penetrate through certain materials and resilience to poor illumination. Lu et al. [178]
present milliMap, which adopts a single-chip mmWave radar for dense indoor map generation and simple
object annotation in low-visibility environments under emergency situations. milliMap adopts conditional GAN
supervised by a co-located liar to generate dense patches similar to lidar ground truth from mmWave scans. In
this way, milliMap overcomes the sparsity and multi-path noise of mmWave signals. It also identifies different
objects from the spectral response of mmWave reflections by a CNN-based semantic recognizer.
Temperature Sensing. Temperature sensing refers to the continuous or periodic process of measuring and
recording temperature levels in a given environment, object, or individual. While most wireless temperature
monitoring solutions are not cost-effective and generate electronic wastes, ThermoWave [32] enables ecological,
battery-less, and ultra-low-cost wireless temperature monitoring using mmWave signals. Specifically, Ther-
moWave is designed based on the principle of thermal scattering effect of mmWave. Specifically, it attaches
ThermoTags made of cholesteryl material inked film or paper which aligns the molecular patterns at different
temperatures and senses the temperature-induced pattern change by scattered mmWave signals. The ThermoTags
are of low cost (less than 0.01 dollars per tag). ThermoWave adopts a mmWave-radar-based ThermoScanner to
receive the temperature-modulated mmWave scattering and extract thermal features from it.

2.2.4 LTE Sensing. Long-Term Evolution (LTE) sensing leverages the capabilities of LTE wireless broadband
communication technology for the task of sensing. Feng et al. [62] explore the use of LTE signals for pervasive
sensing applications both indoors and outdoors. It aims to address the limitations of existing wireless sensing
technologies, such as Wi-Fi, which are constrained by coverage and performance issues. Specifically, the authors
propose to leverage the widespread and diverse LTE infrastructure to achieve comprehensive and reliable sensing
without affecting LTE data communication. Through advanced techniques to mitigate interference and noise, the
authors demonstrate the effectiveness of LTE sensing in two key applications: indoor respiration monitoring
and outdoor traffic monitoring. In [63], the authors leverage the infrastructure of LTE base stations to provide a
cost-effective and energy-efficient solution for the application of soil moisture monitoring. By utilizing commercial
off-the-shelf hardware, including software-defined radios and a Raspberry Pi, the proposed system achieves high
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accuracy comparable to high-end sensors but at a fraction of the cost. They have deployed their prototype system
and examined its robustness across various soil types and conditions, demonstrating its potential for applications
in precision agriculture and environmental monitoring.

2.2.5 LoRa Sensing. The long-range, low-power characteristics of LoRa networks make it popular among large-
scale remote-area IoT applications. However, the use of LoRa for sensing tasks is yet to be explored due to
challenges related to interference, sensing range, and many more. To address these challenges, Xie and Xiong
[276] introduce Sen-fence, which explores advanced signal processing techniques that maximize movement-
induced signal variations, thereby increasing the sensing range. Additionally, the authors introduce a novel
"virtual fence" method, which confines sensing activities to a specific area of interest, thereby reducing the
impact of environmental noise and interference. Sen-fence achieves a 50-meter range for fine-grained human
respiration detection while effectively managing interference for practical LoRa sensing applications. Though
the proposed method in Sen-fence is effective for detecting tiny movements like respiration but struggles with
larger movements such as human walking. To address this issue, the authors in [275] introduce ChirpSen, a
system designed to enhance the sensing range of LoRa-based localization by fully exploiting the properties of
chirp signals. ChirpSen employs a chirp concentration scheme that concentrates the power of all signal samples
in a LoRa chirp at one timestamp, thus increasing the signal power as well as the sensing range. Real-world
experiments demonstrate that ChirpSen significantly enhances detection capabilities, extending the range for
monitoring human respiration at a distance of 138 meters and tracking a walking human at up to 210 meters.

2.3 Vision Sensing
Vision sensing involves the use of vision sensors such as RGB cameras, depth cameras, and near-infrared (NIR)
image sensors to capture and analyze visual information for various sensing tasks. As summarized in Figure 3,
depending on the sensing tasks, existing works on AI-empowered vision sensing can be grouped into five
categories: human activity recognition, image enhancement, object detection, eye tracking, and pose estimation.
Human Activity Recognition. DL-based models used in vision sensing for HAR can be computationally
demanding, posing a significant challenge when it comes to execution on mobile and IoT devices. Moreover,
vision systems that rely on RGB cameras are intrinsically susceptible to privacy leakage by hacking. To tackle
this problem, Shim et al. [234] choose to use a Near-Infrared (NIR) image sensor to monitor human activities
that inherently does not contain enough data to reveal personal identity. Although the NIR sensor loses a lot of
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spatial information, the authors have demonstrated that the temporal information and pixel-wise computation
over DNN are enough to recognize the performed activities.
Image Enhancement. Image enhancement involves manipulating the image itself to improve its quality. A
key technique within this area is super resolution, which aims to increase the resolution of the image. However,
executing this task on-device poses significant challenges due to the immense computational complexity and
substantial storage requirements. To mitigate these issues, Lee et al. [134] employ two distinct compressed
DNNs and schedule their operations across CPU, GPU, and DSP. Captured images by vision sensors are often
transmitted over low-power, unreliable IoT networks. However, traditional methods such as JPEG, designed for
use on reliable networks, are still commonly employed for image transmission. To efficiently transmit and receive
high-quality image data over this unstable network, Hu et al. [96] find the optimal encoder and decoder pair
of DNN by employing neural architecture search methods. Motion blurs on IoT devices are a severe problem
while capturing the image. Existing solutions to this problem often necessitate additional hardware or have
high computational demands that are ill-suited to microcontrollers. To solve this problem, Lee [135] adopt
depth-independent convolution operations on DNN to estimate the blur kernel. This predicted kernel is then
applied to the blurred image to recover the original, clear image. Additionally, the algorithm employs a matrix
transformation, converting it to a Toeplitz Matrix. This transformation yields computational advantages, making
it particularly efficient for deployment in extremely resource-constrained microcontroller environments.
Object Detection. Object detection is one of the most fundamental and important tasks in vision sensing.
Recognizing faces in crowded environments is a critical challenge, particularly in applications like finding missing
children. Existing DNNmethods suffer from the low-resolution problem of the detected face. To solve the problem,
Yi et al. [309] design a three-step mult-DNN pipeline consisting of detection, clarification, and recognition. During
the clarification phase, the system recovers missing elements of the low-resolution image by fine-tuning it with the
target’s face. The research by Sami et al. [223] leverage a Time of Flight (ToF) sensor embedded in mobile phones
to locate and identify concealed spy cameras. Conventional methods typically necessitate manual interpretation to
discern these hidden devices. However, the incorporation of a ToF sensor enables the system to detect distinctive
reflections emitted by spy cameras. Following this, deep learning techniques are deployed to filter out false
positives from the detected images and effectively pinpoint the hidden cameras in an automated manner. Sun
et al. [241] have shown the use of a smartphone camera to detect counterfeit liquid products, eliminating the need
for additional hardware. The method tracks the movement of bubbles in the liquid using Faster-RCNN and U-Net
and verifies the product’s authenticity using the AdaBoost algorithm. Depth-contained images acquired from
depth sensors can be employed in the detection and classification tasks of DNN [193, 280, 281]. These methods
are effective compared to RGB cameras in low-light environments. Both Xie et al. [280, 281] employ the indirect
Time-of-Flight (iToF) depth camera to capture the high-resolution texture depth map while Mithun et al. [193] use
Kinect for XBOX One to achieve it. In particular, in the construction of the depth map, Xie et al. [281] employ an
autoencoder that exploits the phase components of the iToF camera. On the other hand, Xie et al. [280] employs
an additional distorting IR source and uses the energy difference of the signal depending on the texture.
Eye Tracking. Exploiting eyewear devices for eye tracking presents unique challenges due to their limited
computational resources and the variability in eye characteristics across different individuals. To address this
issue, Wu et al. [269] design EMO, a personalized DNN classifier that classifies emotions using images captured
from a single eye by the eyewear. Likewise, Lan et al. [129] employ eyewear devices for extracting gaze data and
aims to use it for cognitive context sensing. However, this approach also suffers from the diversity of people. To
address this issue, this research adopts the few-shot learning method. These allow for rapid adjustment to new
environments when operating a spatial-temporal graph-based DNN system, which is used to classify activities
from gaze information. Tracking the gaze from the eye is highly demanding because of the small size of the
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iris and subtle hints concerning the directions. Existing commercial systems are expansive, while low-cost RGB
camera approaches suffer from the insufficiency of datasets. To effectively track eye gaze, Cao et al. [25] have
developed a geographical gaze model that maps the relationship between the smartphone screen and the iris
boundary, which contains the gaze directions. To accurately extract the iris boundary over the eye, the authors
employ U-Net and further refine the resulting pixels to enhance the accuracy of eye tracking.
Pose Estimation. Pose estimation is the process of determining the position and orientation of the human body,
in a 3D space using visual inputs. Zhang et al. [330] introduce MobiPose, a system designed to achieve efficient and
accurate real-time multi-person pose estimation on mobile devices. MobiPose introduces a motion-vector-based
approach that tracks human proposals across consecutive frames to eliminate the need for repeated human
detection. It also introduces a mobile-friendly model employing lightweight, multi-stage feature extractions
utilizing heterogeneous computing resources (CPU and GPU) to perform pose estimation in parallel, thereby
minimizing latency. Traditional 60Hz cameras have limited capabilities when it comes to tracking delicate finger
movements due to their low sampling rate. Consequently, the performance of 3D hand pose reconstruction
displays restricted accuracy. To address this issue, Zhang et al. [338] have developed a 3D hand pose reconstruction
method that utilizes the camera and wearable gloves embedded with LEDs on the fingertips and wrist. The camera
captures the strip effect of the rolling shutter from the LEDs on the gloves, and a CNN identifies the location and
bounding box of these strips. This information is then used to construct a 3D representation of the hand posture.

2.4 Acoustic Sensing
Acoustic sensing involves utilizing acoustic sensors to capture, measure, and analyze acoustic signals for sensing
purposes. As summarized in Figure 3, depending on the sensing tasks, existing works on AI-empowered acoustic
sensing can be grouped into four categories: localization, movement tracking, emotion recognition, and keyword
and event detection.
Localization. Localization using acoustic sensing refers to the process of determining the position or location of
objects or sources of sound using sound waves. Mao et al. [185] introduce DeepRange, which investigates the
limitations of traditional signal processing methods in localization tasks utilizing aquatic signals, particularly in
scenarios with a low SNR environment. They pose the question of whether DNNs can automatically learn features
from received acoustic signals to estimate distance, potentially surpassing the performance of conventional
signal processing algorithms devised by domain experts. The study introduces a DNN-based ranging system,
which directly employs raw acoustic signals without feature extraction and indicates superior performance
compared to established signal processing approaches. Conventional methodologies for sound source localization
require multiple microphone arrays, which is impractical for tiny devices. Addressing this, Owlet [67] place
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a microphone inside the stencil with sound holes. The incoming sound through these apertures indicates the
direction based on hole patterns. Nevertheless, the approach remains susceptible to environmental factors, such
as reflective wall signals. To mitigate this, the authors employed a CNN to estimate the Direction of Arrival
(DoA), trained on a synthetic dataset representative of various environments. Yang and Zheng [301] introduce
DeepEar, a DL-based framework to improve sound localization using only two microphones, particularly in
scenarios with multiple sound sources. Drawing inspiration from the biological function of human ears, which
shape sound waves to provide more spatial information, the authors design a neural network architecture that
simulates human auditory processing. This includes a gammatone filterbank mimicking the cochlea’s role by
transforming audio into the time-frequency domain, followed by an autoencoder that extracts high-level sound
representations. These features are then utilized by a deep neural network to pinpoint sound locations accurately.

Movement Tracking. Movement tracking using acoustic sensing involves detecting and monitoring the move-
ment of objects or individuals through the analysis of sound waves. Acoustic signals, as they propagate through
the human body, undergo a range of transformations. By performing a comprehensive analysis of these signal
changes, we can effectively track the movements. Sun et al. [244] introduce VSkin, a system that can detect finger
movement on mobile devices using acoustic signals. VSkin utilizes both structure-borne and air-borne sounds
to detect touch and measure finger movements on all surfaces of a device, not only limited to the touchscreen.
The existing method of movement tracking frequently encounters challenges such as low SNR, interference, and
mobility, which may affect the accuracy of the tracking. To overcome these issues, Mao et al. [186] employ the 2D
MUSIC algorithm [266] to produce joint of distance and Angle of Arrival (AoA) profiles derived from hand motion.
Leveraging this profile, an RNN is utilized to precisely track both the distance and AoA of hand movements on
a room-scale. Chen et al. [34] present Ipanel, a system that uses acoustic signals created by finger movements
on a hardwood tabletop to extend mobile device interactions beyond the small screen and onto surrounding
surfaces. Unlike traditional finger tracking systems that use a fixed frequency acoustic signal, Ipanel tracks the
dynamically changing frequencies of acoustic signals produced when fingers slide on a surface. IPanel extracts
distinctive features from both the spatio-temporal and frequency domain characteristics of the acoustic signals,
converting them into images, which are then processed by a CNN for finger movement recognition. The system
supports recognition of common gestures like clicks, flips, scrolls, and zooms, as well as handwriting recognition
of numbers and alphabets with high accuracy. Acoustic signals can capture human breathing patterns, with a key
advantage being the elimination of specialized wearable sensors. Leveraging this, Xu et al. [296] designs a model
to monitor the drivers through accurate breathing pattern extraction. The initial stage involves the isolation of
environmental driving noise, which is then followed by the reconstruction of detailed breathing waveforms via
the application of GAN. Li et al. [145] present FM-Track, a system for tracking multiple moving targets using
acoustic signals without physical contact. The authors propose a chirp-based signal model that integrates range,
velocity, and angle information from the reflected signals to accurately determine the position and movement
of each target. FM-Track can track up to four targets simultaneously within a 3-meter range, demonstrating its
efficacy through experiments on both smartphones and smart speakers. Fu et al. [65] employ ultrasound signals
emitted from a smartphone to detect the articulatory movements of the mouth. Using the reflected signals from
these movements, the study successfully reconstructs audible speech with a DNN named SiVoNet by training
the network supervised way using paired audible speech. They implemented a prototype for a comprehensive
evaluation, using a Samsung Galaxy S8 to validate performance on a commercial smartphone platform. The
evaluation results show that SiVoNet can reconstruct speech with a Character Error Rate (CER) as low as 7.62%,
outperforming state-of-the-art acoustic-based approaches. Experience [144] investigate the challenges and solu-
tions related to the deployment of acoustic sensing system-based movement tracking in real-world scenarios. The
authors identify several critical issues, such as audible sound leakage, high power consumption, and performance
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degradation due to device mobility. Li et al. [144] propose a power control mechanism by dynamically adjusting
the transmission power and switching between idle and active states based on detected activity to reduce power
consumption. They built a prototype of their proposed power control schemes for hand tracking on a Samsung
S9+ smartphone, reducing average power consumption from 22% to 10% over two hours.
Emotion Recognition. Emotion recognition through acoustic sensing involves analyzing voice and sound
patterns to determine the emotional state of a speaker. Lane et al. [131] present DeepEar, a mobile audio sensing
framework to perform audio inference tasks such as ambient scene analysis, emotion recognition, and stress
detection. DeepEar is designed to address the challenge of diverse and noisy acoustic environments that mobile
users encounter. The framework consists of multiple DNNs, each specialized in a specific audio sensing task, and
employs advanced DL techniques for pre-training and fine-tuning. Georgiev et al. [69] address the challenge
of performing multiple audio analysis tasks, including emotion recognition, on resource-constrained mobile
and embedded devices. Existing solutions for audio sensing focus exclusively on the operation of a single DNN.
However, Georgiev et al. [69] have shown that by sharing layers among different audio task DNN models, it
can reduce its computation cost while achieving comparable accuracy. Microphone variability, which refers
to differences in audio data quality and characteristics recorded by different microphones, can significantly
impact the robustness and accuracy of audio-sensing tasks. To address this challenge, Mathur et al. [187] design
Mic2Mic, which leverages Cycle-Consistent Generative Adversarial Networks (CycleGANs) to ensure that emotion
recognition and other audio sensing tasks can be performed accurately across different devices. Mic2Mic learns a
translation function between audio data recorded from different microphones, effectively reducing the domain
shift caused by microphone variability.
Keyword and Event Detection. Keyword detection in acoustic sensing involves the identification and recog-
nition of specific words or phrases from audio signals. Selecting the device with the best audio quality leads
to clearer and more distinguishable audio features, which are critical for accurate keyword recognition. Min
et al. [192] introduce a real-time assessment framework to determine the optimal audio input from various
devices. This model routinely evaluates potential devices and selects the most suitable one for operation within
the execution duty cycle. They introduced two models for this assessment: probability-based and data-driven
DNN models. It demonstrates that it achieves higher accuracy while consuming less energy than its baseline
counterparts in keyword detection tasks. Event detection refers to the process of identifying and recognizing
specific events or activities based on sound signals captured by acoustic sensors. Traditional systems often miss
parts of longer-duration events due to intermittent power, resulting in incomplete audio data. To mitigate these
challenges, SoundSieve [198] employ a regression neural network to predict the importance of upcoming audio
segments and captures only the most relevant segments of an audio clip. With this predictive capability, the
device can decide whether to enter a sleep cycle or remain awake to capture the signal.

2.5 Multi-Modal Sensing
Multi-modal sensing involves the use of more than one sensing modality where the key advantage is its ability to
combine distinct information provided by each of the included sensing modalities. At the same time, determining
which sensing modalities to include, and how to combine them effectively, are highly dependent on the specific
application. As summarized in Figure 3, depending on the sensing tasks, existing works on AI-empowered multi-
modal sensing can be grouped into five categories: human activity recognition, human and object identification,
tracking, localization, and speech enhancement.
Human Activity Recognition. Human activity recognition (HAR) using multi-modal sensing integrates data
from different sensory modalities to detect and identify human activities. Traditional ML strategies typically
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employ one of two methods for sensor fusion: feature concatenation and Ensemble classifiers. Feature concate-
nation merges modalities but neglects inter-sensor correlation. Ensemble classifiers, on the other hand, uses
separate classifiers but compromise intra-sensor correlation by fusing outputs later. Radu et al. [215] propose
Modality-Specific Architecture that can learn both inter and intra-sensor correlation for the task of HAR. The
network comprises multiple distinct branches, each dedicated to a specific modality. The outputs from these
branches are then combined using fully connected layers. The task of HAR requires high accuracy with minimal
inference latency. In multi-modal environments where sensors transmit data to a computing device, network
fluctuations can cause asynchronous arrival of modalities. Straightforward approaches, such as waiting for
delayed modalities or ignoring them, compromise both latency and accuracy. To address this challenge, Li et al.
[149] introduce speculative inference Instead of waiting for delayed sensor data, it imputes the missing values
and utilizes this generated data for subsequent inferences. If the accuracy falls below acceptable levels, the system
executes a rollback of its results and re-initiates the inference process. Leite and Xiao [137] propose reducing
the number of sensors used to lower computational demands, although this can potentially degrade accuracy.
To mitigate this, the authors introduce a pipeline that prioritizes sensors based on their impact on accuracy.
During the model training phase, sensors that have minimal or negative effects on accuracy are excluded. This
approach significantly reduces memory usage and inference time while maintaining high accuracy in HAR. In
HAR, when a model trained in one domain is deployed in another domain, a degradation in performance occurs
due to differences between the two domains. In multi-modal environments, these challenges are amplified due
to the presence of additional variable factors. To tackle this issue, Hu et al. [97] propose VMA, which transfers
the DNN from one domain to another in the presence of multiple domains and modalities. The key idea is that
changing one factor would have higher accuracy than changing multiple factors. Thus, VMA identifies pairs
of domains wherein only one factor differs between them. Leveraging these pairs, it finds a path to effectively
transition from one domain to the desired target domain by sequentially modifying only one factor at a time.
Ouyang et al. [204] propose Cosmo, a two-stage fusion learning system for enhancing HAR using multimodal
data when labeled data are limited. In the initial stage, Cosmo leverages unlabeled data to discern consistent
information, which denotes shared information that is uniformly present across different modalities. During
the subsequent stage, Cosmo focuses on capturing complementary information, identifying the distinct and
unique characteristics inherent to each modality, and leveraging the labeled data. As such, Cosmo achieve 26.73%
accuracy compared to the supervised fusion learning baseline. Lastly, Zhang et al. [344] introduce CMA, a method
for HAR by associating wearable IMU sensors with structural vibration signals. In CMA, all data is initially
aligned and segmented according to the timestamp. Then, each data segment detects the activity in their data
using a threshold. Lastly, the system utilizes a Temporal Convolutional Network to determine if the data segment
sourced from distinct modalities points to an identical activity and individual.
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Human and Object Identification. Human and object identification involves the ability to detect, recognize
and categorize of individuals, objects or both. One effective method for identifying individuals is analyzing their
gait, as it constitutes a unique characteristic for each person. While some studies utilize camera-based techniques
for this purpose, they often struggle in low-light conditions and require the subject to be within the camera’s field
of view. Also, RF signals offer advantages like penetration through obstacles and not being affected by lighting
conditions, but their accuracy may decrease when there is a significant difference between the training and
testing environments. To tackle this problem, Korany et al. [125] introduce XModal-ID, a gait-based identifying
system using Wi-Fi signal and video footage. It determines whether a person within a Wi-Fi area is the same as
the individual captured in the video footage. From the video, it creates the 3D mesh of a human and simulates
how Wi-Fi signal would be after the signal is reflected from a 3D mesh human. This Wi-Fi signal implicitly
contains gait information since it is reflected by the human body joint while moving. Thus, by comparing the
simulated Wi-Fi data with the real-world Wi-Fi signal captured in the Wi-Fi area, it can identify whether the
two sets of data correspond to the same individual or not. Liu et al. [170] present an innovative system called
RF-Camera, which combines RFID and computer vision techniques to recognize human interactions with physical
objects in environments involving multiple subjects and objects. To achieve this goal, RF-Camera uses the Kinect
DK system which is equipped with an RGB camera and depth camera to detect the human and its relevant
hand trajectory. At the same time, an RFID system is used to identify the items and track their movement.
Current vision-based methods for video scene analysis excel at recognizing and identifying objects and people,
i.e., extrinsic details. Nevertheless, they cannot be used when it comes to capturing intrinsic details, such as
discerning the state of a washing machine. To bridge this gap, Capricorn [265] integrates both RF and vision
sensors, aiming to understand a scene’s external and internal details comprehensively. Specifically, the camera
provides data about types of objects and their respective bounding boxes. Concurrently, UWB radar detects
object vibrations, leveraging this data to infer the internal states of these objects. In [161], the authors propose
Vi-Fi, which utilizes an RGB-D camera and smartphones to associate multiple individuals with their respective
smartphone identifiers. It accomplishes this by capturing bounding box information and depth data from the
RGB-D camera, as well as IMU sensor data and Wi-Fi Fine Timing Measurements (FTM) from smartphones.
Subsequently, this diverse data is fed into LSTM models, and the output features are combined to generate an
association score between the smartphones and their bounding boxes. Vi-Fi achieves an association accuracy of
81% in real-time and 91% in offline processing, demonstrating its effectiveness in identifying humans and objects
in complex environments. When it comes to object identification, capturing the material and shape information
is of vital importance. mmWave signals can obtain rich information from the reflecting surfaces thanks to its
broadband signals. However, the reflections from stationary objects contain less information than vibrating
objects. To exploit its capability to the fullest, RFVibe [228] fuses mmWave signals with acoustic signals for
contactless material and object identification. Particularly, it plays an audio sound towards the object to generate
micro-vibrations in the object and shines a millimeter wave radar signal on the object at the same time. By
analyzing the physical properties of the reflected wireless signal, these micro-vibrations can be captured. RFVibe
extracts several features, including frequency features, power features, and damping features. RFvibe adopts a
CNN-based neural network to enable accurate identification of these features under different setups and locations.
The neural network consists of three feature heads that transform features from different sources into a common
latent space and a classification head that takes in the intermediate feature maps and outputs the probability
distribution of possible classes.
Tracking. Tracking humans or objects has been explored using various modalities. One method is utilizing the
mmWave radar because it offers spatial information and the ability to construct data points in space. However,
this sensor struggles in scenarios involving rapid movements. To address this limitation, Lu et al. [177] introduce
milliEgo, a robust egomotion estimation system that combines the capabilities of the IMU sensor and mmWave
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radar. To integrate the information from these two sensors, the authors proposed a two-stage intra- and inter-
sensor cross-self attention mechanism, which interchangeably learns how to compensate for one another sensors
during each step. Consequently, this approach outperforms its counterparts, which solely rely on the IMU sensor,
combining RGB with IMU and integrating depth information with IMU. Another combination of mmWave radar
and IMU sensor has also been explored for tracking interpersonal distances by ImmTrack [44]. Since it requires
tracking multiple individuals, IMU data from multiple individuals’ smartphones and the corresponding mmWave
data are generated. To associate them, cosine similarity metrics are employed. Once associated, the IMU data,
initially in its local coordinate system, is translated to the mmWave’s global coordinate system, making it suitable
for monitoring interpersonal distances.
Localization.Multi-modal sensing can also enhance the performance of localization. For example, Boroushaki
et al. [19] introduce RFusion, a multi-modal localization system that utilizes both RF and vision sensing modalities.
When estimating a location using a single RF antenna, there’s a broad potential location area. Introducing an RGB-
D camera can narrow down this area by leveraging depth information. Nevertheless, even with this refinement,
multiple candidate locations remain, necessitating measurements from various positions. By optimizing this
measurement trajectory through reinforcement learning, RFusion achieves centimeter-level accuracy, improving
travel distance efficiency by twice as much compared to its baseline. As another example, ELF-SLAM [180] propose
to combine both motion sensing and acoustic sensing for localization. IMU sensor inherently is susceptible to
noise and biases that can accumulate over time. The authors propose to leverage the acoustic information emitted
and captured by smartphones. As this acoustic data is reflected by surfaces, the captured echoes carry distinct
spatial information based on their location. This enables precise indoor location alignment by compensating the
inaccurate misaligned parts of the IMU sensor with spatial information in the acoustic data.
Speech Enhancement. Speech enhancement refers to the process of improving the quality and intelligibility of
speech signals, typically in the presence of noise or other degrading factors. Traditional research relying solely
on audio data often requires multiple microphone arrays and is significantly influenced by the environment in
which the data is captured. While multi-modal solutions exist that combine camera-captured lip movements with
audio, their accuracy degrades in low-light conditions. Consequently, Sun and Zhang [243] introduce UltraSE, a
system that combines ultrasound signals with audible sound to enhance the user’s speech. The user holds the
phone near the mouth, and it emits ultrasound. Since this signal is reflected by the lip, it contains the articulation
gestures that do not contain the noise of the audible sound. By fusing this noise-free ultrasound data with audio
data in a cGan-based DNN, it produces de-noised audio output. However, this method has a limitation in terms
of short working distances. Also, it has to hold the phone to capture the data. To address this issue, Liu et al.
[169] design Wavoice, which aims to remove noise from the audio signal using mmWave that can operate long
distances. They discovered a strong correlation between mmWave and audio signals, as both carry information
about vocal fold vibrations, making them suitable for fusion. By integrating these two, the audio data offsets the
motion interference inherent in mmWave signals, while the mmWave data counteracts the noise limitations of
the audio signal. As a result, Wavoice surpasses its audio-only speech recognition baseline more than 20 times.
Although Wavoice successfully separates the clear speech, it has the constraint that it needs the mmWave radar
device. To address this issue, by narrowing the focus to scenarios involving head-mounted wearables like wireless
earbuds or VR/AR headsets, VibVoice [88] leverage the IMU sensors that most of these devices are equipped
with. IMU accelerometer attached to the head is capable of detecting vibrations generated by the speaker’s voice
via bone conduction through the skull, devoid of any external environmental noises. To integrate the IMU and
audio modalities, they employ encoder-decoder architectures. The encoder extracts essential features from each
modality and merges them while the decoder subsequently reconstructs human speech.
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Fig. 10. Illustration of AI-empowered Earable sensing pipeline.

2.6 Earable Sensing
Earables are wearable devices attached to ears in the form of headphones or wireless earbuds. As summarized in
Figure 3, depending on the sensing tasks, existing works on AI-empowered earable sensing can be grouped into
three categories: facial expression sensing, user authentication, and sound localization.
Facial Expression Sensing. Conventional methods for capturing facial expressions are primarily counted on
video cameras. However, video cameras are limited in low-light environments and pose substantial risks of
privacy infringement. In contrast, earables avoid such limitations and have demonstrated significant promise for
a variety of facial expression sensing tasks. For example, Wu et al. [271] propose BioFace-3D, which leverages
EMG and EOG signals captured by earables to detect the facial muscle activities, track 2D landmarks, and perform
continuous 3D facial reconstruction using a CNN. As another example, Song et al. [239] propose FaceListener,
which uses the commodity headphone to recognize a user’s facial expressions. FaceListener emits ultrasound
signals to detect face movements and uses this information to create a facial landmark model and recognize facial
expressions based on an LSTM model.
User Authentication. Earables have also been utilized to identify unique individual characteristics, such as a
person’s gait for the purpose of user authentication. For gait-based user authentication, traditional methods often
require special equipment, which is cost-prohibitive and limited in range. In contrast, Ferlini et al. [64] propose
EarGate, which employs an in-ear microphone to capture bone-conducted sounds induced by walking to detect the
user’s gait for user identification. Furthermore, they demonstrate that classification performance can be notably
improved through transfer learning. Liu et al. [162] introduce MandiPass, a biometric-based authentication system
that utilizes intracorporal biometric called MandiblePrint, derived from the vibrations of human mandibles. It uses
an Inertial Measurement Unit (IMU) embedded in an earphone to capture the MandiblePrint when a user voices
some specific sound. This sound generates vibrations in the throat that propagate through the mandible to the
ear, where they are sensed by the IMU. MandiPass validates the feasibility of MandiblePrint through theoretical
modeling and experimental vibration propagation, demonstrating its potential as a user authentication method.
Sound Localization. Sound localization in earable sensing refers to the ability of ear-worn devices to determine
the direction of incoming sound sources. It is essential for enhancing spatial awareness and improving user expe-
rience in hearing aids, augmented reality, and personal assistants. Chatterjee et al. [31] emphasize the importance
of sound localization in enhancing user experience, particularly in distinguishing between the target speaker and
background noise. The authors use binaural wireless earbuds and dual-channel neural networks to separate the
target voice from the noises. These networks consist of a time domain network called CB-Conv-TasNet and a
frequency-based network called CB-UNet to exploit both spatial and acoustic information. As a result, it achieves
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a better scale-invariant signal-to-distortion ratio (SI-SDR) than AirPods Pro, which is based on beamforming.
Another critical task in sound localization is individualizing the Head-Related Transfer Function (HRTF). This in-
dividualization typically demands extensive and cost-intensive measurements in an anechoic chamber. To address
this issue, Zandi et al. [315] introduce a simplified approach for conducting these measurements and propose
to use a conditional variational autoencoder to achieve HRTF individualization. Lastly, Yang and Zheng [301]
introduce DeepEar to address the issue of sound localization with two microphones. Unlike traditional methods
that rely on extensive microphone arrays, DeepEar employs binaural microphones, which are more compact and
thus more suitable for integration into devices like hearing aids. DeepEar leverages a multisector-based neural
network that divides space into sectors for detecting multiple sound sources simultaneously.

2.7 Generative AI for Sensing
Advancements in Generative AI have provided AIoT with opportunities to leverage state-of-the-art generative
models such as Large Language Models (LLMs) to perceive, interpret, and present IoT sensor data in ways that
are not attainable before [263]. Generative AI can correlate sensor readings with relevant contextual information,
such as historical data, environmental conditions, and operational status so as to provide deeper insights into the
sensor data and make decisions; it can improve user experiences by allowing non-technical users to interact with
sensor systems and perform data querying using natural language; it can also help translate raw sensor data
into human-understandable reports and summaries, making it easier for users to understand key information
contained inside sensor data.
Some efforts have been made to leverage such unique capabilities of Generative AI for sensing. For example,

Ouyang and Srivastava [205] propose LLMSense, a prompting framework for LLMs to make sense of raw sensor
data and low-level perception results. This framework can be implemented in an edge-cloud system, with small
LLMs running on edge devices to summarize sensor data and high-level reasoning performed on the cloud to
ensure data privacy. Two approaches are proposed to improve the performance of LLMSense: summarizing sensor
data before reasoning and selectively including historical sensor data. Results show that LLMSense achieves high
accuracy in tasks such as dementia diagnosis using behavior data and occupancy tracking with environmental
sensor data. In [287], the authors propose Penetrative AI to explore how LLMs can be extended to interact with
the physical world using IoT sensors and actuators. As a prompting framework, Penetrative AI shows how
carefully constructed prompts can harness LLMs’ embedded world knowledge for tasks such as user activity
sensing and heartbeat detection. Specifically, Penetrative AI operates on two levels: textualized signal processing,
where sensor data are converted into text for LLM analysis; and digitized signal processing, where LLMs directly
interpret sensor data. Using heartbeat detection as an example, Penetrative AI demonstrates that LLMs can
effectively analyze real-world sensor data with proper guidance, illustrating the potential of integrating LLMs
into cyber-physical systems to enhance their intelligence and functionality. Lastly, Wan et al. [254] go one step
further beyond prompting and propose a multimodal LLM named MEIT that translates raw ECG sensor data into
human-understandable reports. For cardiologists, the task of interpreting ECG data and writing reports can be
both intricate and time-consuming. MEIT aims to fill this gap by automating the ECG report generation task.
Specifically, MEIT involves instruction tuning a multimodal LLM to integrate raw ECG data with corresponding
textual instructions, ensuring that the generated reports are clinically relevant and accurate. Experimental
results demonstrate the superior performance of MEIT in generating accurate and professional ECG reports,
underscoring its potential for real-world clinical applications.
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Fig. 11. Summary of topics related to computing.

3 COMPUTING

3.1 On-Device Inference
One of the most fundamental and essential compute tasks of AIoT is to perform inferences on the device. On-
device inference is particularly critical for latency-sensitive applications or scenarios where cloud connectivity
is not available. As summarized in Figure 11, existing works on on-device inference can be grouped into four
categories: inference optimization, multi-tenant inference, cross-processor inference, and runtime adaptation.
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3.1.1 Inference Optimization. IoT devices are constrained in their onboard computing power, memory resources,
and battery life. The objective of inference optimization is to enhance the computational and energy efficiency as
well as to reduce memory demands and efficiently utilize memory resources during the inference process. For
example, Huynh et al. [101] propose DeepMon, an on-device inference framework that allows large DNNs to
run on mobile devices at low latency for continuous vision applications. They propose a caching mechanism
that exploits the similarities between consecutive images to cache intermediate processed data within CNN,
which allows DeepMon to execute very deep models such as VGG-16 in near real-time. Ren et al. [219] propose
SC-DCNN, an optimization framework of stochastic computing (SC) for CNNs. They propose to apply SC to CNNs
by designing function blocks and implementing hardware-oriented max-pooling in the SC domain. In addition,
they propose to perform holistic optimizations for feature extraction blocks and weight storage schemes. By
calculating multiplications and additions with AND gates and multiplexers in SC, SC-DCNN achieves a significant
reduction in energy consumption. Xu et al. [293] propose DeepCache, which adopts proven video compression
techniques to systematically search for neighboring image blocks with similarities, rather than restricting
matching solely to blocks in the same positions. They propose dividing video frames into regions, searching
for similar regions in cached frames using a specialized matcher, and dynamically merging adjacent regions to
maintain cache effectiveness. In [305], the authors propose FastDeepIoT, which incorporates a profiling module
and a compression steering module to optimize execution time and reduce energy consumption. The profiling
module generates diverse training structures and builds an interpretable model for predicting the execution time,
while the compression steering module enables existing DL compression algorithms to collaboratively minimize
both execution time and energy consumption. In SONIC [74], the authors explore the opportunity of DNN
inference intermittently on energy-harvesting systems. They propose loop continuation that significantly reduces
the cost of ensuring accurate intermittent execution for DNN inference by modifying loop control variables
within a loop nest, as opposed to dividing an extended loop into multiple tasks. Cao et al. [26] propose DeQA, a
set of optimization techniques designed to enable Question Answering (QA) systems to run on mobile devices.
DeQA reduces memory demands by loading partial indexes, dividing data into smaller units, and replacing
in-memory lookups with a key-value database, altogether reducing the memory requirements of QA systems
to just a few hundred megabytes. Lin et al. [153] propose MCUNetV2, a scheduling technique in a patch-based
manner to minimize memory usage for tiny DL. They propose initially executing the model on a limited spatial
region, followed by the remainder of the network operating with a smaller peak memory consumption in the
usual manner. Additionally, they propose to redistribute the receptive field to reduce the computation overhead
caused by the patch-based initial stage. Jiang et al. [112] propose Remix, an adaptive image partitioning and
selective execution strategy that involves the execution of existing DNNs on non-uniformly partitioned image
blocks. They propose to leverage historical frames to learn the distribution of target objects and achieve higher
detection accuracy with a given latency budget or higher inference speedup without accuracy deduction. Hou
et al. [95] propose a dynamic inference mechanism known as the Assemble Region-Aware Convolution (ARAC)
supernet, which removes redundant operations within CNNmodels by leveraging spatial redundancy and channel
slicing. They propose to split the CNN inference flow into multiple micro-flows and load them into GPU as
single models. In this way, NeuLens outperforms baseline methods in terms of latency reduction (up to 58%)
while achieving accuracy improvement (up to 67.9%) within the same latency and memory constraints. Reggiani
et al. [217] propose BiSon-e, a RISC-V-based architecture that features a binary segmentation to enhance the
CPU pipeline. They propose to perform Single Instruction Multiple Data (SIMD) operations on existing scalar
Functional Units (FUs) to increase the performance of narrow integer applications on resource-constrained edge
devices. In this way, BiSon-e achieves significant energy efficiency and execution time deduction. To address
the overload caused by the convolution layer, Park et al. [208] propose mGEMM, which expands the structure
of the GEMM and eliminates the problems of memory overhead and low data reuse rate of the GEMM. They
propose a reusable block of highly optimized computation on the inner computation kernel and partitioned the
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computation for the loops outside of the inner kernel. In [314], the authors propose a learnable input filtering
framework named InFi that unifies both approaches. They propose treating skip as a special case of reuse and
designing a filter that supports both skip and reuse functions, requiring only maintaining an additional key-value
table for reuse in the inference phase. In this way, InFi achieves lower energy consumption and latency. Kong
et al. [124] propose a lossless acceleration method ConvReLU++, which achieves early negative result detection
by employing reference-based upper-bound calculations. This approach guarantees that once intermediate results
turn negative, the final results will be negative. When negative results are detected, the remaining computations
can be skipped, leading to a significant latency reduction in ConvReLU++. Yi et al. [311] propose NNV12, an
on-device framework that optimizes cold inference. They propose three optimization techniques encompassing
kernel selection, weight transformation caching, and pipelined inference, to effectively reduce the latency of cold
inference. In addition, they propose a heuristic-based kernel scheduling scheme, which fully harnessed three
optimization techniques and led to substantial enhancements in the latency of cold inference. Lastly, Liu et al.
[163] propose a set of optimization techniques for the Transient Redundancy Elimination-based Convolution
(TREC), which recognizes and prevents redundant computations present in the form of identical tiles within
input data or activation maps. They propose to repurpose parts of a matrix used in DNN computations as hashing
vectors and embed a two-step stack for storing clustering IDs in TREC, aided by a reversed index for efficient
entry location, which collaboratively eliminates significant memory overhead.

3.1.2 Multi-Tenant Inference. Multi-tenant inference refers to the simultaneous execution of multiple distinct AI
models, often originating from multiple concurrently running applications. The key to multi-tenant inference is to
efficiently manage and process inference requests from multiple tenants with limited resources on the device. Han
et al. [83] propose MCDNN, a framework for executing DNNs in video stream analytics using an approximation-
based approach. They propose a heuristic scheduling algorithm designed to address approximatemodel scheduling,
which allocates resources based on their usage frequency and utilizes a catalog to choose the most accurate
model variant. Mathur et al. [188] propose DeepEye, a small wearable camera running multiple models locally,
enabling near real-time image analysis. They propose an inference pipeline that increased processor utilization by
scheduling the execution of computation-heavy layers and the loading of memory-heavy layers across multiple
models. They also built prototype hardware powered by a quad-core Qualcomm Snapdragon 410 processor on a
custom integrated carrier board to demonstrate the feasibility of their design. Guo and Hu [78] propose Potluck,
which caches the previously computed results to provide cross-applications approximate deduplication. They
propose a set of algorithms tuning the similarity threshold that regulates the degree to which various raw inputs
are considered to be “the same”, which makes Potluck decreases processing latency for vision workloads. Jiang
et al. [109] propose Mainstream, a video processing system that addresses resource contention by sharing the
same portion of DNN when inference is taken, which avoids redundant work. Additionally, they use an analytical
model to estimate the effects of DNNs for an event and give the optimal model and sample rate option, resulting
in significant overall event F1-score improvement. In [58], the authors propose NestDNN, a framework that
enables resource-aware on-device DL in multi-tenant settings. The key idea of NestDNN is to transform a DNN
model into a multi-capacity model, where sub-models with smaller capacity are nested inside sub-models with
larger capacity through shared parameters. At runtime, NestDNN incorporates a resource-aware scheduler which
selects the optimal sub-model for each DNN model and allocates it the optimal amount of runtime resources so
as to jointly maximize the overall performance of all the concurrently running applications. Lee and Nirjon [136]
propose a concept of neural weight virtualization. Having each block of memory represent a block of weights for
one or more DNNs makes it possible for multiple DNNs to be put into the main memory which has a smaller
capacity than the total size of the DNNs. In this way, weight virtualization achieves significant improvement in
execution time and energy efficiency. Bateni and Liu [14] propose NeuOS, a latency-predictable framework for
DNN-driven autonomous systems. They introduced the notion of a cohort, which represents a group of DNN
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instances capable of communication via a shared channel. They also propose a technique to predict the best
system-level power configuration for each DNN of the cohort to meet the deadline for processing. Ling et al. [158]
propose RT-mDL, a framework that enables heterogeneous DL tasks to execute on edge devices by concurrently
optimizing DNN model scaling and real-time scheduling. They propose a model scaling algorithm constrained by
storage limitations that generates a range of model variants and overall optimizes the DL execution by identifying
the optimal combination of task priorities and scaling levels of DL tasks. Han et al. [82] explore a block-level
scaling of DNNs, which only extracts and re-training descendant blocks from a complete DNN. Additionally, they
employ a runtime scalar to determine the most effective combination of blocks to maximize accuracy. In this way,
LegoDNN offers a wider range of model sizes without increasing time cost, resulting in significant improvement in
accuracy and energy consumption reduction. In [126], the authors propose YONO based on product quantization
to compress heterogeneous models into two codebooks. Additionally, they enable in-memory model execution
and support model switching for dissimilar multi-task learning on microcontrollers, achieving significant latency
and energy consumption reduction. Liu et al. [174] introduce VELTAIR, a scheduling approach that adapts its
granularity to efficiently minimize scheduling conflicts. Additionally, they propose an adaptive compilation
strategy that enables dynamic selection of programs with appropriate exclusive and shared resource usage
patterns, aimed at mitigating overall performance degradation caused by interference. In REEF [81], the authors
explore preemptive scheduling support for inference tasks on GPU. They propose a reset-based preemption
mechanism that initiates a real-time kernel on the GPU through proactive termination and subsequent restoration
of best-effort kernels. Zhang et al. [345] propose POS, an operator-level scheduling framework combined with
four operator-scheduling strategies. They propose abstracting the multi-model inference into a computation
graph-based unified intermediate representation and finding optimal scheduling strategies for operators in the
computation graph automatically with a learning-based operator-scheduling algorithm.

3.1.3 Cross-Processor Inference. Cross-Processor Inference refers to the ability of a model to perform inference
across different types of processors (i.e., CPUs, GPUs, TPUs) within a device. Modern IoT devices are often
equipped with multiple heterogeneous processors, each of which is optimized for certain computing tasks. This
provides a great opportunity to leverage these heterogeneous processing units to collaboratively perform inference
in a cross-processor manner. The realization of cross-processor inference involves a pivotal strategy: model
partitioning. This technique capitalizes on the multiple processors to optimize inference tasks by partitioning the
models and executing individual partitions on different processors. For example, Lane et al. [130] propose DeepX:
a software accelerator for DL execution that allows any developer to use DL methods and automatically lowers
resource usage. They propose a deep architecture decomposition algorithm that can decompose models into unit
blocks for heterogeneous local device processors, maximizing resource utilization. In [122], the authors propose
µLayer, a low latency on-device inference runtime that accelerates each layer by utilizing the onboard CPU and
GPU simultaneously. They propose channel-wise workload distribution to distribute the output channels of an
NN layer to both CPU and GPU to fully utilize the resources, achieving a significant reduction in latency. Tan and
Cao [246] explore model partitioning between CPU and Neural Processing Units (NPUs). NPUs run DNN models
faster but with less accuracy. Consequently, they propose heuristic-based algorithms and Machine Learning
based Model Partition, which can explore a range of layer combinations to determine the part for CPU and NPU
separately with optimal time-accuracy trade-off. Wang et al. [259] propose AsyMo, which focuses on partitioning
the matrix multiplication blocks of DL models on asymmetric multiprocessors. They propose cost-model-directed
block partitioning and asymmetry-aware scheduling to balance the tasks. Additionally, they propose to set the
frequency by offline profiling energy curves, which achieve more energy efficiency than baselines. Jia et al. [108]
propose CoDL, a concurrent DL inference framework that makes optimal use of diverse processors to expedite
the execution at the operator level. They propose to use hybrid-dimensional partitioning and operator chaining
to reduce sharing-related overhead, and an accurate, lightweight method to predict latency by considering
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Fig. 12. Illustration of runtime adaptation pipeline.

non-linearity and concurrency. In this way, CoDL achieves higher speedup and more energy saving compared
with other methods. Ling et al. [157] propose a model inference abstraction duo-block consisting of a CPU block
and a GPU block. Such a duo-block is generated based on neural architecture search (NAS) techniques. They
also propose a dynamic cross-processor scheduler that enhances the concurrent real-time DNN inference by
optimizing CPU/GPU utilization. Current mobile inference frameworks struggle to efficiently utilize diverse
processors for multi-DNN workloads in applications due to a focus on a single DNN per processor, hampering
performance and posing a challenge to serving multi-DNN tasks. To address this issue, Jeong et al. [104] propose
Band, a mobile DNN runtime for scheduling multi-DNN requests based on a central component. They propose
using a model analyzer for model partitioning into subgraphs. A scheduler assigns subgraph-worker pairs,
followed by execution of subgraphs on relevant processors by workers. In this way, Band outperforms TensorFlow
Lite in terms of end-to-end performance. Xu et al. [285] propose Mandheling, a system that leverages the benefits
of Digital Signal Processors (DSP) in integer-based numerical computations during mixed precision training. They
propose a co-scheduling technique between CPU and DSP to mitigate the overhead caused by DSP-unfriendly
operators, which achieves latency improvement. In addition, they propose incorporating DSP compute subgraph
reuse, self-adaptive rescaling, and batch splitting to collaboratively eliminate the preparation overhead on DSP.
Wei et al. [267] propose NN-Stretch, an automated model adaptation strategy that splits the DL model based
on processor architecture traits. They propose structure-preserved meeting point identification and capacity-
guaranteed depth-width scaling. They also propose a sub-graph-based spatial scheduler for parallel inference
across heterogeneous processors. Another crucial component of cross-processor inference is distributing the
workload across various processing units to minimize idle time. Park et al. [210] propose PointSplit, a 3D object
detection framework for multi-accelerator edge devices. They propose a 2D semantics-aware biased sampling
method to sample two complementary point sets and schedule them to be processed on GPU and NPU separately.

3.1.4 Runtime Adaptation. Runtime adaptation in on-device inference refers to the ability of AI models to adjust
and tailor their runtime behaviors in response to the changing available resources of the devices and evolving
data inputs over time to deliver optimized system performance. For example, input images with contents that are
easy to recognize do not need a large DNN model to process. Given that, in [57], the authors propose FlexDNN,
an input-adaptive framework which leverages the early exit mechanism to construct a single DNN model but
dynamically adapts its model capacity to matching the difficulty levels of the input images at runtime. In this
way, FlexDNN is able to achieve a significant reduction in frame drop rate and energy consumption while
maintaining accuracy. Xu et al. [295] propose ApproxDet, a multi-branch framework employed to identify the
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optimal configuration branch for adaptive video object detection based on the characteristics of video content
and available resources at runtime. They propose an accuracy and latency-driven scheduler to select the optimal
execution branch for the specific user requirement, which achieves 52.9% latency reduction with higher accuracy
over YOLOv3 and lower switching overhead compared to other baselines. Feng et al. [60] propose Palleon, which
dynamically selects an optimal DNN model by automatically detecting class skews. They propose a class-skew
detector to generate precise class skew profiles and catch class skew switches. In addition, they propose Bayesian
filter and separability-aware model selection techniques to improve accuracy and overall energy consumption.
Guo et al. [77] propose Mistify, an intermediate layer that automates the process of porting a cloud-based model
to a range of models optimized for edge devices across different points in the design space. They propose an
architecture adaptor and a parameter-tuning coordinator, which collaboratively selects the optimal model that
adapts to users’ hardware profiles and performance targets. Lastly, LiteReconfig proposed in [294] consists of two
components that collaborate as a scheduler to determine the execution branch to activate at runtime. The first
component analyzes the cost and benefits associated with all potential features, and the scheduler selects which
features to utilize for selecting the execution branch. The second component chooses the optimal execution
branch within the execution kernel to adapt to different video contents and available resources.

3.2 Offloading
Given the limited memory and computing capacities of IoT devices, some of them may not be able to run the most
efficient AI models by just using their own onboard resources. In such scenarios, it is necessary to offload the
execution of part or even the whole model to nearby resourceful edges or the cloud. As summarized in Figure 11,
existing works on offloading can be grouped into four categories: model partitioning, workload partitioning,
communication optimization, and privacy-preserving offloading.
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Model Partitioning.Model partitioning refers to the task of partitioning
the AI model between the IoT devices and the nearby resourceful edge
or cloud server such that different parts of the AI model are executed in a
distributed manner. For example, Kang et al. [118] propose Neurosurgeon,
a framework that automatically partitions the DNN computation at the
layer level. Neurosurgeon partitions the DNN into two parts for computa-
tion on mobile devices and the cloud, respectively, and trains a predictive
model during the deployment phase to identify the optimal partition point
of the model. In this way, Neurosurgeon achieves significant end-to-end
inference latency and energy consumption reduction over cloud-only
methods. Huang et al. [98] propose CLIO, a framework enabling model
compilation for extremely resource-constrained devices. They propose a
novel technique for progressively partitioning models between the cloud
and an end device, offering a variety of accuracy-bandwidth tradeoffs.
This technique can be integrated with existing model compression and adaptive model partitioning techniques to
achieve enhanced performance. In [99], the authors propose AgileNN, an offloading technique that minimizes
online computation and communication costs by putting a few valuable features computed locally and thus
reducing the size of the local model. They propose using eXplainable AI to estimate the most important features
in the top k and retained by the local network to make a part prediction combined with the prediction by the
remote network from other less important features for the final result.
Workload Partitioning. Workload partitioning refers to the distribution of workloads such as input data
(e.g., images, SLAM map) and different DL models within the same processing pipeline across various edge
devices and cloud servers to optimize performance, reduce latency, and improve resource utilization. In [70], the
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authors propose a sensing algorithm scheduler LEO that specializes in offloading workloads generated by sensor
applications to heterogeneous processors. They propose to bring together critical ideas scattered in existing
offloading solutions to maximize the performance without changing accuracy, and LEO runs as a service on
LPU to perform both frequent and joint schedule optimization for concurrent pipelines, which also makes LEO
more energy efficient compared with other baseline methods. Current offloading solutions always assume the
presence of a dedicated and robust server to which all inferences can be offloaded. However, it’s possible not
to be able to find such a server in reality. To address this issue, Zhang et al. [336] propose ELF, a framework
that accelerates mobile deep vision applications through parallel offloading, without being restricted to specific
server provisioning. They propose a recurrent region proposal algorithm by predicting a new video frame’s
region proposals based on the ones detected in previous frames, which achieve less latency compared with
other baseline methods. Then, these predicted RPs are partitioned into “RP boxes” and offloaded to multiple
servers, both partitioning and parallel processing make ELF achieve less resource demands. Ben et al. [15] propose
Edge-SLAM, a system that leverages edge computational resources to offload parts of Visual-SLAM. They propose
to run the tracking module of VIsual-SLAM on mobile devices and move the left to nearby edge devices, which
makes Edge-SLAM achieve significantly reduced latency. Additionally, they propose adding a partial global
map as a fixed-size local map on the mobile device to achieve constant memory usage with minimal loss of
accuracy in the final map. Another line of research in workload partitioning involves dividing different DL
models within the same processing pipeline across edge devices and cloud server. In [115], the authors propose
CoEdge, a cooperative edge system for distributed real-time deep learning tasks. They propose a hierarchical DL
task scheduling framework integrated with global task dispatching and local batched real-time DL execution to
maximize the utilization of edge resources. Additionally, a GPU-aware concurrent DL containerization method is
proposed to furnish an isolated execution environment for every task. These techniques make CoEdge achieve
less deadline missing rate and less end-to-end latency compared with other baseline methods.
Communication Optimization. Communication between IoT devices and the cloud is often conducted through
wireless channels in which the bandwidth can be quite limited. To ensure a timely exchange of migrated
workloads between IoT devices and the cloud while minimizing bandwidth usage and power consumption,
efficient communication is crucial. Xie and Kim [279] explore a DNN-aware compression algorithm measuring
the perception model of a DNN to compress the input while maintaining inference accuracy. They propose to use
the gradient concerning the input to characterize the DNN’s perception. Using this estimated perceptual model,
GRACE addresses a series of optimization challenges to ascertain the optimal codec parameters within the existing
codec framework. In this way, GRACE achieves considerable compression ratio gains with little loss of accuracy.
In [132], the authors propose SPINN, a synergistic progressive inference system that simultaneously employs an
early-exit policy both in the cloud and locally. They propose an early-exit-aware cancellation mechanism that
allows the interruption of the inference when having a confident early prediction evaluated by the wrapper of an
intermediate classifier to provide robust operation under uncertain connectivity. Additionally, they propose a
CNN-specific packing mechanism and an SLA- and condition-aware scheduler that make SPINN achieve higher
throughput, higher accuracy, and less energy cost compared with other baseline methods. Yao et al. [304] propose
Deep Compressive Offloading, an asymmetric encoder/decoder framework that uses an efficient encoder on a
local device while utilizing a relatively complex decoder on a server. In this way, most of the processing burden
can be put on the server side and achieve a significant latency improvement. Additionally, they propose an
effective system DeepCOD which incorporates a performance predictor and a runtime partition decision maker,
which achieves higher speedup for inference. In [303], the authors explored an edge-cloud training pipeline by
harnessing parallel processing capabilities spanning both edge and cloud environments. They propose to apply
scheduled feature replay and error-feedback compression, which fully utilize the computing capabilities available
at the edge. Additionally, they offered a context-aware decision engine to adaptively organize parallel execution
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and compression, which keeps the overall latency low. Fu et al. [66] propose Hyperion, a distributed mobile
offloading framework that supports various applications and heterogeneous hardware. They propose a regularity-
aware kernel analyzer to break down the tasks into smaller parts while ensuring that only the necessary data is
transmitted, which makes Hyperion more efficient. Before scheduling, they propose a context-aware computing
time predictor to predict the runtime duration of a given slice and a pipeline-enabled and network-adaptive
scheduler to determine the optimal number of slices to be offloaded for each computational unit, both achieve
superior speedup compared with the baseline. However, as the number of agents increases, the operational
overhead, which relies on a central node, also increases. To address this issue, Xu et al. [290] propose SwarmMap,
a framework that scales up collaborative edge-based Visual-SLAM service. They propose a change log-based map
information tracker to achieve the minimum bandwidth consumption for map synchronization. Additionally, they
propose a SLAM-specific task-aware scheduler that makes decisions based on the status of agents to minimize
the procession time. Further, they propose a map backbone profiling technique to mitigate storage overhead
without reducing accuracy.
Privacy-Preserving Offloading. IoT devices often collect personal data that may contain privacy-sensitive
information. In scenarios where data are also needed to offload along with the workloads to edge or cloud servers,
it is imperative to ensure that this data is handled in a way that preserves the privacy of users. PriMask [111]
introduce a small-scale neural network – named MaskNet – to mask the data before its transmission to the cloud.
The data masked by MaskNet cannot be recovered by the cloud, thus preserving the privacy after offloading.
Moreover, each mobile device has its own unique MaskNet, which ensures that a privacy breach affecting the
MaskNet of one device does not compromise the privacy of data on other devices.

3.3 On-Device Training
Besides on-device inference, another fundamental and essential compute task of AIoT is on-device training. As
summarized in Figure 11, existing works on on-device training can be grouped into two categories: training on a
single device, and training across distributed devices.
Training on a Single Device. In the case of single-device training, the entire training process takes place on
a single device. To achieve effective training on a single device, existing efforts have mainly focused on the
exploration of memory optimization. For example, Lis et al. [159] propose Dropback, which only trains a fraction
of the weights who have the highest accumulated gradients while keeping the remaining weights not stored
in memory, which significantly reduces the memory access cost. Zhang et al. [342] propose MDLdroidLite, a
learning framework that transforms regular DNNs into resource-efficient models for on-device learning. They
propose a Release-and-Inhibit Control (RIC) technique to wisely grow each layer independently from tiny to
backbone, which avoids redundant resource overhead. In addition, they propose a RIC-adaption pipeline that
transfers existing parameters to new-born parameters during growth. In this way, MDLdroidLite achieves 28X to
50X fewer model parameters compared with other baselines. In [352], the authors propose Octo, a cross-platform
system designed for lightweight on-device learning that leverages the fixed-point computational capabilities of
embedded processors. They propose an INT8 training technique with loss-aware compensation and parameterized
range clipping methods to efficiently apply quantization in forward pass and backward pass, respectively. In this
way, Octo achieves higher training efficiency compared with other baselines. Wang et al. [260] propose Melon,
a memory-optimized on-device training framework that retrofits established recomputation and micro-batch
techniques to fit into resource-constrained devices. They further propose a lifetime-aware memory pool to
optimize memory utilization based on the characteristics of DNN training. In addition, they propose an on-the-fly
memory adapting technique to quickly adjust to changes in the memory budget and resume execution using
the partial results. In this way, Melon achieves higher training throughput with the same batch size. In [73], the
authors propose Sage, an on-device training framework that incorporates memory-optimized techniques. They
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propose to separate differentiable operations from computable operations by employing a two-layer abstraction
to represent a node in the computational graph, then Sage applies operator fusion and subgraph reduction to
minimize the graph size. Additionally, they propose to dynamically adapt to the memory budgets by using gradient
accumulation and checkpointing. Lin et al. [154] propose an on-device training framework with algorithm-system
co-design. They propose a quantization-aware scaling technique to align the accuracy with the floating-point
counterpart by automatically scaling the gradient with varying bit-precision. To save memory during backward
computation, they propose a sparse update technique to skip the computation of less important layers and
sub-tensors. In [100], the authors propose ElasticTrainer, a technique that can dynamically select the optimal
trainable network portion at training time. They propose a tensor importance evaluator by leveraging the XAI
technique to define the importance of a tensor in a specific epoch. On the other hand, they propose a tensor
timing profiler to compute the backward pass timing of each tensor. Based on importance and time, they propose
a tensor selector to select the optimal trainable network portion, which makes ElasticTrainer achieve higher
training speedup with less energy consumption compared with baselines.
Training across Distributed Devices. In the case of training across distributed devices, DL models are trained
collaboratively across a network of IoT devices where data on each device can be exchanged with other devices. In
doing so, the collective computational power and data across the multiple devices can be leveraged to jointly train
and update the DL models. For example, Zhang et al. [343] propose MDLdroid, a decentralized mobile DL training
framework for mobile sensing applications. They propose a chain-directed synchronous stochastic gradient
descent algorithm that dynamically aggregates and manages the model with one of the neighbors based on
runtime resource status. Additionally, they propose a chain-scheduler, an agent-based multi-goal reinforcement
learning technique, incorporating an accelerated reward function to effectively and equitably manage and allocate
resources. In this way, MDLdroid achieves high training accuracy with low overhead. As another example, in
[318], the authors propose Mercury, an importance sampling-based on-device distributed training framework.
The key principle behind the design of Mercury is that not all the data samples contribute equally to model
training. Given that, in each training iteration, Mercury identifies and selects data samples that provide more
important information. By focusing on those more important data samples, Mercury considerably enhances the
training efficiency of each iteration. As a result, the total number of iterations and total training time is reduced.

3.4 Federated Learning
As data collected by IoT devices often contain privacy-sensitive information, federated learning (FL) emerges
as a privacy-preserving approach that can train models across decentralized devices while keeping data on
each device to preserve data privacy [117, 256, 333]. Unlike fully on-device training, FL has the advantage of
allowing information to be shared among devices, making it suitable for more complex applications that require
more data volume. Instead of gathering data from different devices into a central server for training, the model
is disseminated to the participating devices in FL. These devices then conduct local training for a number of
rounds and communicate only their model updates or gradients back to the central server for aggregation. The
updated global model is subsequently broadcasted to the next set of participating devices for further training
rounds [189]. As summarized in Figure 11, existing works on FL for IoT can be grouped into seven categories:
data heterogeneity, communication optimization, system heterogeneity, personalization, client Selection, model
heterogeneity, as well as frameworks and benchmarks.
Data Heterogeneity. Unlike centralized training, data distributed across the devices participating in the FL
process is generally non-IID (non-independent and identically distributed). Such data heterogeneity could make
the local models overfit to local data, and aggregating these models could lead to convergence issues. Shuai
et al. [236] propose BalanceFL, which scales the model weights making it behave as if it was trained on uniform
distributed data. As such, it allows the global model to effectively learn both common and rare classes from a
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long-tailed real-world dataset, and thus mitigates the bias caused by data heterogeneity. Shin et al. [235] propose
FedBalancer, which uses a data selection strategy to select informative samples with adaptive deadline control. In
doing so, the global model avoids overfitting caused due to data heterogeneity and makes convergence more stable.
Lastly, Zhang et al. [331] propose GPT-FL, which pre-trains the global model using synthetic data generated by
generative models before fine-tuning with federated training. This makes the global model start from a more
stable point instead of starting from scratch such that data heterogeneity does not strongly affect convergence.
Communication Optimization. Communication between client devices and the central server in FL is often
conducted through bandwidth-limited wireless networks. Therefore, reducing bandwidth usage between client
devices and the central server can significantly enhance FL efficiency. Shi et al. [232] introduce gTop-k. Instead
of accumulating the local top-k gradients from all the clients to update the model in each iteration, gTop-k
chooses the global top-k gradients from a subset of clients, which considerably reduces the amount of gradients
to communicate. Reisizadeh et al. [218] propose FedPAQ, which quantizes model updates to reduce their sizes
before uploading to the server while the server only periodically averages the updates. The quantized updates
and the periodic averaging on the server lead to lower communication costs. Similarly, Jhunjhunwala et al. [106]
propose an adaptive quantization scheme called AdaQuantFL, which achieves communication efficiency through
quantization while maintaining a low error floor by changing the number of quantization levels during training.
Lastly, Das et al. [45] propose FedGLOMO to reduce the variance of local updates by global aggregation with
momentum. This results in faster convergence and an overall lower number of communication rounds.
System Heterogeneity. The participating devices in FL can be heterogeneous in their available on-device
computing resources and network bandwidths. Such system heterogeneity would inevitably cause different
participating devices to complete their local training at different times. Consequently, the slowest clients become
the bottlenecks in the FL process. One key technique to address system heterogeneity is the design of semi-
asynchronous or asynchronous communication protocols. For example, Wu et al. [270] introduce SAFA, which
uses a lag-tolerant model distribution algorithm and version-aware aggregation method based on a cache system.
This decouples the global model broadcast and gradient upload process, making the system more tolerant of
lagging clients. Ma et al. [182] propose FedSA, which is a semi-asynchronous mechanism where the server
aggregates a subset of local models by their arrival order in each round. The authors show that this approach
improves convergence both theoretically and experimentally. Xie et al. [277] propose FedAsync, where the
updates to the server and the broadcast to the clients are done asynchronously with a buffer. The updates from
clients that are far behind the server schedule are deprioritized or excluded entirely. This avoids the destabilizing
effects of stragglers and increases the number of communication rounds the system can complete within a time
frame. Nguyen et al. [200] propose FedBuff, which also uses a buffered asynchronous aggregation scheme sending
updates asynchronously but aggregating and broadcasting updates synchronously. This not only makes the
system lag-tolerant, but also makes it compatible with Secure Aggregation and Differential Privacy. Sun et al.
[242] introduce FedSEA in which the authors design a scheduler that can efficiently predict the arriving time of
local updates from devices and adjust the synchronization time point according to the devices’ predicted arriving
time. In doing so, it reduces the total number of straggling clients. Zhang et al. [334] propose an asynchronous
FL framework named TimelyFL. The key idea of TimelyFL is adaptive partial training, which allows each client
to train part of the model based on the available resources of each client at runtime. In doing so, more clients are
able to join in the global update without staleness.
Personalization. Besides training a global model, another use case of FL is to personalize the global model
for participating clients such that the personalized model can better fit the needs of the end user. For example,
Sub-FedAvg [253] creates a personalized sub-network for each client from the global model by applying structured
pruning on convolutional filters and unstructured pruning on fully connected layers. Li et al. [138] propose
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FedMask where each device learns a sparse binary mask and applies the learned sparse binary mask to local
models to create personalized and sparse local models for each client. Instead of creating a personalized model
for each user, Tu et al. [252] propose FedDL, a clustering approach in which the client pool is grouped into
several clusters, and one personalized model is assigned to each cluster. Similarly, AttFL [209], designed for time
series mobile and embedded sensor data, groups clients with similar contextual goals using cosine similarity,
and redistributes updated personalized model parameters for improved inference performance at each local
device. Deng et al. [47] propose TailorFL, a resource-aware and data-directed pruning strategy that makes each
device’s sub-model structure match its available resource and correlate with its local data distribution. Lastly,
FedSelect [245] incrementally expands sub-networks to personalize client parameters, concurrently conducting
global aggregations on the remaining parameters. This enables the personalization of both client parameters and
sub-network structure during the training process.
Client Selection. In each round of FL, the central server selects a subset of clients to participate in the federated
training process. The client selection strategy to determine which subset of clients to be included in each round
plays a significant role in FL. For example, Lai et al. [128] introduce Oort, a utility-based client selection scheme
that takes both data and system utilities into account, where data utility is measured by the importance of model
update and system utility is measured by the local training speed and the available network bandwidth for
communication. By selecting clients with the highest utilities, Oort enhances both data and system efficiency
and outperforms random client selection in terms of time-to-accuracy performance. PyramidFL [143] moves
one step further and proposes to exploit data and system utilities within the selected clients to further enhance
the time-to-accuracy performance of federated training. Lastly, Ouyang et al. [206] introduce ClusterFL that
minimizes the empirical training loss of multiple learned models while automatically capturing the intrinsic
clustering relationship among the clients. This helps select and drop the clients with little correlation with others
in each cluster, which speeds up the federated training process.
Model Heterogeneity. In standard FL, the participating clients and the central server collaboratively train
the same model. However, imposing the same model on all devices would exclude low-end devices that do not
have the enough memory. Moreover, state-of-the-art AI is increasingly reliant on large models, such as LLMs.
Requiring the server and client models to be identical makes it impossible for standard FL to train such large
models due to the resource limitations of client devices. Given that, model-heterogeneous FL was introduced
to address this issue, allowing for the training of models with varying capacities across the server and clients.
One primary approach for model-heterogeneous FL is based on knowledge distillation (KD). For example, Li and
Wang [146] propose FedMD, where clients train their own local models on a public dataset and upload their logit
vectors to the server for KD. Since only logits are sent, clients’ local models can have different architecture and
sizes. Lin et al. [156] propose FedDF to train the global model through ensemble distillation in which client models
with different sizes and architectures are used as teachers. An unlabeled dataset is used and the predictions of the
teacher models on that dataset are used to distill the global model. Similarly, Cho et al. [40] propose Fed-ET in
which models of different architectures and sizes are trained on clients’ private data and then used to train a
larger model at the server. However, Fed-ET uses weighted consensus distillation where the client updates are
weighed based on a consensus function. This deprioritizes underperforming clients, resulting in higher accuracy.
The other primary approach for model-heterogeneous FL is based on partial training where different parts of
the global model are extracted and disseminated to different clients for local training. For instance, Federated
Dropout [22] propose to randomly extract sub-models of different sizes from the global model. Given the random
nature, the sub-models extracted from the global model in each round can be different. During the update step,
the server aggregates the sampled client updates with weighted averaging based on how many updates each
part of the global model receives. Different from Federated Dropout [22], HeteroFL [48] and FjORD [92] propose
static sub-model extraction schemes where the sub-models extracted from the global model in each round are
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always the same. However, the key issue of static sub-model extraction schemes is that part of the global model
cannot be trained on data across all the clients. This inevitably biases the global model training, especially data
heterogeneity across the clients is high. To address this key issue, Alam et al. [6] propose FedRolex, which is a
rolling sub-model extraction scheme that allocates sub-models of different sizes to clients and progressively rolls
the sub-model extraction window across the entire global model. In doing so, all parts of the global model are
evenly trained on the entire client data.
Frameworks and Benchmarks. Frameworks and benchmarks play important roles in enabling FL on IoT
devices. Popular FL frameworks include FedML [85], which implements a wide range of FL algorithms and
datasets to facilitate developing and evaluating FL algorithms for a wide range of applications. Flower [16] is
another FL framework that is built on top of Ray [199] and is heavily customizable to different FL algorithms.
FedScale [127] and FLUTE [49] provide high-level APIs to implement, deploy, and evaluate FL algorithms at
scale. These frameworks are, however, not specifically geared towards IoT devices. In terms of benchmarks,
existing FL benchmarks are predominantly conducted on datasets in domains of computer vision (FedCV [86]),
natural language processing (FedNLP [152]), medical imaging (FLamby [248]), speech and audio (FedAudio [332]),
multimodal (FedMultimodal [61]), and graph neural networks (FedGraphNN [84]). These datasets, however,
do not come from genuine IoT devices and therefore do not accurately reflect the distinctive characteristics of
IoT data. In contrast, in [7], the authors propose FedAIoT, an FL benchmark designed for IoT devices. FedAIoT
includes eight datasets collected from IoT devices such as smartphones, smartwatches, Wi-Fi routers, drones, and
smart home sensors. It also includes an FL framework customized for IoT, which supports IoT-friendly models
and facilitates non-IID data partitioning, IoT-specific data preprocessing, quantized training, and noisy label
emulation.

3.5 AI Agents for AIoT
Traditional machine learning approaches focus on low-level basic recognition tasks. However, real-world applica-
tions can be complicated and require not only basic perception but also performing more complicated tasks such
as making higher-level plans and decisions based on reasoning. AI agents, powered by advanced generative AI
models such as LLMs, can autonomously perform such complicated tasks, thereby significantly enhancing the
capabilities of AIoT. Some efforts have been made to build AI agents for AIoT. For example, multimodal input is
crucial for developing AI agents for AIoT as IoT devices in general collect data from multiple sensing modalities
such as language, vision, and audio. Chen and Li [36] introduce Octopus v3, a multimodal model with functional
tokens tailored for AI agents, which supports both English and Chinese and operates efficiently on various edge
devices such as Raspberry Pi. In [257], the authors introduce Mobile-Agent, an AI agent designed for mobile
devices. Mobile-Agent can interpret user instructions to identify and locate elements on the mobile app’s interface.
It then autonomously plans and executes tasks, navigating apps step-by-step without requiring system-specific
customization. Wen et al. [268] introduce AutoDroid, a mobile task automation framework designed to handle
arbitrary tasks on an Android application without manual intervention. AutoDroid combines the capabilities
of LLMs with dynamic app analysis to manage unseen tasks. During the offline stage, it gathers app-specific
knowledge by exploring UI relationships and creating simulated tasks. In the online stage, AutoDroid uses
memory-augmented LLMs to guide the next actions and complete tasks based on these suggestions. Experimental
results demonstrate that AutoDroid effectively automates tasks and outperforms existing training-based and
LLM-based methods. Lastly, as another line of research, text rewriting is a crucial feature of AI agents, as it
can enhance communication by transforming informal or incorrect text into well-structured content. Despite
advancements in LLMs for text summarization and rewriting, their large size and computation time make them
challenging to use on mobile devices. Developing a smaller model with similar capabilities is also challenging
due to the need to balance size and performance and the requirement for expensive data labeling. Zhu et al.
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Fig. 14. Summary of topics related to networking & communication.

[353] present MessageRewriteEval, a compact yet powerful language model for text rewriting tasks that operate
efficiently on mobile devices. They present an innovative method for fine-tuning instructions for a mobile-centric
text rewriting model, enabling high-quality training data generation without human labeling.

4 NETWORKING & COMMUNICATION

4.1 Cellular/Mobile Networks
As cellular networks evolve over many generations, they play an increasingly important role in providing
mobile, reliable, and evolving communication. As summarized in Figure 14, existing works on AI-empowered
cellular/mobile networks can be grouped into four categories: network configuration, resource allocation, traffic
analysis, and signal generation.
Network Configuration. Cellular/mobile network parameters are typically manually configured based on
rulebooks. Unfortunately, this process is time-consuming, error-prone, and difficult to maintain. AI-guided
network configuration has been explored to provide a data-driven approach to improve network performance and
service robustness. For example, adding new carriers to accommodate increasing voice and data traffic can make
cellular network configuration tasks very challenging. To address this issue, Mahimkar et al. [183] propose Auric,
which uses a series of carrier attributes as inputs to train a DL model and outputs network configuration based
on geographical proximity. Experimental results show that Auric leads to 96% accuracy across a large number
of carriers and configuration parameters when evaluated on real-world LTE network data. As another line of
research, Liu et al. [175] introduce FIRE, a system that employs a variant of variational autoencoders (VAE) for
downlink channel estimation. In doing so, it eliminates the overhead of requesting feedback from client devices
and improves the quality of FDD (Frequency Domain Duplexing) MIMO systems. Moreover, FIRE effectively
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supports MIMO transmissions in real-world settings, achieving an SNR enhancement of over 10 dB compared to
the state of the arts.
Resource Allocation. AI techniques can also enhance the performance of cellular/mobile networks by managing
and distributing critical network resources based on various factors such as demand, network conditions, and
service requirements in a data-driven manner. For example, Xiao et al. [272] conduct an extensive measurement
study on the ecosystem of mobile virtual network operators (MVNO). Based on the findings, the authors propose
to leverage big data analytics and ML-based techniques to optimize an MVNO’s service such as predicting monthly
data usage to optimize data plan reselling, customer churn profiling, and mitigation. As another example, Zhang
et al. [323] propose Microscope, a DL-based framework that decomposes per-service level resource demand
based on spatio-temporal features hidden in traffic aggregates. In doing so, Microscope reduces relative demand
estimation error to below 1.2%, allowing cellular operators to allocate network resources more accurately.
Traffic Analysis. Traffic analysis refers to the techniques to monitor, analyze, and optimize the flow of data across
the network. AI-based traffic analysis can help in forecasting future traffic demands and making adjustments to
enhance the overall network efficiency. Shen et al. [229] propose a fast map-matching system named DMM for
cellular data. DMMutilizes a recurrent neural network (RNN) to determine the most probable road trajectory given
a series of cell tower locations. To make DMM practically useful in real-world scenarios, DMM also incorporates a
number of techniques such as spatial-aware representation of cell tower sequences, an encoder-decoder structure
for variable input and output lengths, and a reinforcement learning-based model to optimize the matched results.
Signal Generation. Lastly, the success of Generative AI in natural language processing and computer vision has
sparked interests in using Generative AI in the domain of cellular/mobile networks. For example, NeRF2 [346]
introduces a radio-frequency (RF) radiance field that uses a Neural Radiance Network to model a continuous
volumetric scene function, which captures the propagation of RF signals in complex environments. The model
trained with signal measurements and a physical model of ray tracing can generate synthetic RF datasets that
can be adopted to boost the training of application-layer artificial neural networks (ANNs). Experimental results
demonstrate the effectiveness of NeRF2 in the fields of indoor localization and 5G MIMO. As another example,
Chi et al. [38] present RF-Diffusion, a novel approach for generating high-quality time-series RF signals using
a generative model. The method involves using time-frequency diffusion theory and a hierarchical diffusion
transformer to generate high-quality synthetic RF signals by leveraging the unique characteristics of RF signals in
both time and frequency domains. RF-Diffusion demonstrates superior performance compared to other generative
models including DDPM, DCGAN, and CVAE, achieving higher structural similarity and better SNRs.

4.2 Wi-Fi Networks
As summarized in Figure 14, existing works on AI-empoweredWi-Fi networks can be grouped into two categories:
coverage estimation and interference cancellation.
Coverage Estimation. AI-empowered Wi-Fi coverage estimation aims to leverage AI algorithms to obtain the
distribution and strength of Wi-Fi signals in a specific area with higher resolution. For example, inspired by
advancements in image super-resolution, Li et al. [148] propose Supreme, which constructs fine-grained radio
maps based on coarse-grained radio maps crowd-sourced across sites with a deep spatial-temporal reconstruction
network consisting of 3D convolutions, spatial-temporal residual blocks, and reconstruction subnets. The authors
have conducted experiments on a dataset consisting of six months of data collected from two university campuses.
Experimental results show that Supreme outperforms state-of-the-art baselines based on coarse-grained radio
maps and achieves lower localization error in a Wi-Fi fingerprint-based localization case study.
Interference Cancellation. As the number of wireless devices increases, multiple devices may simultaneously
transmit data within the same unlicensed Wi-Fi band. This can cause severe performance degradation. To ensure
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reliable communication, advanced interference cancellation techniques are needed. Chen et al. [35] introduce
AiFi, an AI-empowered interference cancellation method for commodity Wi-Fi devices to estimate interference
using knowledge gathered from the Wi-Fi receiver’s physical layer without extra RF hardware. AiFi leverages
the domain knowledge of Wi-Fi physical layer information including pilot information (PI) and channel state
information (CSI) to guide the DL model design. Specifically, AiFi first extracts the interference features from
Wi-Fi physical layer, estimates interference via an attention network using these features, and finally removes
those interference from the received signal using a fully-connected network and an LSTM. Experiments show
that AiFi effectively boosts the MAC frame reception rate by 18× with a cancellation delay under 1ms per frame.

4.3 Visible Light Communication
Visible light communication (VLC) uses visible light as a data transmission medium to connect devices and
communicate. VLC requires bit encoding using visible light sources, and light-sensitive sensors as receivers. As
summarized in Figure 14, in VLC, AI has been used to improve the performance of optical-camera communication,
screen-camera communication, and passive-VLC.
Optical-Camera Communication.Optical-camera communication (OCC) relies on LED lighting infrastructures
as transmitters and cameras as receivers. The coded information is either transmitted directly from LED lights
or reflected from the illuminated objects and is received by the camera. Liu et al. [176] introduce CORE-Lens,
which addresses the challenges posed by the mutual interference between OCC and object recognition (OR)
in indoor environments. Traditional OCC systems often suffer from the entanglement of light patterns used
for communication with the background, which degrades both OR accuracy and OCC decoding performance.
CORE-Lens addresses these challenges by employing a disentangled representation learning (DRL) approach
combined with GAN-based image reconstruction. Experimental results show that CORE-Lens achieves superiority
in both visible light sensing and communications compared to conventional approaches. Xiao et al. [274] propose
WinkLink, an OCC system that enables robust transmission behind complex backgrounds even under low SNR
conditions. They design a two-stage DNN and a context-aware demodulation protocol to extract subtle signals
in the lossy OCC channel. WinkLink is trained solely on a synthesized dataset yet generalizes well to unseen
real-world backgrounds.
Screen-Camera Communication. Screen-camera communication (SCC) encodes video content in a human-
imperceptible manner on a screen as the light source, and uses cameras capturing images of such screen content
work as receivers. Existing techniques on SCC often suffer from high decoding errors due to screen extraction
inaccuracies and perceptible flickers on common refresh rate screens. To address this issue, Tran et al. [250]
present DeepLight, an innovative approach for SCC that addresses the challenges of decoding inaccuracies and
perceptible screen flickers. For the bit encoder, DeepLight applies a Manchester coding strategy. For the decoder,
Deeplight adopts the state-of-the-art deep object detection pipeline to extract the screen from a camera frame
and then adopts a DNN-based model to decode spatially encoded bits in the frame simultaneously. Experimental
results show that DeepLight is able to achieve high decoding accuracy (frame error rate < 0.2) and moderately
high data throughput (≥ 0.95Kbps) at extended distances.
Passive-VLC. Instead of relying on active light sources for data transmission, passive-VLC uses ambient light
which can be modulated and then detected by a receiver to decode the transmitted information. Essentially,
passive-VLC systems leverage changes in light intensity or other properties of ambient light to convey information.
Zhang et al. [337] design U-star, a system consisting of passive Underwater Optical Identification (UOID) tags
and DL-enabled camera-based tag readers, providing objects/human identification and location-based services
as underwater navigation assistance in scenarios such as dive and rescue. U-star employs a three-dimensional
multi-color cube-shaped design for the UOID tags and adopts the CycleGAN-based underwater denoising model
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that converts underwater UOID images into clear ones. Experiments under different underwater scenarios show
that U-star achieves a bit error rate of 0.003 at 1m and less than 0.05 at up to 3m, which is sufficient for guiding
underwater navigation. Ghiasi et al. [71] present SpectraLux, an approach to transmit and decode data using
low-power liquid crystal (LC) cells. It utilizes the physical characteristics of LC shutters toggling between being
translucent and opaque when switching the voltage from 0V to 5V, emitting different spectrums of the incident
light. SpectraLux adopts a spectrometer that captures 256 bands of incoming light and achieves multi-symbol
decoding by feeding PCA-reduced spectrum features to CNNs for classification. SpectraLux shows the potential
of utilizing the wide spectrum of ambient light in passive-VLC.

4.4 LoRa/LoRaWAN
LoRa (Long Range) is a rising low-power wide-area communication technology. LoRa’s physical layer adopts
the chirp spread spectrum (CSS) modulation which is known for its resistance to interference and capacity
to travel long distances, making it particularly suitable for various IoT applications. LoRaWAN (Long Range
Wide Area Network) refers to the protocol and system architecture for networks of LoRa nodes which is an
open standard that ensures interoperability among different manufacturers and developers. As summarized in
Figure 14, existing works on AI-empowered LoRa/LoRaWAN can be grouped into two categories: link estimation
and modulation/demodulation enhancement.
Link Estimation. To study LoRa link coverage in the wild in supporting smarter LoRa deployments, Liu et al.
[166] propose DeepLoRa, a DL-based framework for LoRa path loss estimation of long-distance links in real-world
environments. To do so, DeepLoRa extracts land-cover types along a LoRa link from multi-spectral remote
sensing images, and exploits the order dependency of the land-cover sequence by utilizing Bi-LSTM (Bidirectional
Long Short Term Memory) for path loss estimation. Experimental results on a real LoRaWAN dataset show that
DeepLoRa is able to achieve less than 4dBm estimation error, which is 2× smaller than state-of-the-art approaches.
Moreover, the study conducted in [220] further corroborates that DeepLoRa outperforms other link estimation
approaches in terms of LoRa localization accuracy.
Modulation/Demodulation Enhancement. Enhancements in LoRa modulation and demodulation are essential
for improving the performance, efficiency, and reliability of data transmission in LoRa systems. For example,
Li et al. [139] present NELoRa, a neural-enhanced LoRa demodulation framework that takes advantage of the
powerful feature learning capability of DL to enable LoRa communication under ultra-low SNR. The key idea of
NELoRa is the dual-DNN design: the first DNN is used as a noise filter to extract clean chirp symbols from the
noisy LoRa packets, and the second DNN is used as a decoder that decodes the extracted clean chirp symbols.
Experimental results show that NELoRa outperforms the standard LoRa demodulation method under a wide
range of LoRa configurations in both indoor and outdoor deployments. Yang and Du [300] propose LLDPC,
which enables low-density parity-check (LDPC) coding in LoRa networks under the inspiration of the wide
usage of LDPC coding in other wireless networks. LDPC requires the Log-likelihood Ratio (LLR) for decoding
which is not applicable to the CSS modulation adopted by LoRa. Moreover, the mainstream decoding algorithms
for LDPC need multiple iterations to achieve effective error correction, resulting in long decoding latency that
exceeds the maximum ACK time of the LoRa gateway. To tackle these challenges, LLDPC extracts LLR by treating
CSS demodulation as a classification task and outputs the probability of all possible decoding results. It further
utilizes a Graph Neural Networks (GNN) for fast belief propagation to achieve efficient LDPC decoding. Du
et al. [52] propose SRLoRa, which decodes LoRa signals by leveraging spatial diversity from multiple gateways.
Specifically, SRLoRa employs CNN-based interleaving denoising layers to extract features under ultra-low SNR
and consolidates features from different gateways in the merging layers. The merged signals with accumulated
energy are then fed to a CNN decoder for decoding. Lastly, Li et al. [141] further establish an encoding framework,
providing four features including on-air time, selective initial frequency, chirp repeating, and symbol hopping, to
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combat various challenges of weak signals, signal collisions, and environment dynamics. On the decoder side,
the neural-enhanced decoder is adopted and optimized for decoding the symbols with symbol hopping based
encoding in terms of input and parameter sizes.

4.5 Other Networks
Besides the wireless networks mentioned above, AI has also been applied to various other types of networks for
diverse objectives. For instance, ZiSense [349] is proposed to enhance the energy efficiency of sensor nodes in
co-existence environments by using a sequence of received signal strength (RSS) values to predict the presence
of ZigBee signals through a decision tree model. Shi et al. [230] propose to improve the configuration of wireless
mesh networks (WMN) by DL-based domain adaption that adapts models for network configuration prediction
trained on simulation to its corresponding physical network. In particular, the authors develop a teacher-student
neural network that learns robust configuration prediction models from large-scale inexpensive simulation data
with minor physical measurements to close the simulation-to-reality gap. Perez-Ramirez et al. [214] present
DeepGANTT, a DL-based scheduler that leverages GNN to provide a near-optimal solution for the NP-hard
carrier scheduling problem in RFID backscatter networks. In those networks, battery-free RFID tags harvest
energy from excitation in the environment, and IoT devices equipped with RFID readers provide them with the
carrier for communication. To avoid collisions, DeepGANTT trains a carrier scheduler based on GNN to handle
and capture the interdependence of nodes in the irregular network topology graphs. DeepGANTT breaks the
scalability constraints of the optimal scheduler used for training and can generalize to networks 6× larger in the
number of nodes and 10× larger in the number of tags. Sarkar et al. [225] propose DeepRadar that utilizes DL
to detect radar signals and estimate their spectral occupancy for incumbent protection and efficient spectrum
sharing. This approach involves spectrogram image learning (SIL) based on YOLO (You Only Look Once) model
that learns an object detection model using spectrograms, including both radar and non-radar data. Lastly, Garg
and Roy [68] design Sirius, a self-localization system, where the node computes its own location onboard, using
a single receiver for low-power IoT nodes to close the gap between the needs for accurate and robust localization
and the lack of efficient solutions in the low-power scenario. Instead of relying on strictly synchronized antenna
arrays to estimate angle-of-arrival (AoA) and time-of-flight (ToF) which requires resources low-power nodes do
not possess, Sirius uses antennas whose gain pattern can be reconfigured by the on/off of controllable switches in
real-time to embed direction specific encoding to the received signal. The gain patterns are passed to AI models
to estimate the angle in degrees. Experimental results show that Sirius is able to obtain competitive performance
compared to state-of-the-art antenna array-based systems, achieving 7-degree median error in AoA estimation
and 2.5-meter median error in localization.

5 DOMAIN-SPECIFIC AIOT SYSTEMS

5.1 Healthcare and Well-being
One important application domain of AIoT systems is healthcare and well-being. As summarized in Figure 15,
existing works on AIoT systems for healthcare and well-being can be grouped into four categories: vital sign
monitoring, in-situ illness detection and monitoring, assistive technology, and personal health insight generation.
Vital Sign Monitoring. One of the primary use cases of AIoT systems developed for healthcare and well-being
is monitoring an individual’s vital signs such as cardiac signals, breathing, and blood pressure. For instance,
one of the key challenges of vital sign monitoring is motion artifacts caused by body movements. In [37], the
authors introduce MoVi-Fi to monitor breathing and heartbeats in a contactless way using RF signals under
the existence of body movements. MoVi-Fi utilizes deep contrastive learning to separate vital signs from the
body movements and further uses an encoder-decoder model to refine and recreate the vital sign waveforms.
In [335], the authors observe that vital signs including breathing and heartbeats cause subtle facial vibrations.
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Fig. 15. Summary of topics related to domain-specific AIoT systems.

They propose to use the motion sensors inside the commodity AR/VR headsets to capture those subtle facial
vibrations and employ an LSTM-based model to reconstruct the vital sign waveforms. VitaMon [102], RF-SCG
[79], and VocalHR [283] focus on monitoring cardiac signals. Specifically, VitaMon [102] proposes to use video to
measure the inter-heartbeat interval (IBI). Since blood absorbs more light than other tissues, video can effectively

ACM Trans. Sensor Netw., Vol. , No. , Article . Publication date: August 2024.



Artificial Intelligence of Things: A Survey • 41

In-Situ Illness Detection 
and Monitoring

AIoT Systems - healthcare and wellbeing

Assistive Technology

Mental 
Illness

Ear
Diseases

Pulmonary 
Diseases

Facial
 Paralysis 

Sign Language 
Translation

Pill 
Identification

Hearing 
Screening

Vital Sign 
Monitoring

Respiratory Cardiac

Blood
Pressure

Personal Health 
Insight Generation

LLMsHealth
Data

Sleep Fitness  Mental
Health

Insights

Fig. 16. Summary of AIoT systems for healthcare and well-being.

detect the changes in blood vessel volume that occur with each heartbeat. Based on this principle, VitaMon
employs a CNN to identify and reconstruct the peak of each heartbeat across consecutive facial image frames.
RF-SCG [79], on the other hand, uses mmWave to reconstruct the seismocardiogram (SCG) waveforms that detect
fine-grained cardiovascular events. RF-SCG emits mmWave radar signals and captures the reflections from the
human body, and proposes a CNN-based model to translate the mmWave reflections to SCG waveforms. VocalHR
[283] proposes to infer cardiac activities from human voice production. It extracts phonation and articulatory
features from human voice that are related to cardiac activities, and transforms these vocal features into cardiac
activities through an LSTM-based model. Lastly, Cao et al. [27] introduce Crisp-BP, a blood pressure monitoring
system that leverages wrist-worn devices equipped with PPG sensors. The sensors emit green and infrared light,
which measures volume changes in blood vessels, which are processed by a BLSTM-based model to estimate
both diastolic and systolic blood pressure.
In-Situ Illness Detection and Monitoring. Another important use case of AIoT systems developed for
healthcare and well-being is to detect or monitor the progress of illnesses such as mental illnesses, lung and
ear diseases in non-clinical settings. Mental illnesses are a leading cause of disability worldwide [197]. One
pioneering work for mental illnesses is StudentLife [261], where the study identifies relationships between
smartphone sensor data and students’ mental health and academic performance. As another pioneering work in
this domain, Saeb et al. [222] propose to use smartphone GPS data and phone usage data to capture and detect
various daily-life behavioral markers from individuals with depression and utilize AI models to analyze the
collected sensor data to infer depressive symptom severity. Adler et al. [2] focus on leveraging smartphone sensor
data to predict early warning signs of psychotic relapse in patients with schizophrenia spectrum disorders. They
develop encoder-decoder neural network models that could identify behavioral anomalies occurring within 30
days before a relapse. Parkinson’s disease is another use case. It is observed that non-speech body sounds [216],
such as breathing and throat-clearing sounds, are highly correlated to Parkinson’s disease. Zhang et al. [325]
propose PDVocal, which leverages everyday smartphone voice activities such as calls and chats to capture these
sounds and employs a ResNet-based DL model to assess the presence probability of Parkinson’s disease. In
terms of lung diseases, Yin et al. [312] introduce PTEase, a 3D-printed mouthpiece that attaches to a smartphone
for pulmonary disease detection. The smartphone emits acoustic waves via its speaker. These waves travel
through the airway and are captured by the smartphone’s microphone, providing detailed information about
the user’s airway conditions which is crucial for pulmonary disease detection and lung function assessment.
Similarly, Song et al. [240] introduce SpiroSonic, a smartphone-based system for conducting spirometry tests
by monitoring the motion of the chest wall during breathing. SpiroSonic emits an ultrasound wave from the
smartphone speaker and captures the reflected wave from the chest wall. It extracts specific features such as the
maximum velocity of chest wall motion, the chest wall displacement during the first second of exhalation, and
the peak chest wall displacement. These features are then used as inputs to a regression neural network, which
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provides an assessment of the user’s lung function. In terms of ear diseases, Jin et al. [116] propose EarHealth, an
earphone-based system that detects three ear diseases: otitis media, ruptured eardrums, and earwax blockages.
By emitting sound waves into the ear and capturing the echoes using its integrated microphone, EarHealth
analyzes the captured data that contains crucial information about the ear through a multi-view DL model to
detect and monitor these ear diseases. Chan et al. [28] present the development and clinical evaluation of a
low-cost otoacoustic emissions (OAE) probe designed to facilitate early hearing screening. Conventional OAE
tests require highly sensitive and expensive acoustic hardware, making it inaccessible to low and middle-income
countries. To fill this gap, the authors propose to develop a low-cost probe using off-the-shelf microphones and
earphones connected to a smartphone. The probe functions by emitting two pure tones through the earphones,
prompting the cochlea to generate distortion-product OAEs, which are then captured by a microphone. In [29],
they further improve the design of the hearing screening probe using wireless earbuds, and propose OAEbuds,
which employs a two-step protocol combining frequency-modulated continuous wave (FMCW) signals and
wideband pulses to separate OAEs from in-ear reflections. The clinical study shows that OAEbuds achieves
sensitivity and specificity comparable to commercial medical devices, demonstrating its potential to make hearing
screening more affordable and accessible.
Assistive Technology. AIoT systems for healthcare and well-being has also been developed as assistive technolo-
gies, which help individuals with disabilities perform tasks that might otherwise be difficult or impossible. For
instance, Zeng et al. [316] introduce MobileDeepPill, a mobile assistive technology that automatically identifies
prescription pills in real-world settings using smartphone cameras. MobileDeepPill identifies pills by employing
a multi-CNN model to extract a pill’s three distinctive characteristics including color, shape, and imprints. It also
adopts knowledge distillation to reduce the size of the multi-CNNmodel for on-device inference. Xiong et al. [282]
propose iBlink, a smart glasses-based assistive technology for individuals with facial paralysis. Most individuals
with facial paralysis are not able to blink on one side of the face, which could lead to blindness. iBlink aids
individuals with facial paralysis to blink by detecting the non-paralyzed side’s blinking using a camera and CNN
and applying electrical stimulation to trigger blinking on the paralyzed side. As another line of research, DeepASL
[56] and SignSpeaker [93] focus on developing sign language translation systems that bridge the communication
gap between deaf people and people with normal hearing ability. Specifically, DeepASL uses infrared light-based
sensing to capture and extract skeleton joint information of fingers, palms, and forearms when the user performs
sign language. On the other hand, SignSpeaker derives sign-related information using motion sensors from a
smartwatch. Both systems utilize the Connectionist Temporal Classification (CTC) technique to construct the
sentence-level translation from the word-level translation.
Personal Health Insight Generation. The emergence of LLMs opens up a wide range of possibilities in the
application domain of healthcare and well-being. One of the most promising capabilities is to generate personal
health insights based on data collected from health-related sensors inside an individual’s mobile and wearable
devices. For example, Cosentino et al. [42] introduce PH-LLM, a Personal Health Large Language Model based
on a fine-tuned version of Gemini designed to generate insights and recommendations for improving sleep and
fitness behaviors. PH-LLM collects data from multiple sources, including medical records, wearable sensor data,
and self-reported health data from each individual. By integrating this information, it seeks to understand each
individual’s unique health profile and to provide tailored health recommendations and predictions. Similarly,
Merrill et al. [191] present PHIA, a Personal Health Insights Agent to analyze behavioral health data fromwearable
sensors using LLMs. PHIA can address both factual and open-ended health queries, and generate personalized,
actionable health insights with high accuracy. Lastly, Englhardt et al. [54] explore the potential of using LLMs
to derive clinically relevant insights from multi-sensor data collected from mobile and wearable devices. The
authors develop chain-of-thought prompting methods to facilitate LLMs in reasoning about activity, sleep, and
social interaction data, and their relation to mental health conditions such as depression and anxiety. While the
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Fig. 17. Illustration of the architecture of AIoT systems for video streaming.

authors initially focused on using LLMs for diagnostic task, they found greater potential in generating detailed,
natural language summaries that integrate multiple data streams, offering a more comprehensive understanding
of a patient’s health condition.

5.2 Video Streaming
Video streaming involves the continuous and seamless transmission of video and audio content from a server to
a client over a network. It has become one of the most widely used technologies that enables services such as live
streaming and video conferencing, which are integral to people’s daily lives. As summarized in Figure 15, existing
works on AIoT systems for video streaming can be grouped into three categories: adaptive video streaming, video
enhancement, and efficiency optimization.
Adaptive Video Streaming. One key challenge of video streaming is to maintain a consistent high-quality
viewing experience and uninterrupted playback when network bandwidth fluctuates due to factors such as
congestion, interference, and user mobility. Adaptive video streaming addresses this challenge by dynamically
adjusting the video quality in real-time based on the available network bandwidth, ensuring a smoother viewing
experience. For example, Mao et al. [184] propose Pensieve, an adaptive video streaming framework that employs
reinforcement learning (RL) to autonomously learn adaptive bitrate (ABR) algorithms to eliminate the need
for pre-programmed control rules. Zhou et al. [351] present Concerto, which identifies an important factor
of poor quality of experience (QoE): the lack of coordination between application-layer video codecs and the
transport-layer protocols. To address this issue, Concerto introduces a video bitrate adaptation strategy based on
deep imitation learning, which is abel to identify the most suitable bitrate for codec and transport layers and
successfully boosts the QoE. While both Pensieve and Concerto exhibit their potential, a notable challenge arises
from the fact that the learning models are commonly trained within simulators or emulators. Unfortunately, this
can result in poor performance when applied in real-world scenarios. Zhang et al. [327] present OnRL, which
effectively bridges the gap between simulation and real-world scenarios by introducing an online RL framework
designed for real-time mobile video telephony applications. One challenge with RL is that the algorithm might
make incorrect exploitation decisions. OnRL addresses this issue by introducing a hybrid learning approach:
if the RL model performance deviates from the expected, the system switches to a rule-based ABR algorithm;
otherwise, it continues to follow the RL strategy. Another challenge with RL-based approaches is that acquiring
suitable training data and creating a suitable environment is not trivial. Yan et al. [299] address this challenge
by developing an ABR algorithm and training it directly within the real deployment environment using in-situ
data. As another line of research, Lee et al. [133] introduce PERCEIVE, which utilizes a 2-stage LSTM model for
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cellular uplink channel throughput prediction and adapts the video encoding bitrate based on the prediction
results to improve user experience in mobile live streaming applications. Zhang et al. [326] show that attempts to
combine such hybrid approaches do not effectively utilize the combined strengths of both methods, often resulting
in suboptimal performance. Therefore, they propose Loki, which strives for a more profound collaboration of
rule-based methods with learning-based methods. This is achieved by converting a "white-box" rule-based
approach into a similar "black-box" neural network model using a customized imitation learning model. Zhang
et al. [340] introduce SENSEI, a streaming optimization scheme that capitalizes on users’ varying sensitivity levels
to different segments of a video. This approach is rooted in the understanding that users are more attuned to
crucial moments (e.g., goal-scoring moments in a sports video) and are more displeased by buffering interruptions
during these instances compared to less critical parts. Given that, SENSEI reduces the current video quality to
conserve bandwidth, which can later be allocated to deliver higher quality during moments of heightened user
sensitivity. This strategy enhances the QoE within the same bandwidth constraints by efficiently adapting video
quality to users’ sensitivity patterns. Lastly, Dasari et al. [46] introduce Swift, an adaptive video streaming system
featuring a layered encoder. Instead of encoding video segments separately in various qualities, Swift encodes the
video segments into layers. In doing so, it significantly reduces bandwidth usage and achieves a quicker response
time to fluctuations in network conditions.
Video Enhancement. Another key challenge of video streaming is the inherent limitation in the resolution of the
original source video, which can affect the viewing experience on high-definition displays. Video enhancement
techniques address this challenge by enhancing the quality of videos by upgrading their resolution beyond
the resolution of the original source video, thereby providing a better viewing experience for users with high-
definition displays. Yeo et al. [307] introduce NAS, a super resolution-based video delivery framework that
leverages client-side computation and DNNs to enhance user QoE. Their approach involves combining scalable
DNNs with adaptive predictions that can adjust their processing requirements dynamically in response to the
available resources. Reinforcement learning is used to determine the best time to download a DNN model and
choose the appropriate video bitrate for each video segment. However, one key limitation of NAS [307] is its
high computational demand and power consumption, making it less competitive to be deployed on mobile
devices. To make video enhancement feasible for mobile devices, Yeo et al. [306] propose NEMO, which capitalizes
on the inherent temporal redundancy in videos by applying super-resolution to only some specific frames
while reusing the super-resolution results to enhance the entire video. However, due to the involvement of
resource-intensive offline computation, NEMO is not ideal for live video streaming. In contrast, Kim et al. [121]
design LiveNAS specifically for live video streaming scenarios. LiveNAS utilizes real-time online training and
incorporates recently trained outcomes for super-resolution within the context of live video. Similarly, Yeo et al.
[308] present NeuroScaler, a streamlined and scalable neural-enhancing framework for live video streaming.
NeuroScaler focuses on reducing the costs of live video streaming and includes cost-reducing algorithms for
video super-resolution and a specialized hybrid video codec that drastically cuts encoding expenses for selective
super-resolution outputs. Zhang et al. [321] move one step further and propose YuZu, a super-resolution-based
video streaming system for 3D video streaming. This system addresses key limitations of existing 3D video
streaming methods, such as high bandwidth consumption and the ineffectiveness of viewport-based streaming
when the entire scene is within the view. Lastly, Park et al. [211] explore omnidirectional video (i.e., 360° video)
streaming, and develop OmniLive, a super-resolution-based omnidirectional video streaming system that utilizes
GPU to sustain a high super-resolution quality at 30 frames per second across a range of mobile devices.
Efficiency Optimization. Enhancing the efficiency of video streaming services is also important. Tang et al.
[247] present CHESS, a video popularity prediction scheme designed to forecast the future popularity of videos.
Since only a small fraction of videos gain significant popularity and contribute to the majority of watch time,
by prioritizing these popular videos rather than processing all videos uniformly, CHESS effectively allocates
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Fig. 18. Illustration of continuous learning for video analytics.

processing resources to optimize the user experience. Omnidirectional video streaming consumes more bandwidth
compared to standard video streaming. One potential solution for bandwidth optimization is the viewport-driven
approach, which focuses on streaming only the region that the viewer is watching (viewport) in high quality.
However, this approach comes with constraints as it requires predicting the viewer’s future gaze direction, and
any prediction errors can lead to rebuffering or drops in quality. To address this challenge, Guan et al. [76] develop
Pano, a method that leverages the sensitivity of users to variations in quality distortion, which effectively balances
the trade-off between quality and bandwidth allocation. This approach allows for increasing quality to the highest
noticeable extent when there is surplus bandwidth and decreasing quality to an almost unnoticeable degree
when bandwidth is limited. Improving QoE for mobile omnidirectional video streaming is crucial, particularly
in bandwidth-limited wireless networks. Previous research on omnidirectional video streaming has attempted
optimization based on head movement trajectory (HMT) but often falls short in achieving precise HMT predictions.
To address this challenge, Wang et al. [262] introduce SalientVR, a framework that integrates gaze information
into a saliency-driven mobile 360° video streaming system. SalientVR holds the potential to elevate the QoE
by utilizing user gaze patterns to deliver content more accurately and effectively for mobile VR devices. Lastly,
Rudow et al. [221] introduce Tambur, a scheme designed to address bandwidth-efficient loss recovery for video
conferencing. Existing streaming codes fall short of meeting the specific demands of video conferencing due to
the frequent loss of packets, often occurring in bursts, which can impede the rendering of video frames. Tambur
introduce a learning-based predictive model for effectively configuring bandwidth overhead and achieves a
noteworthy reduction in both the frequency and cumulative duration of freezes.

5.3 Video Analytics
Video cameras have been deployed at scale at places such as streets and intersections, stores and shopping malls,
as well as homes and office buildings. Analyzing video streams collected from these distributed cameras enables
many applications such as security and surveillance, traffic management, and customer behavior analysis. As
summarized in Figure 15, existing works on AIoT systems for video analytics can be grouped into four categories:
continuous learning, runtime adaptation, efficiency optimization, and query optimization.
Continuous Learning. In video analytics, it is inevitable that new video data emerge. Therefore, it is critical for
video analytics systems to adapt to such data drift. Although continuous learning can effectively tackle data drift
by periodically retraining models on new data, supporting continuous learning on video analytics systems is
not trivial. Bhardwaj et al. [17] propose Ekya, a video analytics system that addresses the challenge of jointly
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supporting inference and continuous learning on edge servers. The key idea of Ekya is to identify models that
need retraining the most while balancing the resources for joint retraining and inference. Ekya can enhance
the performance of video analytics, particularly in dynamically changing environments where data drift is a
significant factor in performance. However, since the retraining process consumes the majority of the time,
relying solely on model retraining may not be resource-efficient for real-time video analytics tasks. Khani et al.
[120] propose RECL, an end-to-end system that integrates model reusing with model retraining to overcome
this problem. RECL performs continuous model retraining as well as leverages historical specialized DNNs and
shares this model zoo across various edge devices. Additionally, RECL efficiently allocates GPU resources by
utilizing an iterative training scheduler, which prioritizes retraining jobs based on their progression rate. RECL
shows remarkable improvement in both accuracy and mAP for object detection and image classification tasks,
outperforming all baseline models, including Ekya.
Runtime Adaptation. Another critical capability of video analytics systems is runtime adaptation. Adapting
camera parameters and settings has a significant impact on video analytics performance, particularly due to
weather and lighting conditions. To maintain high accuracy, it becomes essential to adapt camera parameters in
response to these conditions. However, the task of identifying the optimal camera settings for specific scenes is
challenging. To mitigate the impact of environmental condition changes on video analytics performance, Paul
et al. [212] propose Camtuner, a reinforcement learning-based approach to dynamically adapt non-automated
camera parameters. Apart from camera parameters, various other factors within a video analytics pipeline
can impact its performance, including frame resolution, frame sampling rate, and the choice of DNN models.
Collectively, these components can be referred to as the overall configuration. Choosing a suitable configuration
can impact both the resource utilization and accuracy of a video analytics application. Although adapting model
configurations frequently can optimize resource usage, it incurs high costs due to the large number of possible
configurations. To address this issue, Jiang et al. [110] introduce Chameleon, a technique for achieving a balance
between resource allocation and accuracy by choosing the appropriate neural network configuration. Zhang et al.
[322] propose AWStream, an adaptive stream processing system with low latency and high accuracy. AWStream’s
main contribution is its runtime system that consistently monitors and adjusts to network conditions. It optimizes
streaming data rate based on available bandwidth and employs learned Pareto-optimal configurations to maintain
high accuracy. Zeng et al. [317] propose Distream, which focuses on runtime adaptation to the dynamic workloads
generated by distributed video cameras. Depending on the deployment location, the number of objects captured by
each camera and its corresponding workload is different and varies throughout the day. The key idea of Distream
is to adaptively balance the workloads across the cameras and also partition the workloads between cameras and
the edge server. As such, Distream fully utilizes the compute resources at cameras and the edge server to enhance
system performance. Lastly, Lu et al. [179] propose Turbo, which capitalizes on managing latent computing
resources to enhance overall performance, particularly in object detection tasks. The proposed approach revolves
around a multi-exit GAN structure, which is paired with an adaptive scheduler that dynamically determines the
optimal enhancement level for each incoming frame, thereby maximizing object detection accuracy in real-time.
The adaptive scheduler makes on-the-fly decisions about the most appropriate enhancement levels based on the
current resource availability. In terms of results, Turbo presents remarkable improvements in absolute mAP.
Efficiency Optimization. Enhancing the efficiency of video analytics systems is also important. The widespread
deployment of video cameras, numbering in the thousands and operating continuously, leads to a massive amount
of data that needs to be transmitted and processed. Transmitting and processing all video frames from the edge
to the server can be extremely expensive due to the bandwidth constraints and computational resources required.
Canel et al. [23] propose FilterForward, which only selects and transmits the relevant video frames to save
bandwidth. Similarly, Li et al. [151] introduce Reducto, another filtering-based technique which implements
on-camera filtering and dynamically adjusts filtering decisions to cater to live video analytics requirements.
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Experimental results show that Reducto outperforms FilterForward by 93% in terms of frame filtering efficiency.
As another line of research, Du et al. [53] introduce AccMPEG. The proposed key techniques involve the
design of a cheap camera-side model to efficiently decide which regions of the frames should be encoded high-
quality and which regions should be subjected to lower-quality encoding. Additionally, AccMPEG allows for
quick customization to different DNNs, with training times reduced to mere minutes, further demonstrating
its efficiency. Hwang et al. [103] introduce CoVA, a cascade architecture that reduces the need for full video
decoding. By leveraging compressed-domain analysis, CoVA efficiently detects and tracks objects across frames,
only decoding a minimal subset of frames necessary for DNN processing. CoVA’s design not only optimizes
computational efficiency but also supports both temporal and spatial queries, broadening its applicability in
video analytics. Lastly, video analytics systems often host multiple tasks like object detection, face recognition,
and semantic segmentation, where different models can be used for different tasks. Given the limited GPU
resources of edge devices, attempting to load all models can exceed GPU memory limit. Padmanabhan et al. [207]
introduce Gemel, a model merging technique that can efficiently merge and share layers from models with the
same architectures. In doing so, Gemel effectively reduces the number of swaps required and the amount of data
loaded into GPU memory, resulting in fewer frame drops and improved accuracy.
Query Optimization. A video analytics query is an inquiry submitted to a video analytics system to retrieve
useful information and insights from video data. Summarizing a video scene with object count is a common query
type to get insight from a video stream. Due to the energy constraint of edge devices, continuously transmitting
video streams is a challenging task. ELF, presented by Xu et al. [292], is a framework designed to continually
summarize video scenes through the aggregation of object counts, all while operating within the confines of
limited energy resources. Rather than transmitting raw video data, the approach involves sending only numerical
data, such as count numbers or other relevant query-related values. In many camera setups, a significant portion
of cameras often remain inactive and unqueried. This scenario can be referred to as "zero-streaming" where
the inactive cameras store video data in their local storage and communicate with the server only when a
specific query is requested. Xu et al. [291] propose DIVA, an approach to effectively query video analytics on zero
streaming cameras. When it comes to tasks like retrieval, tagging, and counting, DIVA consistently demonstrates
superior performance compared to other baseline methods. As zero streaming cameras primarily store data on
their local storage, a drawback of DIVA is its susceptibility to video data loss in the event of camera storage
failures. Video analytics queries can sometimes raise concerns about privacy violations, as users may request
sensitive information about others, potentially infringing on their privacy. Cangialosi et al. [24] introduce Privid,
a method aimed at extracting valuable information from video data without compromising privacy. Privid’s
approach involves breaking the video into smaller segments and executing processing code on each segment
individually rather than processing the entire video at once. A Privid query comprises a set of statements in a
PrividQL language, similar to SQL, along with executable video processing components. They run an experiment
on video data collected from three cameras and apply Detectronv2 for object detection and DeepSORT for object
tracking. The rise of 5G technology has propelled the expansion of ultra-fast video analytics, largely due to the
growing need for low-latency processing capabilities. Tutti, developed by Xu et al. [286], combines the 5G radio
access network and edge computing at the user level to ensure optimal performance for video analytics tasks with
low latency. Tutti achieves a remarkable reduction in response latency and demonstrates substantial progress in
enhancing QoE for video analytics applications. In response to diverse applications, video analytics platforms
have gradually moved away from providing pre-defined video processing results. Instead, they now enable users
to utilize their customized models, all while ensuring a consistent commitment to specified accuracy standards.
Recent optimization efforts involve preprocessing video data in advance to construct indices that can expedite
subsequent queries. However, these optimizations were tailored for scenarios where models were predefined and
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Fig. 19. Illustration of the architecture of AIoT systems for autonomous driving.

not user-provided. Agarwal and Netravali [3] introduce Boggart, a comprehensive pipeline for a video analytics
platform that can function as a versatile accelerator using the model provided by the users.

5.4 Autonomous Driving
Autonomous driving enables a vehicle to navigate and operate partially with or fully without human intervention.
By fusing real-time data collected through IoT sensors with AI-driven perception and decision-making algorithms,
AIoT systems are contributing to making autonomous vehicles safer, more efficient, and adaptable to changing
road conditions. As summarized in Figure 15, existing works on AIoT systems for autonomous driving can be
grouped into four categories: perception enhancement, localization, tracking, and mapping, automatic testing,
and control and actuation.
Perception Enhancement. Perception enhancement involves the use of AI to process data from various
sensors such as cameras, LiDAR, and radar more accurately, allowing an autonomous vehicle to have a more
comprehensive understanding of its surroundings. While LiDAR-based systems offer detailed spatial mapping,
they fail in adverse weather conditions because LiDAR beams struggle to penetrate through elements like fog.
To address this limitation, Bansal et al. [13] introduce Pointillism, an innovative concept called cross-potential
point clouds, which leverages the spatial diversity generated by utilizing multiple radar systems to effectively
address the issues related to noise and sparsity in radar-based point clouds. Single-vehicle 3D sensors have
two primary limitations: susceptibility to occlusion by non-transparent objects and reduced detail perception
at greater distances. Zhang et al. [341] introduce EMP, a collaborative approach where all nearby connected
autonomous vehicles (CAVs) share sensor data with each other. This sharing allows each vehicle to create a more
comprehensive and higher-resolution perception compared to relying solely on its own sensors. The emerging
paradigm of infrastructure-assisted autonomous driving leverages infrastructure elements like smart lampposts to
assist autonomous vehicles. However, a challenge arises when the vehicle and infrastructure point clouds do not
hold a significant overlap or similarity, resulting in a drop in accuracy and delays. Vi-Eye, presented by He et al.
[91] is a pioneering system capable of aligning vehicle-infrastructure point clouds with centimeter-level accuracy
in real time. VIPS, developed by Shi et al. [231], takes this capability a step further, achieving decimeter-level
accuracy while still maintaining real-time performance. VIPS distinguishes itself from Vi-Eye by adopting an
alternative strategy. While Vi-Eye relies on highly accurate point cloud transmission between infrastructure and
vehicles, VIPS focuses on aligning two graphs generated from simplified and diverse representations of objects
detected by the vehicle and infrastructure. He et al. [90] present Automatch, an innovative solution by utilizing
traffic cameras to enhance the perception and localization capabilities of autonomous vehicles, particularly at
intersections. The pioneering aspect of the system is that it enables vehicles to expand their range of perception
by correlating images taken by both traffic cameras and on-vehicle cameras.
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Localization, Tracking, and Mapping. Localization is the process of determining the precise position of a
vehicle within a known environment by comparing sensor data to pre-existing maps or reference points. Accurate
localization in environments like tunnels and underpasses, where Global Navigation Satellite Systems (GNSS)
signals are unavailable, can be a challenging task in autonomous driving. MVP [255] address this challenge
by extracting magnetic fingerprints from anomalies in the geomagnetic field. These magnetic fingerprints
are then compared to a magnetic map, allowing for precise positioning of vehicles without relying on GNSS
signals. In the context of autonomous driving, tracking refers to the continuous monitoring and prediction of the
movements and trajectories of vehicles on a roadway. VeTrac [249] employs traffic cameras as a sensing network
to reconstruct large-scale vehicle trajectories, addressing the limitations of GPS-dependent solutions. It achieves
this through a vision-based vehicle detection and tracking algorithm applied to video frames collected from
the traffic cameras. Lin et al. [155] identifies three primary computational bottlenecks in autonomous driving
systems: object detection, object tracking, and localization, which collectively consume over 94% of computational
resources in the system. In response to these challenges, the authors have developed an end-to-end autonomous
driving system that draws from the most cutting-edge system designs found in both academic research and
industry practices. Mapping is a continuous process that involves creating and continually updating a detailed
map of the surroundings of a vehicle through the use of various sensors such as LiDAR, cameras, and radar.
Maps used in autonomous driving systems require continuous updates to account for significant changes in the
environment, which can affect the features visible to a vehicle. CarMap, developed by Ahmad et al. [4] offer an
innovative solution by collecting 3D maps from vehicles equipped with LiDAR and advanced cameras, ensuring
near real-time map updates. As each vehicle travels through a road segment, it uploads map updates to a cloud
service over a cellular network, making these updates accessible to other vehicles.
Automatic Testing. Automatic testing involves identifying and analyzing various events or scenarios that
autonomous vehicles may encounter on the road and testing the vehicle’s AI-driven systems to ensure they
respond appropriately to these events. BigRoad [165] provides a cost-effective and dependable solution for
collecting extensive driving data by utilizing a smartphone and an Inertial Measurement Unit (IMU) installed
within the vehicle. This system extracts internal driver inputs, such as steering wheel angles, driving speed, and
acceleration, and also discerns external perceptions of road conditions, including the distinction between wet
and dry surfaces. This information can be highly valuable for various purposes, including autonomous vehicle
testing and evaluation. Automatic testing of autonomous driving technology is a complicated process due to the
necessity of addressing unusual events and corner cases like road obstacles, pedestrians on highways, or wildlife
encounters. To address this challenge, Li et al. [147] introduce an automatic system that utilizes an algorithm
to identify and respond to unusual driving events effectively. The results of detecting unusual events can be
valuable for retraining and enhancing a self-steering algorithm, particularly in more complex driving scenarios.
Control and Actuation.Autonomous control systems manage components that interact with their environments
while making decisions independently, without human intervention. Prior works in autonomous AIoT control
systems involve multiple stages, including data acquisition from sensors, processing with deep neural networks,
and control of configuration parameters to interact with the external environment. The multiple stages suffer
from performance bottlenecks due to the difficulty in tuning each step. For instance, even lightweight deep neural
networks for object detection have millions of parameters and are too complex for embedded platforms. This
complexity makes it infeasible to run multi-stage AIoT control algorithms in real-time on platforms with memory
and computation constraints. Sandha et al. [224] present EAGLE, an end-to-end deep reinforcement learning (RL)
solution that trains a neural network policy to directly use images as input for controlling the PTZ camera. The
proposed system bypasses the conventional multi-stage process of object identification, tracking, and control by
directly mapping raw photos to control actions using a neural network policy. The paper demonstrates Eagle’s
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effectiveness in various scenarios and its successful transfer from simulation to real-world applications, making
significant contributions to the fields of edge AI and autonomous camera control.

5.5 Augmented, Virtual, and Mixed Reality
Augmented Reality (AR), Virtual Reality (VR), and Mixed Reality (MR) redefine our perception of the world.
Specifically, AR enriches reality by overlaying digital content on our surroundings; VR immerses us in entirely
digital environments; and MR provides an interactive experience between the virtual and real worlds. As
summarized in Figure 15, existing works on AIoT systems for AR/VR/MR can be grouped into four categories:
object detection and tracking, user inputs, performance enhancement, and omnidirectional AR.
Object Detection and Tracking. Object detection and tracking is one of the most fundamental tasks in AR/MR.
Liu et al. [164] present an efficient offloading-based object detection and tracking system for AR/MR, which
offloads the object detection task to the cloud while conducting tracking on AR devices. The key technique
incorporated in the system is a dynamic region of interest (RoI) encoding technique that encodes regions where
objects are not likely to be detected in lower quality. As such, the proposed system reduces both offloading latency
and bandwidth consumption while maintaining object detection accuracy. Apicharttrisorn et al. [9] propose
MARLIN, a lightweight object detection and tracking framework for AR. Instead of running computationally
expensive DNN on each frame, it initiates the DNN execution on the initial frame and then assesses if there are
significant scene changes using a change detector specifically designed to identify alterations in the background.
If such frame changes are not detected, MARLIN opts for a more lightweight tracking scheme, conserving
computational resources while maintaining tracking accuracy. Guan et al. [75] move one step further and
propose DeepMix that focuses on 3D object detection for AR/MR, aiming to provide an efficient solution in
this computationally demanding domain. Instead of relying on computationally intensive DNN-based 3D object
detection models for bounding box inference, DeepMix offloads 2D RGB images to the edge for 2D object detection
and then utilizes the returned 2D bounding boxes in conjunction with depth data captured by headsets to estimate
3D bounding boxes. DeepMix was prototyped on a Microsoft HoloLens 2. Evaluation results show that compared
to existing methods based on 3D object detection, DeepMix not only enhances detection accuracy but also
considerably decreases end-to-end latency.
User Inputs. Capturing user inputs in an accurate, intuitive and user-friendly manner is another important
task in AR/VR/MR. Existing systems face challenges in capturing user-friendly inputs, particularly in detecting
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subtle and low-effort finger gestures, which are more suitable for head-mounted devices (HMD) controllers.
Nguyen et al. [201] introduce HandSense, a system using capacitively coupled electrodes to precisely capture and
recognize micro-finger gestures for interaction with HMD. They develop an electrode placement configuration
on fingertips that minimizes the need for extensive hand movements and utilize several DNN-based methods to
recognize the gestures. Experimental results show that HandSense is able to achieve a 97% accuracy in recognizing
14 gestures performed by 10 subjects. As another line of research, in interactive VR applications, conventional
techniques have limitations as they cannot capture the upper face of users, which is mostly occluded by the
head-mounted display. To address this limitation, Chen et al. [33] propose ExGSense, which detects and recognizes
eye and mouth gestures as VR inputs. This capability is made possible through the utilization of sparse near-eye
biopotential signal measurements combined with a DNN-based classifier. They evaluated their prototype with 42
facial gestures, achieving 93% accuracy for user-specific and 77% for user-independent evaluation.
Performance Enhancement. Performance enhancement involves optimizing software and hardware to reduce
latency, increase processing speed, and improve resource management. Trinelli et al. [251] present NEAR, a
transparent AR processing system designed to reduce latency and enhance performance when integrating AR
features into streaming videos from lightweight IoT devices. NEAR introduces a simplified SOCKS 5 proxy, a video
decoder, and an encoder for the extraction and re-injection of video streams into network flows. This setup enables
offloading heavy computational tasks, like object detection, to edge devices, reducing the processing load on both
source and consumer devices. NEAR operates without requiring modifications to the IoT streaming devices or
client-side applications, ensuring a seamless integration of AR and other computationally intensive functions
directly within the network. Mobile DL frameworks often encounter limitations, particularly related to multi-DNN
GPU contention, which can significantly increase inference latency. Unlike desktop GPUs, mobile GPUs cannot
effectively implement multi-tasking approaches due to their constraints. Heimdall, introduced by [310], can
efficiently manage the demands of multiple DNN rendering tasks on mobile devices, ensuring minimal latency
and optimal performance in emerging AR applications. Heimdall introduces an innovative GPU coordinator that
effectively handles multiple DNN rendering tasks on both GPU and CPU by decomposing complex DNNs into
smaller units and adopting flexible scheduling techniques. The approach significantly reduces the contention
between DNNs and rendering tasks, which typically degrades performance on mobile devices, thus enhancing
overall system performance. Heimdall was prototyped on various mobile GPUs and AR applications, showing it
boosts frame rates from 12 to 30 fps and reduces worst-case DNN inference latency by up to 15 times compared
to the baseline multi-threading approach. Liu et al. [173] introduce CollabAR, the concept of collaborative image
recognition into its design, capitalizing on users’ temporally and spatially correlated images to enhance image
recognition accuracy. The edge-assisted design of the system significantly reduces end-to-end latency, ensuring
seamless and efficient performance on commodity mobile devices. CollabAR attains a recognition accuracy rate
exceeding 96% even for images with substantial distortions. FreeAR, presented by [8], enhances the performance
of mobile AR by introducing infrastructure-free AR experiences through collaborative time slicing and efficiently
distributing compute-intensive tasks across multiple user devices. In FreeAR, all devices unite under a common
coordinate system. The chosen primary device takes charge by executing DNNs, enabling it to update the device
pose, physical object locations, and 3D virtual overlays, much like traditional AR systems. Meanwhile, secondary
devices shift into a low-power mode, where they track their locations within the converged coordinate system
using lightweight methods. With this approach, FreeAR can establish a low-power framework, enabling users to
seamlessly engage in AR experiences without relying on infrastructure support.
Omnidirectional AR. Lastly, omnidirectional AR refers to AR experiences that provide a 360-degree view of
the environment, allowing users to interact with and view augmented content from any direction. In mobile AR
applications, achieving accurate omnidirectional lighting is crucial to avoid undesirable visual effects. However,
accurately estimating omnidirectional lighting in practical scenarios can be challenging, primarily due to the
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influence of environmental lighting conditions and the dynamic nature of mobile users. Zhao and Guo [348]
introduce Xihe, a mobile AR application capable of real-time and precise omnidirectional lighting estimation by
employing a sphere-based point cloud sampling technique. Combined with 3D vision-based lighting estimation
pipeline, this sampling technique delivers significantly improved results over farthest point sampling techniques.

6 DISCUSSIONS
Lastly, in the field of AIoT, addressing issues such as bias and fairness, security and privacy, as well as legal
and ethical concerns is as crucial as tackling the technical challenges in sensing, computing, and networking &
communication, and domain-specific AIoT systems as we have covered in previous sections. In this section, we
provide a brief discussion on these issues.
Bias and Fairness in AIoT. The integration of IoT and AI significantly broadens the functional capabilities of
AIoT. As a result, it raises the need for fairness considerations of AIoT since its extended capabilities allow it
to be widely deployed in daily life. Bias is referred to the systematic deviation in data or algorithms used by
AIoT that leads to unfair or discriminatory outcomes. Balasingam et al. [12] address the challenge of balancing
throughput and fairness in mobility platforms that allocate tasks to vehicles for applications such as food
delivery and ridesharing. They show that current ridesharing platforms often fail to ensure that riders from
different neighborhoods receive equitable service. This issue arises when the algorithm prioritizes ride requests
from certain neighborhoods over others, typically favoring areas with higher demand or shorter and more
profitable trips. Given that, they introduce Mobius, a system engineered to balance high throughput and fairness
among customers by effectively managing the inherent trade-offs in shared mobility, which enhances the overall
performance and fairness of mobility platforms. Bias in AIoT may arise through federated learning (FL), where
models are trained across multiple edge devices, influenced by the heterogeneous resources and data distributions
of these devices. Selialia et al. [226] observe that sample feature heterogeneity, resulting from different feature
representations at various devices, is a major contributor to bias in FL. Their results show that existing bias
mitigation techniques, such as normalization do not fully eliminate bias, with bias levels being proportional to
the degree of heterogeneity in sensor sampling features. Lastly, Bae and Xu [11] focus on biases in pedestrian
trajectory prediction models used in autonomous vehicles. They highlight that many DL models trained on
pedestrian data are biased, particularly against vulnerable demographics like children and the elderly, who exhibit
different walking patterns compared to the general adult population. This bias can lead to higher prediction
errors for these groups and increasing their risk of involvement in vehicle crashes.
Security in AIoT. The vulnerabilities inherent in AIoT pose critical security concerns. One of the root causes is
the limited resources of AIoT devices, which makes it challenging to implement robust security measures. For
example, to make an effective balance between security needs with resource limitations, Luo et al. [181] propose
ShieldScatter, a lightweight solution to enhance IoT security by utilizing battery-free backscatter tags. These tags
create fine-grained multi-path propagation signatures, allowing for the identification of legitimate users and the
detection of attackers. ShieldScatter provides a cost-effective method that does not require expensive hardware
modifications, offering a practical security solution for resource-constrained IoT devices. As another example, in
contact-free smart sensing devices, limited storage resources necessitate the use of cloud storage. However, data
stored in the cloud is particularly vulnerable due to the open nature of cloud environments, making it susceptible
to potential third-party attacks. To mitigate these risks, Mei et al. [190] introduce a novel Cloud-Edge-End
cooperative storage scheme that leverages the distinct characteristics of the cloud, edge, and endpoint layers.
This scheme employs a strategically designed data partitioning strategy, which involves storing sensory data
across the three layers separately. By doing so, it increases the difficulty of potential security breaches while
offering robust protection against both internal and external attacks. To protect from malicious attacks in IoT
environment, several DL-based detection mechanisms are proposed [59, 119, 142]. Khan et al. [119] investigate
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the robustness of SplitFed Learning – a hybrid of split learning and federated learning (FL) – against model
poisoning attacks, where attackers deliberately inject fake data into the network. SplitFed combines the parallel
computation efficiency of FL with the resource efficiency and improved privacy of split learning. The study shows
that SplitFed, due to its smaller client-side model portions, is inherently more robust to model poisoning attacks
compared to FL. Li et al. [142] focus on physical adversarial attacks on DL-based Wi-Fi sensing systems. This
attack manipulates Wi-Fi packet preambles to subtly alter the Channel State Information, thereby influencing the
DL models that rely on this data, without interrupting normal communication. Demonstrating high success rates
of attack in activity recognition and user authentication, this study exposes significant security vulnerabilities in
current Wi-Fi sensing systems. Lastly, Dong et al. [51] explore a critical security vulnerability in modern mobile
devices that utilize dynamic refresh rate switching to optimize power consumption. The authors present an
innovative attack vector named RefreshChannels, where two colluding apps modulate the display’s refresh rate
to covertly transmit sensitive information, bypassing the operating system’s sandboxing and isolation measures.
They also propose countermeasures to mitigate the RefreshChannels attack such as restricting refresh rate API
access, limiting refresh rate change frequency, introducing delays and randomization, and detecting abnormal
refresh rate patterns.
Privacy in AIoT. Since AIoT could gather a diverse array of data such as an individual’s location, personal
healthcare record, behavior patterns, and biometric information that is rich in personal information, the collection
and processing of such personal data can raise significant privacy concerns. To protect the privacy of individuals,
various regulations have been implemented. The European Union (EU)’s General Data Protection Regulation
(GDPR) offers comprehensive data protection rules for handling EU citizens’ personal data [55]. In the U.S., the
California Consumer Privacy Act (CCPA) outlines consumer rights regarding personal information collected
by businesses, while the Health Insurance Portability and Accountability Act (HIPAA) stringently controls
the handling of personal healthcare data [202, 203]. Alongside these legal frameworks, numerous research
efforts are underway to tackle privacy-related challenges. Abadi et al. [1] introduce Differential Privacy (DP),
a technique that injects noise into data to preserve sensitive personal information. They introduce DP into
DL model training with their proposed DP-SGD method, which has proven to maintain high accuracy while
effectively preserving privacy. Fully Homomorphic Encryption (FHE) is another privacy-preserving mechanism
which enables computation to be performed over encrypted data. FHE ensures that original data remains hidden
and is not decrypted during processing. However, due to its significant computational demands, AIoT is exploring
alternatives like Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SHE) to
reduce computational overhead. Shafagh et al. [227] propose Pilatus, a PHE scheme for IoT while sharing the
data with the cloud. Pilatus protects data privacy by ensuring that the cloud stores only encrypted data while
still enabling operations like summation. Mo et al. [195] introduce PPFL, a framework that leverages Trusted
Execution Environments (TEEs) to prevent private information leakage in federated learning scenarios. Though
federated learning enables decentralized training across multiple devices without aggregating user data, model
updates can still leak sensitive information, posing significant privacy risks. To address this, PPFL employs TEEs to
securely process model updates, ensuring that both local training on clients and secure aggregation on servers are
protected from potential adversaries. Singh et al. [237] introduce SnoopDog, a framework designed to address the
privacy issues arising from hidden wireless sensors, such as secret cameras and microphones. SnoopDog identifies
Wi-Fi-based sensors monitoring users by detecting causal patterns between trusted sensor data like IMU readings
and Wi-Fi traffic. Although the current implementation of SnoopDog is limited to Wi-Fi-connected devices, future
enhancements could extend its capabilities to other wireless communication standards like Zigbee or Bluetooth.
Conventional privacy-preserving machine learning (PPML) methods often face significant latency issues due to
computation overhead of encryption processes. To address this issue, Chien et al. [39] introduce Enc2, a hybrid
method that combines encoding and homomorphic encryption to enhance PPML for resource-constrained IoT
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devices. The proposed method performs most of the computations on plaintext, thus reducing latency and shifting
the encoding burden from the IoT device to the cloud. Lastly, Corbett et al. [41] introduce BystandAR, which
addresses the privacy concerns posed by Augmented Reality (AR) devices that unintentionally capture the visual
data of bystanders. BystandAR leverages eye gaze and voice indicators to differentiate between subjects and
bystanders, protecting the bystander’s privacy in real-time without offloading data to external servers.
Legal and Ethical Concerns in AIoT. Finally, AIoT must adhere to ethical norms and legal obligations.
Mittelstadt [194] discusses the intersection of ethical issues and the deployment of health-related IoT technologies,
emphasizing the importance of designing these technologies in ways that are both ethically responsible and
legally compliant. It also underscores the need for responsible design and deployment of IoT technologies,
ensuring they are trustworthy, respect user rights, and enhance healthcare delivery without compromising ethical
standards. Gill [72] highlights the importance of addressing ethical dilemmas in the adoption of autonomous
vehicles. The study focuses on the ethical dilemma of programming autonomous vehicles to make decisions in
situations where harm is unavoidable, such as whether to protect passengers or pedestrians. Despite industry and
policymakers’ tendencies to downplay these ethical issues, the findings underscore the necessity of addressing
these dilemmas to ensure the successful deployment and acceptance of autonomous vehicles. Bouderhem [20]
proposes a comprehensive ethical framework to govern the use of AI in healthcare. This framework is based
on values such as human dignity, fairness, transparency, accountability, and inclusivity. Bouderhem [20] also
discusses the role of the European Union’s General Data Protection Regulation (GDPR) and the AI act as models
for creating robust regulatory frameworks.

7 CONCLUDING REMARKS
In this survey, we present a comprehensive review of AIoT research. We organize the AIoT literature into a
taxonomy that includes four categories: sensing, computing, networking & communication, and domain-specific
AIoT systems, and review key topics within each category. We hope our survey serves as a foundational reference,
enabling researchers and practitioners to gain a comprehensive understanding of AIoT and inspiring further
contributions to this exciting and important field.
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