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This work presents AttFL, a federated learning framework designed to continuously improve a personalized deep neural
network for efficiently analyzing time-series data generated from mobile and embedded sensing applications. To better
characterize time-series data features and efficiently abstract model parameters, AttFL appends a set of attention modules
to the baseline deep learning model and exchanges their feature map information to gather collective knowledge across
distributed local devices at the server. The server groups devices with similar contextual goals using cosine similarity, and re-
distributes updated model parameters for improved inference performance at each local device. Specifically, unlike previously
proposed federated learning frameworks, AttFL is designed specifically to perform well for various recurrent neural network
(RNN) baseline models, making it suitable for many mobile and embedded sensing applications producing time-series sensing
data. We evaluate the performance of AttFL and compare with five state-of-the-art federated learning frameworks using three
popular mobile/embedded sensing applications (e.g., physiological signal analysis, human activity recognition, and audio
processing). Our results obtained from CPU core-based emulations and a 12-node embedded platform testbed shows that
AttFL outperforms all alternative approaches in terms of model accuracy and communication/computational overhead, and is
flexible enough to be applied in various application scenarios exploiting different baseline deep learning model architectures.
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1 INTRODUCTION

Mobile and embedded sensing applications gather data at high fidelity and diverse dimensions to capture detailed
personal and environmental events. The recent trend of integrating deep learning algorithms on sensing devices
has catalyzed the design of many mobile/embedded sensing applications as it suppresses sensitive data from
leaving the local devices [28, 53, 55, 65, 84]. Still, the models used in these applications are generic, which (in
most cases) are not tailored to the data currently being experienced at the device. As the next step of further
improving sensing application performance, system designers are now examining the possibilities of performing
some level of local model training [26, 83]. Despite the computing resource constraints of embedded and mobile
sensing platforms, locally training deep learning models (even a small amount) can accelerate the design of more
personalized and customized services [87].

Among various ways of training models locally on the devices, federated learning offers an option to train a
deep learning model based on local data stored in geographically distributed devices without sending the data to
a central server [33, 39, 78]. Specifically, devices participating in a federated learning process train their local
models using self-collected data and share model parameters with a server. With model parameters collected
from various devices, the server applies an aggregation mechanism to integrate the collected model parameters
and trains a deep learning model without exposing individual device’s local data. By re-distributing the updated
model parameters, local devices can improve their model performance compared to the case of training with only
locally collected data. As a result, federated learning offers a way to collaboratively achieve an improved model
performance without sharing local data.

Concurrently, advances in low-power sensing technology have enabled a rich body of applications that exploit
various types of complex sensor data [46, 66, 69]. Given that the purpose of many sensing applications is to capture
and understand longitudinal information of the user or the environment, in many cases, their sensing outputs are
in the form of time-series data streams. Hence, a federated learning framework for mobile and embedded sensing
applications should be able to train deep learning models with time-series data streams.

Unfortunately, state-of-the-art federated learning frameworks are not designed to support complex models for
time-series sensor data analysis. Our motivational studies (Sec. 3) show that even the most recently proposed
frameworks such as FedMask [45] and FedDL [76] show inefficiencies or perform poorly when the baseline
network becomes complex or a recurrent neural network (RNN) baseline model is used. Such limitations are
mainly due to the optimization approaches of these existing frameworks. By design, to minimize data exchange,
federated learning frameworks select portions of the model to share with the server. Ideally, this sub-model should
be small but informative so the server can learn knowledge about the local data features of individual devices
while reducing the communication overhead of the federated training process. FedMask, for example, shares a
masked result of model parameters and FedDL exploits dynamic layer sharing in an iterative layer-wise manner.
Unfortunately, when applied to deep models that suit time-series data analysis, both fail to offer competitive
performance given that they are either limited to sparse models or due to operational characteristics of computing
across all model layers; thus, are not scalable to deep/dense models.

To address the limitations of the state-of-the-arts, in this work, we propose AttFL!, an efficient federated learning
framework for time-series sensor data to support a wide range of mobile and embedded sensing applications.
Compared to previous approaches, AttFL requires no modifications to the baseline deep learning model structure
while only appending three attention layers, which focus the underlying model towards the local, sub-global,
and global features of the input data. Local devices participating in AttFL fully exploit the temporal details of
the input data using this baseline+attention architecture and share two main types of information with the
server for federated learning operations: (i) attention feature maps and (ii) the convolution layers weights used

1 An open source implementation of A#FL is available at https://github.com/eis-lab/attfl
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Table 1. Comparison of proposed AttFL with representative existing federated learning frameworks.

Computation | Communication Model Time-series data support
. . L. RNN baseline Scalable with Core features
improvement improvement personalization model validation | increasing layers
FedAvg [62] X X X X X Weight averaging
Model-Agnostic
PerFed [21] X X v X X Meta-Learning (MAML)
pFedAtt [59] X X V4 X X Attentive functllonslfor
model personalization
Moreau envelope-based
pFedMe [73] X X Vv X X o )
regularization loss function
LG-FedAvg [50] X v v X X Leverzgn‘gi ::eri:;’:rlfat"’“
FedMask [45] v v v A X Pr““‘:f:;iiﬁfgfgatwn
FedDL [76] V4 V4 V4 X X Layef—wxse sharing énd
affinity-based grouping
AttFL (Ours) v Vv Vv Attachable attention modules

for inter-connecting the attention modules with the baseline DNN. These two types of information effectively
abstract the underlying baseline model’s weights/parameters in a light-weight manner (only 1.37 MB of data
exchange needed for a Bi-LSTM baseline model) so that the server can understand which devices share similarities
in input data characteristics. For this, the AttFL server exploits attention feature map-based cosine similarity to
group local devices so that their model configuration information can be aggregated and re-distributed.

We evaluate the performance of AttFL using three representative mobile and embedded sensing applications —
human activity recognition, physiological data analysis, and audio data processing — all based on time-series data.
To do so, we have designed and implemented a testbed using 12 heterogeneous embedded platforms. Our results
show that AttFL consistently outperforms state-of-the-arts in both model accuracy as well as computation and
communication efficiency for mobile and embedded sensing applications. We also show that A#FL can be used
for diverse deep learning model architectures with minimal computational burden on mobile/embedded devices.

Specifically, our work makes the following three key contributions:

e We present a motivational study on the performance of state-of-the-art federated learning frameworks using
baseline models suited for time-series sensor data with increasing model complexity. Our results show that
these existing frameworks are not flexible enough to support deep and complex neural network architectures
needed for analyzing complex data, which are prevalent in modern sensor data processing applications.
To address such limitations, we propose AttFL, a novel federated learning framework for time-series sensor data
processing. The key idea behind AttFL is the incorporation of three attention modules to extract local, sub-global,
and global temporal features of the time-series sensor data directly on top of the baseline model. As such, local
devices in AttFL only share their attention feature maps and a small amount of attention module parameters
with the server, which not only improves local model personalization performance but also minimizes both
communication and computation costs.

e We perform extensive evaluations to understand the performance of AttFL and previously proposed federated
learning frameworks with various sensing applications. We show that A#tFL shows state-of-the-art performance
in reducing communication and computational overhead while achieving high inference accuracy for different
model architectures. We also present results from a heterogeneous embedded platform testbed to show that
AttFL’s local operations can execute with minimal overhead on real embedded sensing platforms.
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2 RELATED WORK & PRELIMINARY STUDY
2.1 Backgound on Federated Learning

e Federated Learning. Federated learning is a machine learning paradigm focusing on gathering knowledge from
many distributed local models to collaboratively compute improved model parameters at the server. Specifically,
in federated learning, after locally training models using self-collected data, local devices share sub-model
information without exchanging the actual sensing data and the server exploits this information to re-compute
and re-distribute an improved model to relevant devices. This offers a privacy-preserving approach of improving
model performance at reduced costs. Commercial services such as Google Gboard [32], Apple Siri [1], and Nvidia
Clara [23] use such operations by collecting information from end-users to eventually offer better (personalized)
services. Various schemes have been proposed regarding which and how model parameters should be shared, with
the goal of improving inference accuracy when aggregated over many participating devices while minimizing the
overall overhead [48, 88]. Table 1 summarizes some representative existing work in this domain. A commercially
widely used approach, FedAvg [62] aggregates randomly selected local devices’ model weights and averages them
to train a single global model for re-distribution. However, FedAvg does not target to optimize the computation
and communication costs and lacks support for effective per-device personalization, meaning that only a global
model is generated despite each device dealing with specific classes and data distributions.

PerFed [21] generates personalized models but fails in achieving communication and computation efficiency.

pFedAtt [59] exploits attentive functions at the server for computing local model similarity for personalization
and pFedMe [73] supports personalization by regularizing loss functions between the global/local models, but
both approaches impose high communication and computation costs. Other approaches, such as LG-FedAvg [50]
achieves good model personalization with reduced communication cost and pFedMe-based FCFL [89] introduces a
fair personalized federated learning framework under inferior networking conditions. However, these frameworks
still fail in suppressing computation costs.
e Personalized Federated Learning. Personalized federated learning essentially benefits from identifying and
clustering similar clients/devices or models that can benefit from sharing a common model or model parameters.
Specifically, this similarity-based clustering can be achieved via constructing client-based clusters or model-based
clusters. Client cluster-based personalized federated learning groups clients into multiple clusters and then
performs federated learning by designing global models specific for each cluster. IFCA [25] classifies clients into
K clusters and assigns K global models by applying an iterative federated clustering to the last layer of all clusters.
HypCluster [60] uses hypothesis-based clustering, clustering clients with the lowest loss and FedGroup [20] uses
the K-means++ algorithm to group multiple clients into multiple clusters. More recently, FeSem [57] proposes a
multi-center aggregation approach by designing multi-center federated loss for client clustering and k-FED [19]
tries to find the best-effort number of device clusters based on the Lloyd’s method used in k-means clustering.

In contrast, model cluster-based personalized federated learning allows each client to possess a personalized
model in terms of model structure, parameters, and loss functions. This approach reduces the computation
and communication overhead caused from the use and distribution of multiple global models. FedMask [45]
(detailed in Table 1) is a framework that achieves personalized federated learning by sharing only bit masks of
local models, and for the same purpose, FedDL [76] applies a model layer-wise sharing approach. FedProto [74]
adopts prototypes representing the concept of classes instead of gradients and achieves a privacy-aware and
efficient exchange of model parameters. pFedHN [71] delivers a representation of a local client to a global
hypernetwork to output personalized heterogeneous models and FedMeta [14] achieves personalization using
meta-learning based on FedAvg. DistFL [52] exploits statistical information encoded in batch normalization layers
using an input sample to achieve model cluster-based personalized federated learning. Ditto [47] introduces
a penalty term-based bi-level optimization framework to learn local models that are encouraged to be close
together by global regularization. As a study extending Ditto in the mobile computing domain, FLAME [17]

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 116. Publication date: September 2023.



AttFL: A Personalized Federated Learning Framework for Time-series Mobile and Embedded Sensor Data Processing + 116:5

proposes a user-centered federated framework that enables multiple mobile devices to participate in local model
training based on a device selection algorithm using energy-efficient consideration. However, these methods using
prototypes, hypernetworks, and meta-learning require a significant amount of additional memory usage together
with additional data or training, making them less-suitable for mobile and embedded computing scenarios. Ditto-
based works specifically lose the capability to capture complex relations among tasks related to classification or
regression by exploiting simple personalization terms [61]. The federated learning framework we propose in this
work can be classified to a model clustering approach. Specifically, we put extra emphasis on its practical usability
in mobile and embedded computing environments by minimizing the memory and computational requirements.
¢ Distributed Learning. In the context of distributed learning, various techniques have been explored to minimize
communication and computational costs in maintaining distributed deep learning operations. The two primary
directions of research pursued in distributed learning are quantization and model sparsification. First, quantization
involves minimizing the number of bits transmitted for each element, thereby reducing communication costs.
Quantized SGD (QSGD) [4] introduces compression schemes that compress gradient updates at each client by
leveraging three quantization levels: 0, 1, and -1. SignSGD [10] addresses the bottleneck problem of training large
neural networks-based distributed learning by transmitting only the signs of each minibatch stochastic gradient.
These approaches reduce the amount of traffic needed to exchange model parameters, but induce high variance
in the resulting sparse gradients leading to slow model convergence. For this reason, GSpar [81] proposes rand-k
sparsification, whereby k gradients are retained at random, biased by their absolute value, and the remaining
gradients are zeroed. The remaining gradients are then rescaled to ensure the gradient is unbiased. Samuel et
al. [34] introduce the natural compression technique that compresses updated vectors based on randomized
rounding. Secondly, apart from quantization, sparsification focuses on exchanging a subset of the data elements
rather than the full set. Alham and Kenneth [3] proposed a faster distributed stochastic gradient method by
sparsifying the gradient via dropping a certain portion of elements with small gradient values. SKETCHED-
SGD [38] effectively reduces communication cost without degrading model performance by transmitting sketches
of the gradients rather than transmitting the entire set. As representative studies that combine both quantization
and sparsification, 3LC [51] and Qsparse-local-SGD [9] improved the data compression ratio and speed while
preserving the accuracy by combining quantization and sparsification methods.

Comprehensively, we acknowledge the efforts from these previous works in designing an efficient federated
learning framework. However, most of these works consider a computation-rich environment compared to what
embedded and mobile devices face in reality. Nevertheless, observations and research directions that these works
introduce have provided essential guidelines for mobile/embedded-specific federated learning frameworks.

2.2 Federated Learning for Mobile and Embedded Sensing Applications

Mobile and embedded sensing applications are typically designed around low-power and resource-limited
platforms. Often, these systems face the dilemma of having to delegate data analysis operations to an external
server (due to limited local computing power) while sacrificing the communication and energy overhead of
transmitting raw data [17, 30]. An alternative design is to perform local data analytics using device-embedded
data processing algorithms. With improvements in low-power processor technology, we are seeing more of such
designs in recently proposed systems where deep learning models are integrated into the sensing platforms
themselves [22, 28, 53, 55, 65, 84]. Still, these systems are mostly limited to simply “utilizing” the model for
inference operations. Nevertheless, since data captured from sensing platforms holds unique spatio-temporal
characteristics specific to the target environment, some level of “model personalization” can improve the data
analysis performance. One way to do so is to perform additional local training using data collected from each
device. While this suppresses local data from leaving the device, the statistical diversity can be limited [62]. Another
option is to have many devices share their local data with a server for model re-training, but this compromises
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data privacy and induces communication overhead. Applying federated learning for such embedded/mobile
sensing applications can alleviate these issues by offering an environment where (i) local data is not shared with
any other entity and (ii) knowledge captured from other devices with similar target classes is shared to improve
local model performance.

A handful of previous works have proposed federated learning frameworks that address the resource limitations
of mobile and embedded sensing systems. Among many, FedMask [45] and FedDL [76] are notable works that
show good performance and have been extensively validated. FedMask leverages pruning and masking as a way
to reduce computation and communication costs. While FedMask shows good performance over various tasks, it
can only be applied to neural network models that can be sparsified and its optimization requires modifications
to the baseline deep learning model. FedDL exploits dynamic layer sharing in an iterative layer-wise manner. To
recognize and group shared layers between local devices, FedDL measures affinity scores between different local
models based on the Kullback-Leibler divergence. Unfortunately, this process increases computation overhead
when a baseline model with a deep architecture (i.e., many layers) is used. Moreover, while these two approaches
well-consider mobile/embedded sensing system characteristics such as data heterogeneity, communication
efficiency, and computation efficiency, they were not validated, nor did they target, models with complex model
architectures. Additionally, while analyzing data for typical sensing applications involve the understanding of
complex time-series data, these frameworks have mostly been validated on convolutional neural network (CNN)
architectures (with the exception of FedMask being tested for a simple two-layer LSTM), whereas recurrent
neural network (RNN) architectures are known to be more suitable for effective time-series data analysis.

3  MOTIVATIONAL STUDY AND DESIGN CONSIDERATIONS

Recent advancements in low-power MEMS technology have offered embedded and mobile application designers
with a rich set of sensors to integrate in their systems. Ranging from physiological/physical signals from humans
to audio sensing data, over the recent decade we have seen an influx of human- and environment-centered
applications implemented using various low-power sensing components [2, 65, 66]. In the earlier stages of sensing
application research, the focus was mostly put on efficient data collection [12, 41]. In these systems, a large
number of sensing devices were deployed to different users or environment locations to capture various features
associated with the subjects or surroundings, typically over long periods. As a result, large time-series datasets
are generated, and a server or a powerful edge device takes the role of analyzing the data [49, 64].

More recent systems eliminate the need for a separate server and operate deep learning models on the sensing
devices themselves to minimize communication overhead and contain the data (which can potentially be privacy-
sensitive) on-device [35, 36, 65]. Yet, models used in these systems are mostly generic and are trained on an
external server with data from a generalized dataset. A next step towards improving the data processing abilities
is to locally train these DNNs so that they better-suit the data characteristics specific to each sensing device.

Federated learning addresses such limitations by personalizing deep learning models with respect to locally
captured data via local training. In addition to solely exploiting local data, by collaboratively gathering model
information at the server from many participating devices, federated learning improves individual models using
knowledge extracted from distant (yet logically similar) devices. However, as aforementioned, existing federated
learning frameworks have mostly focused on CNN-type DNNs with (relatively) small number of layers (e.g.,
shallow networks). This constraint was, in some sense, inevitable given the resource limitations of mobile and
embedded computing capabilities as they could not operate complex models or endure high computational
costs. However, improvements in low-power processors and recently proposed low-memory DNN training
frameworks [26] now makes local use of more complex models possible.

Furthermore, since many mobile/embedded sensing applications generate time-series data streams, systems can
benefit from the use of more complex network architectures that expand beyond simple CNNs. In fact, architectures
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Fig. 1. Inference accuracy, communication cost (i.e., amount data exchanged between a local device and server), and
computation time at the local device and server for FedAvg, pFedMe, PerFed, FedMask, and FedDL with increasing Bi-LSTM’s
hidden units using the MIT-BIH dataset. These results present the performance impact of wider baseline models on different
federated learning models.

such as stacked bi-directional LSTMs (Bi-LSTMs) are commonly used in time-series data analysis [66] and their
hidden unit counts and layer depth show increasing trends as researchers thrive to achieve higher accuracy?.

Thus, to validate the suitability of applying existing federated learning frameworks for time-series data analysis,
we take a physiological signal dataset and perform a motivational study to examine the performance of five
federated learning frameworks (FedAvg, pFedMe, PerFed, FedMask, and FedDL) using a Bi-LSTM baseline DNN.
Specifically, we use the MIT-BIH electrocardiogram (ECG) dataset and perform the cardio-signal classification
task [63], which is a common mobile/remote healthcare application addressed in many previous work [11, 15, 27].
In this study, we vary the number of hidden units and the depth of the Bi-LSTM to examine how each approach
scales to increasing model complexity. For model training, we apply a batch size of 64, use the Adam optimizer
or stochastic gradient descent (with respect to the original work’s specification), and select a learning rate of
le-4. For federated learning parameters, we randomly select five participating local devices from a total of 47
and apply 5-epoch local training per federated learning round and test for 50 rounds. To assure non-IID for
locally trained models, we randomly assign two classes of data for each local device and present results for a
five-fold cross-validation. For FedDL, we use the first three layers for layer-wise sharing as in the original work
and assign a separate CPU core to emulate each local device operation (2.2 GHz). While this environment can be
seem powerful, most previous works were evaluated in similar settings and recent embedded platforms (e.g.,
high-end Raspberry Pis and NVIDIA Jetson GPUs) possess comparable processor specifications.

In Figure 1, we plot the inference accuracy, network communication cost (i.e., amount of data transmitted
between the local devices and server), normalized local device-side computation time per-epoch (FedAvg as
baseline), and server-side computation time for five different federated learning frameworks with increasing
number of Bi-LSTM hidden units (single Bi-LSTM layer). As plots show, we see an increasing trend in classification
accuracy with more hidden units. This is reasonable given the inherent complexity of ECG signals. However,

2Newer architectures such as Transformers have proven to show even higher accuracy compared to RNNs (e.g., LSTMs), but, despite
improvements in embedded computing capabilities, they are still heavy to locally operate in real-time [16].
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Fig. 2. Inference accuracy, communication cost (i.e., amount of data exchanged between a local device and server), and
computation time at the local device and server for FedAvg, pFedMe, PerFed, FedMask, and FedDL with increasing Bi-LSTM
layers using the MIT-BIH dataset. By varying the number of layers, these results present the performance impact of deeper
baseline models on different federated learning models.

this performance is achieved by sacrificing the overhead at different layers of the system. Notice that recently
proposed schemes such as FedMask and FedDL, successfully suppress local computation despite increasing hidden
units. However, the communication cost and server-side computation time show a steep increase as more hidden
units are used, suggesting that these approaches are not scalable with model complexity. In Figure 2, where we
present plots for increasing number of LSTM layers (128 hidden units), we can notice that the overhead, in terms
of communication/computation costs, shows similar trends. It is interesting to note that the increased number
of Bi-LSTM layers (more than 2) on the baseline DNN model negatively impacts the accuracy of the federated
learning frameworks. This shows that exploiting existing frameworks could require careful engineering and the
selection of baseline DNN models can be limited to only shallow networks.

From our motivational study, we can identify a number of challenges to be addressed when designing a
federated learning framework specific for sensor data processing applications. First, given continuous sensing
scenarios (with baseline DNNs that specialize in this domain), a federated learning framework should be capable
of supporting models that analyze complex time-series data streams. Second, since mobile/embedded sensing
platforms induce computational and energy constraints, it is important that the data exchange between the
server and local devices is kept minimal while suppressing the local computational load. Third, the server’s
computational load is also an important aspect to optimize. Since sensing applications typically involve data
collected from many devices, federated learning frameworks should also minimize server-side computational
overhead to support scalable services. We now present details on our proposed federated learning framework to
address these challenges in the sections that follow.

4 ATTFL

We carefully consider the challenges discussed in Section 3 as we design A#tFL, a novel federated learning
framework for mobile/embedded sensing applications. Specifically, A#tFL makes no explicit changes to the
original baseline DNN architecture, rather it appends a set of attention modules to obtain detailed local and
global knowledge of the input data and the baseline model structure. By appending attention modules to the
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Fig. 3. Overall architecture and step-by-step flow of AttFL.

baseline DNN, we argue that the original model parameters can benefit from the additional knowledge related to
the short term and long term characteristics of the input data, making our approach powerful (and desirable) for
time-series data-based applications. More importantly, given that attention module computations are affected by
interconnected baseline DNN parameters and the fact that attention outputs are re-connected to the baseline
DNN as input for subsequent DNN layers, the attention modules can act as effective abstractions of the baseline
model parameters and configuration. As a result, instead of directly exchanging large-sized baseline DNN model
weights with the server as part of the federated learning process, as we detail later in this section, local devices in
AttFL exchange two pieces of information from its attention modules: (i) the attention feature maps and the (ii)
convolution layer weights used to interconnect the attention modules with the baseline DNN. The server, upon
receiving this information from local devices, identifies devices with similar attention feature maps (i.e., dealing
with similar local data classes) and aggregates their convolution layer weights for re-distribution. This allows
local models to obtain knowledge learnt from distant devices that share similar data characteristics, offering an
efficient way of improving local model performance despite the limited data it can self-acquire.

More specifically, as the green highlight box in Figure 3 illustrates, AttFL appends three attention modules to
the baseline DNN to extract local and global features from the input data. Since attention modules learn spatio-
temporal input features, they can easily integrate with (and be beneficial for) various DNNs for understanding time-
series data features in-depth [58]. Similar to Transformer designs [77], attention modules in A#tFL dynamically
adjust the focus of underlying DNN towards the timestep of neural network channels via dynamically estimated
corresponding weights [77]; thus, generating an adequate representation of the local input data and how they
are dealt with within the model. We note that the use of local and global features is not new and has been
employed in some previous work to well-analyze time-series data. As examples, DeepSense [85] exploits local and
global concepts to extract features over multiple time-series modalities and works such as SADeepSense [86] and
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GlobalFusion [54] also adopt similar concepts. Compared to AttFL, which targets to analyze the input data and
the underlying model on a local and global scale, these previous work focus only on the input data themselves as
they are not designed for federated learning applications. Nevertheless, as we later show, the use of local and
global features are effective and schemes such as DeepSense can serve as baseline DNN models for A#tFL.

As we illustrate in Figure 3, a federated learning system starts with the server initially training a target DNN
(Step (D) and distributing the model to all participating local devices (Step (2)). In operation, once models are
trained locally using self-gathered data (Step (3)), local devices share attention module parameters (Step (@),
which include their attention feature maps (c.f, illustrated in Fig. 5) along with the convolution layer weights for
computing the attention output (c.f., green 1x1 convolution layers in Fig. 5) and the weights for the convolution
layer that connects the attention output back to the baseline DNN (c.f., purple 1x1 convolution layer in Fig. 5). With
this information, since attention feature maps summarize information on the data classes that each local device
experiences under non-I1ID environments, the server can compute a cosine similarity of the attention feature maps
gathered from devices participating in the federated learning round to identify device groups sharing similar local
data characteristics (c.f., Step (5)-a in Fig. 3). Devices in the same “device group” are identified as nodes that can
benefit from sharing aggregated weights (Step (5)-b), and AttFL’s server re-distributes the aggregated information
after averaging within the groups (c.f., Step (6) in Fig. 3). Finally, local models are updated with the new weights
until the next federated learning round takes place. The remainder of this section presents the rationale behind
using attention modules for effective federated learning support and details on the aforementioned respective
operations for the local devices and server.

4.1 Impact of Appending Attention Modules to Baseline DNNs

We start detailing A#FL by discussing the design principle behind appending attention modules as a light-weight
representation of the underlying DNN parameters/operations and the local data experienced at each device.

The attention mechanism is a technique widely used in deep learning models to weigh the importance of
different “parts” of an input sequence. It allows the model to focus on the most relevant portions of the input
and exploit more targeted information in its inference operations [13, 40, 77]. In other words, the attention
mechanism identifies the correlation between an input and output to understand which information needs more
attention to effectively process the data. Given that AttFL tries to support federated learning for time-series data
inputs, exploiting the attention mechanism can be an effective way of capturing the input data characteristics.
By appending attention modules to a baseline RNN architecture (given that RNNs are known to better analyze
time-series data), attention modules can capture baseline model-processed features, extract additional features
that well-represent the input data characteristics, and re-inject this information back to the RNN so that the
baseline model parameters can adjust itself to focus on the more essential parts of the data. Specifically, in
addition to this potential model performance improvement, in AttFL, we exploit the attention module to act as
an efficient abstraction of the underlying RNN model and its operations. More technically, given that input data
representations are more “raw” or local at the earlier parts of the RNN and become more “generalized” or global as
the data progresses through RNN blocks, as Figure 4 illustrates, the attention module takes both (relatively) local
and (relatively) global data representations (i.e., features) and extracts how the underlying RNN block operates
to extract the (relatively) global features from the (relatively) local ones. Naturally, through this process, the
attention module (and its parameters) will gain knowledge on the input data characteristics as well as the baseline
RNN’s operations/configurations; thus, becoming an effective abstraction of the input data features and baseline
model’s operational parameters. This means that when the server gathers attention module information from
multiple federated learning participating devices, it can identify devices dealing with similar data characteristics,
allowing it to suggest an improved model configuration for a targeted group of devices.
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Fig. 4. Example of the common way of applying attention to a module.

Note in Figure 4 that the outputs from the attention module are fed back to the baseline model. As briefly
mentioned, this is to re-affect the baseline model so that the attention information captured can gradually modify
and improve the underlying model weights. Thus, changes to the attention module parameters will penetrate into
the baseline model so that subsequent layers adjust their parameters. On a federated learning standpoint, this
means that if the server were to send back updated attention module configurations (as a result of the federated
learning aggregation process), simply updating the attention modules will effectively impact the underlying model
to adjust to the new (improved) model configurations. Given that this requires less data exchange compared
to directly exchanging model weights, our approach provides a cost-effective way of updating local model
configurations in the federated learning process.

Based on these observations that appended attention modules can effectively extract and abstract underlying
model characteristics and invoke improved operational modifications, we exploit and integrate the attention
mechanism when designing AttFL as we detail in the following sections.

4.2 Local Device Operations: Attention-based DNN Feature Extraction

In a deep learning model, the lower layers (i.e., positioned earlier in the model pipeline) typically focus on features
specific to the input sequence itself, while features from higher layers (i.e., layers positioned later in the model
architecture) are more sensitive to the wider target class characteristics. Therefore, to fully understand the input
data characteristics, it is important that both local and global features are well-extracted from the deep learning
model. Note that as we observed in Section 4.1, attention modules hold the capability to well-capture time-series
input characteristics [43, 68] and improve the feature extraction performance at different layers of the baseline
model and assure a light-weight representation of the underlying model parameters. Given these benefits, AttFL
appends attention modules at three different parts of the baseline DNN.

As the green box in Figure 3 shows (detailed illustration for Step (9)), AttFL maintains the original structure of
the baseline DNN (without modifications) while appending three attention modules: one for understanding the
local features from the model (at the lower layers - blue), second for sub-global features (at the higher layers -
green), and the third for global features (covering the full model - red). Based on empirical experiences, AttFL
splits the target neural network at (approximately) the 50% point of the full network architecture and uses
the ‘input-to-50%’ range as the local feature extracting attention module, and the remainder of the model for
sub-global features. The attention module for global feature extraction covers the entire model pipeline from
input to output. These attention modules intercept parameters from the underlying DNN to compute its outputs,
which are then used as (partial) inputs to the subsequent layers of the baseline DNN. As a result of this connection,
attention feature maps and its outputs are affected by both the underlying DNN parameters and the input data,
which, since later re-connected with the baseline DNN, offers the baseline with an improved understanding of the
input feature information with considerations for per-local device personalization by assuring that data classes
(e.g., distinct data characteristics) that the device is experiencing are well represented.
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Fig. 5. Attention module architecture in AttFL.

Figure 5 presents details on the attention architecture used in AttFL. Specifically, AttFL’s attention mechanism
adopts the multiplicative attention mechanism design, which leverages the dot-product between a query and key
to estimate the attention weight corresponding to a specific axis of the local input. Here, we borrow concepts
from the self-attention mechanism [77] and detail the module as the following.

Say that the input and output of the RNN module that the attention is connected to are X € RB¥Tx>*Hx and
Y € RBxTyxHy respectively, where B is the batch size, Tx is the number of input timesteps, and Ty is the number
of output timesteps, Hx is the number of input hidden units, and Hy is the number of output hidden units. We
first pass the input and output through a dimensional transformation using 1 X 1 convolution to unify the
dimensions. Via this dimensional transformation using input X (a relatively local feature captured earlier in the
pipeline) and Y (a relatively global representation), we transform (potentially) different latent spaces of X and Y
into a common latent space for computational efficiency. We then exploit an attention function Attention(X,Y)
that takes the transformed X and Y as input to compute the attention weight of each input source so that the
attention weight corresponding to a specific axis of the latent space can be identified.

Attention(X,Y) — attention weights € RC1x1 conoXCixt cono
X — RBXTXXHX Y - RBXTyXHy (1)

Based on this, local and global features, now inputs of the same dimension, can be expressed as a key K(X)
and a query Q(Y), and the attention weights can be expressed via softmax as follows:

Attention(X,Y) = softmax(%‘m(*(w),
#(X) — RBXTXXHIXICOHU’ #(Y) — RBXTy xHix1 cono (2)
*:RI = R/, 1x 1 Convolution where i, j — hidden unit size
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Here, we prevent the vanishing gradients effect [77] by dividing with the root of the scale factor h, and use
softmax to emphasize informative features and normalize the attention weights. Note that h is configured as the
dimension of a specific latent space in Equation 2. Next, we multiply the attention weights Attention(X,Y) with
value V(X) (c.f, Fig. 5) to obtain an attention local feature map by propagating the scalar attention weight to
V(X). By adding the query Q(Y), we compute the attention output as below:

Attention feature map = Attention(X, Y)V (x(X)), 3)
Attention output = Attention feature map + Q(*(Y))

Finally, we concatenate the obtained attention output with the existing input of the next layer (of the baseline
DNN) by resizing it via a 1x1 convolution to match the layer’s input size. As per our formulations, A#tFL’s
local devices share (with the server) the local, sub-global, and global attention module parameters. Since the
attention module itself does not possess specific weights and biases of the baseline model (and rather a component
abstracting the baseline DNN parameters and input features), AttFL exchanges the convolution layer weights for
Q(Y), K(X) and V(X) (dimensions of K(X) and V(X) are identical) used to compute each of the three attention
modules (green blocks in Fig. 5), which embed the relationships between the baseline DNN and the attention
parameters. In addition, local devices also share the attention feature maps and convolution layer weights that
connects the attention output with the baseline DNN (purple block in Fig. 5). By exchanging only this information,
AttFL effectively abstracts the information needed for understanding the baseline DNN parameters and input
data characteristics that the device is experiencing. Quantitatively, when applying A#FL to a Bi-LSTM baseline,
a local device shares only ~1.37 MB of data for all three attention modules per-learning round, indicating that
AttFL is cost-effective in terms of communication overhead. While extremely small in size, we later show that this
sub-model abstraction is sufficient enough to capture the similarity among different local devices and provide
effective updated model weights for improved personalization.

4.3 Server Operations: Device Feature Similarity Detection and Weight Aggregation

The AttFL server performs two major operations. First, given local device model features, it computes device
groups that share similar local model characteristics. By doing so, the server gains knowledge on which devices
target detect/classify of similar events/classes. Second, the server aggregates matrix weights collected from
devices of the same group and re-distributes updated weights so that local models can exploit knowledge from
relevant devices in the network.

For device grouping, A#tFL exploits attention feature maps for local, sub-global, and global attention modules
collected from respective participating local devices within a federated learning round. We do so as the feature
map data captured from individual devices embed information on their input data distribution and characteristics,
and if the feature map data are similar enough, we can roughly conclude that two (or more) devices share similar
input characteristics. This also means that such devices operating with similar input data can benefit each other
(in terms of model personalization) by sharing their model parameters.

To identify similarity groups using the attention feature maps captured from participating devices, the server
computes the cosine similarity of the attention feature maps for all pairs of devices. Note that the following
operations take place for all three attention feature maps (e.g., local, sub-global, and global) separately.

<uv> Dy WiV
Tl = V3 P yor, v ()
Here, u and v are the 1-D representation of attention feature maps gathered from two different local devices, and
n denotes the number of elements in each feature map’s 1-D representation. As also noted in many previous works,
amajor benefit of exploiting cosine similarity is its low computation cost and possibility for potential performance
optimization [7, 59, 70]. While aggregation operations take place on the server, given the size of feature maps for

Cosine Similarity(u,v) =
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local, sub-global, and global attention modules individually, computing a greedy combination among many local
devices can result in a significant amount of computational overhead. To make this process even more efficient,
we further optimize the cosine similarity computation by exploiting the fact that the squared Euclidean distance
offers proportional results at much less complexity [42]. Therefore, AttFL computes the Euclidean distance of
features as an approximate representation for determining inter-local device cosine similarity. Specifically, AttFL
computes the [2 norm for input feature map vectors and optimizes the similarity evaluation as the following.

- u ~ A
leta , V=
llull, [Ivll,
then, 67 =¥"¥ =1 (- [ill, = ¥ll, = 1)

~ ~112 ~ ~ ~ ~
lo-¥]3=@-¥)T(@-7) (5)
=a'a-20"v+v'v
=2-2a'v

=2-2cos(@,V)

where, ||ul|, and ||v||, are the 2 norm for u and v respectively. Note that A#tFL computes the pairwise similarity
for all possible feature map combinations of local devices that participate in the federated learning round. Thus,
resulting in a k X k matrix of similarity measures, with k participating devices. Our goal is to identify groups of
devices that target similar class detection to improve the detection performance at respective local devices; thus,
improve per-device personalization. Once the similarity scores for all three attention feature maps are computed
(e.g., local, sub-global, and global), we take the mean of the three as the final similarity score for a specific device
pair. In this work, we heuristically configure the similarity threshold to 0.5 based on empirical validations.

With similar local devices identified, At#tFL aggregates the convolution layer weights (for Q(Y), K(X), and
V(X)) from the local, sub-global, and global attention modules by taking the average values within each group.
Taking the average of model parameters collected from different devices is a widely used approach and has been
shown to be an effective way of optimizing the objective function [80, 82].

As a result, AttFL merges a DNN’s spatio-temporal information captured from individual devices so that they
enhance the inference performance of devices within the same similarity group. Putting this into a sensing
application perspective, given a model deployed at local devices to detect the presence of a pre-defined event,
using AttFL, the model is continuously updated via training results obtained from other devices that target the
same (or similar enough) event types. Since a single target event can show various patterns, exploiting this
collaborative knowledge can allow the model to prepare itself towards a wider distribution of event patterns.

We note that by using three attention modules that cover different portions of the baseline model at the
local devices, AttFL targets to extract and abstract model and input data characteristics at different dimensions.
Which allows the server to make accurate device grouping decisions. At the same time, this also allows for a
more effective baseline model update to take place (at different locations within the model) when improved
configurations are sent from the server to the local devices. Thus, AttFL achieves personalization by grouping
local devices’ models based on their cosine similarity score on a per- training round basis, rather than maintaining
separate device-level clusters on the server.

From a security perspective, the sharing of attention feature maps, which are derived from input data, may
raise concerns on violating privacy assurance, which is an important benefit of implementing federated learning.
However, AttFL differs from previous works in the fact that it does not share the model weight directly and
rather only a small portion of information at the attention modules is shared. Practically speaking, this makes
it challenging for malicious attackers to reveal the original input data from the attention feature maps [24].

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 116. Publication date: September 2023.



AttFL: A Personalized Federated Learning Framework for Time-series Mobile and Embedded Sensor Data Processing « 116:15

Algorithm 1: AttFL’s server and client operations

1 Data: (D4, D, ..., Dy) where Dy is the k-th local data.
2 initialize the global model W

3 Server executes:

4 for eachroundr =1,2,..,R do

5 n<—max(F*N,1) // F; the fraction rate, N; the total number of local clients, n; the number of
selected local clients.
6 S, < Random set of n local clients
7 for each client k € S, in parallel do
8 L o?,, FM]', | < ClientUpdate(k, w,)
/* Scores on local, sub-global, and global attention feature maps */
9 Cosine similarity scores(Scores) «— Cosine similarity calculation(FM},,)
/* Averaging weights among grouped users. */
10 Gp < Scores-based aggregation(wy, )
11 for each group g € G, do
12 L w41 — XI5 gina)fﬂ, client k € group ¢
13 return wz4q // Transmit the updated weights of local users participating in the round r.

14 ClientUpdate (k, v):
15 B « (split Dy into batch size B)

/* E; the total number of epochs, FM: an attention feature map. */
16 for each local epoch i from 1 to E do

17 for batch b € Bdo

18 a)<—w—ryvt’(a);b)

19 FMlocal — FMlocal + FM[bocal

20 FMup-giobal < FMsub—global + FMfub_globaz
21 FMgiopal < FMgiopal + FMgblobal

1 1 1
22 return [wlacal» Wsub-global s wglobal]’ [WFMlocal’ WFMsub—globals WFMglobal]
/* Transmit (a) convolution layer weights (w) and (b) attention feature maps (FM) corresponding to local,
sub-global, and global attention modules. */

Furthermore, while out of the scope of this work, integration with existing privacy-preserving techniques such
as noise injection, information compression, or sparsification can further alleviate privacy-related concerns [90].

4.4  AttFL as an Algorithm

We now present the core operations of AttFL discussed above in algorithm form using Algorithm 1. Note that the
operations presented in the algorithm are executed at each round. As the algorithm shows, the server starts by
selecting a fraction of devices connected to the network as participating devices at each round. Next, the selected
devices are notified, and each device executes the ClientUpdate() operation, performs local model training for
n epochs, and sends to the server (a) attention feature maps and (b) convolution layer weights for Q(Y), K(X),
and V(X) (i.e., (a) and (b) in the local, sub-global, and global attention modules).
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Once the information is received at the server, cosine similarity is used to identify similarity-groups for
server to separate local devices with similar model characteristics. Finally, the reported features within each
similarity group are averaged as an aggregated weight and re-distributed for local model updates. Our open-source
implementation of AttFL is available at: https://github.com/eis-lab/attfl.

5 EVALUATION

We evaluate the performance of A#FL using four metrics: i) average local classification performance (i.e., accuracy),
ii) communication cost (amount of data exchanged between local device and server), iii) per-epoch local device
computational latency and iv) server-side computation latency. We compare the performance of AttFL with the
five frameworks used in our motivational studies: FedAvg, pFedMe, PerFed, FedMask, and FedDL.

5.1 Experimental Setup

All DNN models used in this study are initially trained with Pytorch on a server with Intel i9-9900K@ 3.6GHz
CPU, 64G RAM, and two NVIDIA RTX 3090 GPUs. For training, we adopt a negative log-likelihood with softmax
at the end of the connected layer as our loss function, and use either Adam or SGD algorithm-based optimization
with a learning rate of 1le-3 to le-4 and a batch size of 32 to 64. We take parameters directly from respective
original work where possible. For FedDL, we use an interval of 6 between grouping rounds, an interval decay rate
of 0.5, and the number of merging layers as 3. For FedMask, we set the pruning rate to 0.2 and threshold of 0.5 for
binary mask optimization. A and p were set to 1le-1 and 1e-3, respectively, for pFedMe and learning rate-related
parameters a and f in PerFed were set to le-2 and 1e-3, respectively, with 6 used for the Hessian matrix as le-3.

We note that there were a number of parameters not specified in the original work that required self-
optimization. For example, we operate FedMask on 50% of the CNN layers and select the last two RNN layers
(similar numbers were used in the original work, but not specified). Additionally, the learning rate is set from
le-3 to le-4 with respect to the dataset. For models that do not specify an optimizer, we apply the Adam or SGD
optimizer based on empirical validations (whichever performs better for the target model/dataset combination).

In our evaluations, except for Section 5.7, where we test with real embedded GPU platforms, our evaluations
exploit CPU cores as individual local devices. We understand that this configuration is not ideal, but has been
used to validate many federated learning works as an “emulation” configuration given that scaling towards many
real embedded local devices can be challenging. Nevertheless, we would like to point out two things regarding
this evaluation setting. First, we use an environment where each core operates at 2.2 GHz. While not identical,
the processing speeds of embedded platforms, combined with embedded GPUs are fastly catching up; thus, our
evaluations can still show meaningful trends in computational latency. Second, while the local computational
latency can be affected from the use of different processing components, performance metrics such as server-
side latency and device communication cost (transmission data size) are independent of the local processor
configuration used for evaluations. Nevertheless, in Section 5.7 we present a real-device implementation-based
evaluation using Raspberry Pi, Jetson Nano, and TX2 platforms, to show that A#FL can effectively work as a
federated learning framework for embedded sensing environments.

5.2 Target Applications and Datasets
We evaluate AttFL using three popular mobile/embedded sensing applications and datasets as we detail below.

e Physiological Data (ECG Signal) Analysis: As a representative healthcare application, analyzing ECG
signals is crucial in understanding chronic cardiac disorders. Various mobile/embedded sensors exist to
capture ECG, and their local processing is extremely important as transmitting raw ECG can lead to
significant communication overhead and privacy threats [6, 29]. We exploit the MIT-BIH dataset [63],
which is a representative ECG dataset containing 48 half-hour 360 Hz ECG records collected from 47
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Table 2. Details on the three datasets used in our evaluations.

Number of classes | Total number of | Number of | Average samples
Dataset . . . . Non-IID?
in dataset samples device | local devices | per local device
MIT-BIH 7 98,676 47 2099.48 v
HAR-UCI 6 10,299 300 34.34 v
RAVDESS 8 7,356 240 30.65 v

subjects. The dataset includes seven cardiac activity types and is widely used. For this task, we apply a
Bi-LSTM and the DeepSense [85] network, a state-of-the-art CNN/RNN hybrid neural network designed
for time-series data analysis, as baseline models for federated learning,.

e Human Activity Recognition: For the human activity recognition application scenario, we use the
HAR-UCI dataset [5] containing IMU data collected from 30 users via a wrist-mounted smartphone. Here,
subjects performed six predefined tasks each representing different classes. The smartphone’s IMU data
was captured at 50 Hz to contain a total of 10,299 samples in the dataset. Similar to the ECG application,
we use a Bi-LSTM and the DeepSense network as baseline DNNSs.

e Audio Classification: With the ubiquitous deployment of smartphones, audio has become a represen-
tative sensing modality used in various applications from environmental analysis [67] and user emotion
classification [37] to COVID cough detection [18]. In this work, we use the RAVDESS dataset [56] for an
emotion classification task. The RAVDESS dataset contains 7,356 samples collected from 24 actors (12
female, 12 male) representing eight different emotions. As we later discuss, we use three LSTM variants
(LSTM, Bi-LSTM, and Seq-LSTM), the DeepSense network, and a ResNet-18 implementation of the task as
baseline DNNs to deeply examine the impact of AttFL on various neural network architectures.

For all evaluations, we use a five-fold cross-validation and split the data among different local devices to be
non-IID as specified in Table 2. We emphasize that our target tasks focus on capturing the intra-sample temporal
characteristics rather than inter-sample ordering. Thus, the five-fold cross-validation approach used in this
work will not show critical bias from the temporal dependency inherent for each data sample. Note that our
configuration ensures that redundant user samples are not used across folds comprising the training and testing
sets, similar to the leave-one-subject-out (LOSO) method. In other words, by containing each user’s data within a
single fold, the DNN does not learn from samples belonging to subjects included in the test or validation sets. This
frees our experiments from the common issues arising from cross-validation-based evaluations in time-series
data [8, 31]. We randomly feed 10 data shards for each subject’s data for the HAR-UCI and RAVDESS datasets.
Note that we do not apply sharding to the MIT-BIH dataset given that ECG data is specific to a user and separately
managing (or splitting) this information among more devices is contextually less meaningful. Finally, at each
federated learning round, a subset among all local devices is randomly selected to participate in each round. The
actual number of participating nodes in each round is defined in each subsection specific to the task.

5.3 Comparison Baselines
While we point the readers to the respective original work for details, below, we present an overview of each
comparison baseline we use to compare the performance of A#FL in this work.

e FedAvg [62] is a general federated learning framework that transmits all model parameters from a local device
to the server and re-distributes aggregated (averaged) global parameters to update local model weights.

e pFedMe [73] is a federated learning framework that exploits a server-side average aggregation strategy similar
to FedAvg with a regularization loss function based on local user-side Moreau envelopes.
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Fig. 6. [Application 1] Inference accuracy, communication cost (i.e., amount of data exchanged between a local device and
server), and computation time at the local device and server for FedAvg, pFedMe, PerFed, FedMask, FedDL, and AttFL with
increasing Bi-LSTM hidden units using the MIT-BIH dataset.

e PerFed [21] is an optimization scheme for federated learning using gradient and Hessian via a meta-learning
approach. It follows the same structure as FedAvg and allows for improved model personalization.

e FedMask [45] exploits one-shot pruning to learn a personalized and structured sparse local model. It maintains
efficiency by sharing and updating only the global mask information to and from the server. Mask information
required to maintain a locally personalized model are separately preserved apart from the global mask.

e FedDL [76] leverages a dynamic layer-sharing scheme that learns the similarity among local devices’ model
weights and aggregates weights at the server based on a model affinity-based user grouping approach.

5.4 Performance on Application 1: Physiological Data (ECG Signal) Analysis

We start our evaluations with the ECG signal analysis application using the MIT-BIH dataset. As the baseline
deep learning model for the MIT-BIH dataset, as done in our motivational studies, we use a Bi-LSTM with time
steps of 30, input size of 60, and varying number of hidden units. The same model and configuration are applied
to all federated learning frameworks, and for all cases, we perform 50 federated learning rounds with a network
of 47 local devices. At each round, we randomly select five of them to participate each with 5-epoch local training.

Figures 6 and 7 present the accuracy, communication cost (in data size transmitted from the local device)
and the normalized (FedAvg as the baseline) computation time at local devices (per-epoch) and server for AttFL
along with five existing federated learning frameworks. Similar to Section 3, in Figure 6 we vary the number of
Bi-LSTM hidden layers and Figure 7 plots results for varying number of Bi-LSTM layers. We focus on comparing
the performance of previously proposed schemes with AttFL given that most results were discussed in our
motivational studies. Notice that unlike others, AttFL shows good performance in all aspects regardless of
the model configuration (i.e., achieves high accuracy and low overhead). Especially in terms of server-side
computation time, the optimizations presented in Section 4.3 lead to extremely efficient performance, suggesting
that AttFL can scale to many local devices even with a single server. Through such results, we can notice that
AttFL shows a much lower server-side computation cost compared to FedDL’s O(NlogN) time complexity and
FedMask, which requires the collection of mask bit information of all layers in the local device to update the global
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Fig. 7. [Application 1] Inference accuracy, communication cost (i.e., amount of data exchanged between a local device and
server), and computation time at the local device and server for FedAvg, pFedMe, PerFed, FedMask, FedDL, and AttFL with
increasing Bi-LSTM’s layers using the MIT-BIH dataset.
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Fig. 8. [Application 1- DeepSense baseline] Inference accuracy, communication cost (i.e., amount of data exchanged between
a local device and server), and computation time at the local device and server for FedAvg, pFedMe, PerFed, FedMask, FedDL,
and AttFL with the DeepSense network as the baseline model using the MIT-BIH dataset.

mask bit. By observing Figure 8, where we plot the four performance metrics when using the DeepSense network
as the baseline model, we can also observe similar performance trends. Note that despite DeepSense using a
CNN for input processing, we configured the model to take time series inputs directly in its initial convolution
layer. Looking at the plots, we can observe that AttFL offers high classification accuracy at low computation and
communication overhead: confirming that AttFL can be applied to various baseline model architectures and show
improved performance over existing federated learning frameworks.

Next, we take a deeper look on the performance of AttFL and especially present details on the feature aggregation
performance at the server. As an example, we focus on the cosine similarity heatmap between local devices sharing
the attention feature map for three devices (#10, #43, and #47), and present their similarity scores computed
for five federated learning rounds (out of 50) where all three devices participated in. Figure 9(a) illustrates the
similarity at different rounds on device 43’s perspective. Note that all devices besides #10, #43, and #47 followed
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Fig. 9. [Application 1] Example of local device grouping process executed at the A#tFL server for MIT-BIH dataset.

the random participant selection mechanism; thus, not all nodes are trained together in the presented rounds. As
the figure shows, these three devices participated together in the 1st, 10th, 20th, 30th and 40th update rounds.
Here, we can notice that while the cosine similarity of devices 43 and 47 started low (i.e., 0.31), at round 40, the
similarity score reached 0.53. Similar phenomena can be observed for device 14 (0.24 in the first round to 0.54
at round 40). We point out that #14 was not one of the devices we fixed for the experiment, but appeared in
several training rounds (based on the random participant selection process); thus, At#tFL successfully captured its
similarity with device #43. This means that the server, when aggregating data, noticed that these devices were
dealing with similar data classes. Thus, sharing information between these devices could improve the respective
local model performance. Figure 9(b) confirms this observation in the label-space, where we plot the distribution
of cardio pattern classes (presented as seven different labels) observed for the local devices observed in Figure 9(a).
We can notice that devices 14, 43, and 47 all deal with normal heart beat cases (label ‘N’); confirming that A#tFL
successfully groups local devices dealing with common data classes.

On the other hand, when observing cosine similarity score changes for device 10, we can notice that the score
is constantly low (i.e., 0.20 in round 1 and 0.29 in round 40). This suggests that device 43 and device 10 do not
share statistically relevant information, and we confirm this using Figure 9(b) by noticing that all of the data that
device 10 deals with are left bundle branch block (LBBB) arrhythmia types, different from the data that device 43
is experiencing. Overall, these results together show that A#tFL successfully identifies devices with statistical
similarity and well-exploits such similarities to achieve high classification accuracy with low overhead.

5.5 Performance on Application 2: Human Activity Recognition

The second application we test for is a human activity recognition task, a common application used to identify
different daily activities as part of various chronic physical disorder monitoring protocols and also for continuous
health management. The HAR-UCI dataset that we use consists of time-series samples captured from the
smartphone IMU sensor, and we use a Bi-LSTM with a time step of 18 and input size of 64. A total of 300 local
devices take part in the network and we randomly select five devices to participate at each federated learning
round. All other experimental parameters are kept the same as our previous experiment. By nature, this human
activity recognition task is similar to the ECG analysis task given that it involves time-series data. However,
compared to ECG, IMU data includes time-synchronized data sequences captured from multiple channels, which
can complicate the aggregation and device similarity matching process.

As Figure 10 shows, AttFL achieves a high inference accuracy of 94.21%. Note that FedMask and FedDL were
validated for HAR datasets in their original work and showed high inference performance. However, CNN
architectures were used in the original work by representing snippets of time-series data as images. In this
experiment, we keep the original time-series as is and test with a model suitable for such data types, as not in all
cases can we have accurate image representations of time-series samples and the operations for transforming
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Fig. 10. [Application 2] Inference accuracy, communication cost (i.e., amount of data exchanged between a local device and
server), and computation time at the local device and server for FedAvg, pFedMe, PerFed, FedMask, FedDL, and AtFL with a

Bi-LSTM as the baseline model using the HAR-UCI dataset.
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Fig. 11. [Application 2] Inference accuracy trends with increasing rounds for varying local epochs and number of participants
for FedAvg, pFedMe, PerFed, FedMask, FedDL, and A#tFL using the HAR-UCI dataset.

time-series data to images can induce additional computational overhead. In any case, the performance of A#tFL
generally agrees with observations made for the ECG analysis task by exhibiting the highest accuracy and
lowest overhead. While A#tFL shows slightly higher local computation overhead compared to FedDL, this added
computation (mostly caused from attention feature map computing) results in a significantly high accuracy.

To examine the results in different dimensions, in Figures 11(a) and 11(b), we plot the overall accuracy observed
at each federated learning round for three epoch configurations (5 participants) and with varying number of
participants (5 epochs), respectively. Notice that with increasing local epochs (i.e., more local training), the
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Fig. 12. [Application 2 - DeepSense baseline] Inference accuracy, communication cost (i.e., amount of data exchanged between
a local device and server), and computation time at the local device and server for FedAvg, pFedMe, PerFed, FedMask, FedDL,
and AttFL with the DeepSense network as the baseline model using the HAR-UCI dataset.

accuracy converges more quickly to the maximum and with a slight increase in accuracy. Similar convergence
trends can also be seen with more participating devices since more knowledge can be aggregated per training
round. One interesting observation we make here is that since AttFL updates local models via attention module
convolution layer weight updates, the models themselves are updated “indirectly” and the changes need to
eventually propagate to the baseline DNN for it to generate more accurate/updated inference results. Our
evaluations on examining the performance for different training epochs show that even with a small number
of training operations, the baseline model parameters/weights are updated sufficiently to generate improved
inference results. Comparatively, for all cases, we see that AttFL shows quicker convergence compared to other
approaches, suggesting that, despite the data complexity, AttFL effectively identifies local device similarity and
shares meaningful model features for improved model accuracy.

To validate the effectiveness of AttFL across different baseline architectures, we switch the baseline model to
the DeepSense network in Figure 12 and observe the four performance metrics. As with what we observed for
the first application scenario, results here also agree with the trend observed with the Bi-LSTM baseline.

5.6 Performance on Application 3: Audio Data Analysis

As the final application, we select an audio data processing scenario. A number of IoT and mobile applications
exploit audio data processing to implicitly capture and understand user intentions (even emotions), or gather
environmental characteristics [44, 56, 72, 84]. In this work, we use the Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) dataset [56]. Consisting of 7,356 files (total size: 24.8 GB), the RAVDESS dataset
holds speech and song data of different emotions. We perform classification for the eight target emotions included
in the speech data (neutral, calm, happy, sad, angry, fearful, surprise, and disgust) of this dataset.

With this dataset, we examine the performance for three different baseline LSTM model variants: LSTM,
Bi-LSTM, and Seq-LSTM, and later present an additional experiment with a CNN baseline model. Note that the
Bi-LSTM is the same model used in our evaluations until now and the LSTM is a single direction version of the
Bi-LSTM. The Seq-LSTM employs four sequencer blocks consisting of Bi-LSTMs to achieve memory-efficient and
global mixing of spatial information using a multi-layer perception (MLP) for channel-mixing. This model enables
parallel processing at the top/bottom and left/right directions, which improves its accuracy and efficiency due to
its reduced sequence length and yields a spatially meaningful receptive field. We adopt the vanilla sequencer and
use a batch size of 16, embedding dimensions of 128, 192, 192, and 192, hidden units of 48, 96, 96, and 96 for each
sequencer block, respectively, and the SGD algorithm with a learning rate of 1e-2 to 1e-3. All other parameters are
kept identical to the original work [75]. For all cases, we perform federated learning for 50 rounds with 5-epoch
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Fig. 13. [Application 3] Inference accuracy, communication cost (i.e., amount of data exchanged between a local device and
server), and computation time at the local device and server for FedAvg, pFedMe, PerFed, FedMask, FedDL, and AftFL with
three different LSTM baseline models using the RAVDESS speech dataset.
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Fig. 14. [Application 3] Inference accuracy, communication cost (i.e., amount of data exchanged between a local device and
server), and computation time at the local device and server for FedAvg, pFedMe, PerFed, FedMask, FedDL, and AftFL with
ResNet 18 using the RAVDESS speech dataset.

local training. Among the 240 local devices (considering the 10-sharded components), five are selected randomly
to participate at each round. Note that the LSTM offers a light-weight, yet, effective architecture for time-series
data processing; thus, we examine the performance of At#tFL and different federated learning models with its
variants. As aforementioned, while heavier DNNs such as the Transformer can potentially show higher accuracy,
their computation complexity still limits their practical use in embedded applications.

Figure 13 plots the accuracy, communication overhead, and local device (normalized) / server-side computation
latency for the three LSTM-based baseline models and different federated learning schemes. As the plots show,
AttFL achieves high accuracy for all baseline DNNs with efficient communication and computational overhead. It
is interesting to see that despite Seq-LSTM’s complexity, with A#tFL, an extremely high accuracy (~90%) can be
achieved with little communication and server computational overhead. Nevertheless, due to the complexity of
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Fig. 15. [Application 3 - DeepSense baseline] Inference accuracy, communication cost (i.e., amount of data exchanged between
a local device and server), and computation time at the local device and server for FedAvg, pFedMe, PerFed, FedMask, FedDL,
and AttFL with the DeepSense network as the baseline model using the RAVDESS speech dataset.

the Seq-LSTM, the local processing overhead is relatively high compared to other baseline DNNs (still performs
the best compared to other federated learning frameworks).

As the next experiment configuration with the RAVDESS dataset, we examine the performance of AttFL with a
ResNet-18 baseline model targeting the same audio processing task. Note that such CNN-based models are often
used for time-series acoustic data analysis by converting audio clips to spectrogram form and considering them
as images (representing a target time frame). The ResNet-18 model we use for this experiment takes these images
as input and consists of five convolution blocks and five fully-connected layers. For effective evaluations, based
on the observations from respective original work, we applied FedMask to 50% of the layers, and FedDL exploits
to 75% of the model’s layers. Other experimental configurations are kept identical to our previous experiments.
Results presented in Figure 14 show that AttFL achieves a high inference accuracy of 96.19%, outperforming all
other alternative frameworks even with a completely different neural network architecture. Furthermore, as
Figure 15 confirms, where we apply the DeepSense network as the baseline model, A#FL is capable of extending
its capabilities towards CNN-based architectures. Note that while the DeepSense model was configured to directly
use time-series data input for the first two experiments with ECG and human activity recognition data, for
the RAVDESS dataset, the inputs were provided as spectrogram images, similar to the ResNet-18 model case.
Nevertheless, given that frameworks such as FedMask and FedDL were extensively tested with CNNs, they show
performance improvement over the LSTM-based cases. For the other three metrics we present, we can notice
that AttFL’s performance agrees with the observations drawn until now, generally showing the lowest overhead.

Overall, our results gathered from three different applications (and various configurations) show that A#FL is
capable of supporting efficient federated learning to support high application-level accuracy with minimal (or
manageable) overhead for diverse baseline DNN architectures.

5.7 Performance on Embedded Platform Testbed

Finally, we validate the performance of A#tFL on real platforms using a heterogeneous embedded computing
platform testbed consisting of three Raspberry Pi 4B devices, four NVIDIA Jetson Nanos (5W mode), and five
NVIDIA Jetson TX2 platforms connected via Wifi to a local server (c.f.,, Fig. 16(a)). This heterogeneous testbed
offers us a chance to observe the performance of embedded platforms of different computational capabilities:
from widely used resource-limited devices to high-end embedded GPU platforms.

We use the audio data processing application discussed in Section 5.6 for our testbed experiments. Specifically,
each device is pre-loaded with data from the RAVDESS dataset while separating the data with respect to different
subjects. Specifically, the data from 24 study participants are split into 12 pairs and each pair’s data is loaded to
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Fig. 16. Heterogeneous embedded platform testbed consisting of three Raspberry Pi 4Bs, four NVIDIA Jetson Nanos, and
five NVIDIA Jetson TX2s with testbed-based experimental results (classification accuracy over time and per-epoch training
time) for the RAVDESS speech dataset using the Bi-LSTM model.

one device hosting two (logical) local device instances (no sharding applied). For the 24 local device instances, we
perform 50 federated learning rounds and randomly select five local device instances to participate at each round
each with 5-epoch local training. We use the Bi-LSTM as the baseline model in this experiment.

Figure 16(b) plots the accuracy of each platform type over federated learning rounds. As the plots show, AttFL
enhances classification accuracy as more federated learning rounds are completed. Note that despite different
processing powers, since the model re-distribution operations complete after all devices participating in the
federated learning round complete their operations, model improvements are seen at similar times. This result
also validates that the accuracy results we observed in Section 5.6 hold on real embedded platforms.

In Figure 16(c) we present the per-epoch latency observed for each of the three testbed platforms. Note that
the local device latency results presented until now were normalized to FedAvg’s performance to assure that we
do not make absolute number-based claims when using the CPU core emulation environment. Rather, using this
result, we present readers with absolute latency measurements that can be used as reference. We can see that the
Raspberry Pi 4 takes ~690 seconds to train the Bi-LSTM model with AttFL for five training rounds (i.e., epoch).
Having more processing power and by exploiting its powerful on-board GPUs, the NVIDIA Jetson Nano and TX2
platforms show multiple orders of magnitude improvements in local computational latency, which suggests that
AttFL can be a cost-effective solution for supporting federated learning on real mobile/embedded platforms.
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6 DISCUSSION

We share a few interesting observations from our experiences in designing, implementing, and evaluating AttFL.

e Trading off accuracy with efficiency: An efficient federated learning framework should converge to a
model with high inference accuracy while minimizing the communication and computational overheads. Thus,
the goal of these frameworks is to identify essential portions of the model to share, while preserving these
two goals. In AttFL, local devices, upon completing local training, share three types of information with the
server: the attention feature map, convolution layer weights for Q, K, V, and attention output. One possible
optimization is in suppressing the transmission of convolution layer weights for the attention output (purple
block in Fig. 5). This component is relatively large in size as it re-connects the attention module to the baseline
DNN. A simple experiment with the Bi-LSTM and the MIT-BIH dataset suggests that this optimization reduces
the communication cost by nearly 5-fold (from 1.37 MB to 0.29 MB) with only 2% accuracy loss. While this
work focuses on a configuration for achieving high accuracy, for applications where small accuracy loss is
tolerable, such optimizations can be a reasonable option.

e On-device model training: A number of recent works have proposed schemes for efficient on-device model
training [26, 79]. These works target to alleviate the memory constraints, a critical limitation for large-sized
model training. Nevertheless, these mechanisms are still limited to a specific set of network architectures. For
example, the current implementations for both Sage [26] and Melon [79] are not yet optimized for the training
of RNN architectures. Resolving this and supporting diverse model training on mobile platforms remains an
on-going task, but given the needs in many applications, we see this as an issue that will soon be addressed.

e Energy usage on mobile and embedded platforms: Our work along with many other federated learning
frameworks acknowledge the fact that mobile and embedded platforms are resource limited, both in terms of
computational power and energy. Therefore, these frameworks target to minimize the communication cost and
also limit the local computational burden. One point to note is that diverse platforms show different energy
profiling results for the processing and networking components; thus, is challenging to propose a perfectly
balanced solution that addresses the trade-off between these components. For example, while additional local
computation can reduce the communication overhead, for some platforms, this can eventually lead to even
more energy usage as the processor uses more power than the networking module; whereas, for other platforms,
the opposite may hold. Eventually, this is a design choice that can be determined once the target hardware is
defined, and we point out that achieving such adaptiveness in framework and/or parameter selection can be an
interesting direction of future research.

e Improved capabilities of recent mobile and embedded platforms: Extending on our previous discussion, it
is worth noting that the hardware and resource capabilities of recently introduced mobile/embedded platforms
are not as tight (or scarce) as a decade ago. Specifically, the communication and resource capabilities of mobile
and embedded computing platforms have improved over the years, which means that the relative overhead
of transmitting a couple tens of MBs for federated learning may not be as significant as before. At the same
time, we point out the fact that the quantity of these “capable” devices have also increased, with more users
demanding high-quality application services. Adding a few MBs at each user (or client device) is not much of
an issue any more, but at the server, where federated learning parameter aggregation takes place, the overall
amount of data to process can increase quite quickly if clients do not optimize/minimize the amount of data
transmissions. Furthermore, even on a single client’s perspective depending on the frequency of federated
learning usage (potentially with many applications requesting federated learning requests simultaneously), the
small amounts of data transmissions can add up; thus, still requiring the need for a more optimized solution
that reduces data exchange overhead for federated learning.

o Possibilities of “left-out clients” in the federated learning process: As in other federated learning
frameworks, at each federated learning round, AttFL randomly selects a subset of clients to participate. In this
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process, there is a chance (due to the nature of random selection) that some clients are left out throughout the
process. In this case, these left-out clients will not be able to benefit from the federated learning operations.
Especially for personalized federated learning systems, such as AttFL, FedMask, FedML, not being able to
participate in a federated learning round would mean that the server will have no knowledge on in input/model
characteristics of the specific client. While this is a common limitation for all personalized federated learning
protocols, an interesting direction of future research is to identify an improved baseline model for such devices.
Specifically, while the server identifies device-suited model parameters in personalized federated learning, we
can design them to also learn a global/generic model simultaneously, that aggregates information from all its
clients. Later, this improved model (while not personalized) can be shared with unfortunate clients that were
left-out in the federated learning process. Again, we point out that the chances of such cases happening may
be slim, but a fall-back scheme as such can be an interesting direction of future research.

7 CONCLUSION

This work presents AttFL as a personalized federated learning framework for mobile and embedded sensing
applications. AftFL is designed so that local devices (and their applications) can enjoy the performance of
personalized local DNN operations with minimal computational and communication overhead, and is flexible
enough to be adopted to various DNNs that are specialized for time-series data analysis. By exploiting a set
of attention modules appended to the baseline DNN, A#tFL effectively abstracts the input data features and
underlying model parameters. We validate the performance of AttFL using three mobile/embedded sensing
application scenarios via CPU core-based emulations and a heterogeneous embedded platform testbed to show
that AttFL outperforms previous state-of-the-art federated learning frameworks in terms of both accuracy and
overhead reduction.
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