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Abstract

The scarcity of data presents a critical obstacle to the efficacy of medical vision-
language pre-training (VLP). A potential solution lies in the combination of datasets
from various language communities. Nevertheless, the main challenge stems from
the complexity of integrating diverse syntax and semantics, language-specific
medical terminology, and culture-specific implicit knowledge. Therefore, one
crucial aspect to consider is the presence of community bias caused by different
languages. This paper presents a novel framework named Unifying Cross-Lingual
Medical Vision-Language Pre-Training (Med-UniC), designed to integrate multi-
modal medical data from the two most prevalent languages, English and Spanish.
Specifically, we propose Cross-lingual Text Alignment Regularization (CTR) to
explicitly unify cross-lingual semantic representations of medical reports orig-
inating from diverse language communities. CTR is optimized through latent
language disentanglement, rendering our optimization objective to not depend
on negative samples, thereby significantly mitigating the bias from determining
positive-negative sample pairs within analogous medical reports. Furthermore,
it ensures that the cross-lingual representation is not biased toward any specific
language community. Med-UniC reaches superior performance across 5 medical
image tasks and 10 datasets encompassing over 30 diseases, offering a versatile
framework for unifying multi-modal medical data within diverse linguistic com-
munities. The experimental outcomes highlight the presence of community bias
in cross-lingual VLP. Reducing this bias enhances the performance not only in
vision-language tasks but also in uni-modal visual tasks. The source code has been
released at https://github.com/SUSTechBruce/Med-UniC.

1 Introduction

English, despite not being the primary native language for a vast majority of the global population,
remains the dominant language in vision-language pre-training (VLP) datasets. Uni-lingual VLP
models not only demonstrate restricted performance in cross-lingual tasks, but also bring the com-
munity bias on non-English speaking populations (displayed in Fig 1), particularly in the context of
medical applications.

Researchers have used machine-translated non-English corpora and techniques like masked
language model (MLM) and contrastive learning to unify cross-lingual representations [1–
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(a) 3D Text Embedding
from MLM.

(b) 3D Clustering from
MLM.

(c) 3D Text Embedding
from Med-UniC.

(d) 3D Clustering from
Med-UniC.

Figure 1: Graphical illustration of community bias in MLM and Med-UniC is shown with blue points
representing Spanish reports and orange points indicating English reports, visualized via T-SNE.
MLM denotes cross-lingual masked language modeling.

4]. However, MLM-based representations still separate languages, as shown in Fig 1a and
1b. Additionally, as highlighted in Fig 2, the significant similarity among reports from di-
verse communities suggests that the strict reliance on negative samples in contrastive learn-
ing could introduce more bias during text alignment. Hence, Med-UniC focuses on learning
text invariants in VLP using negative-free text alignment to avoid the bias mentioned above.
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Figure 2: Similarity matrix
for medical reports embedding
from MLM.

In this work, we introduce a unified framework named Med-UniC,
designed to acquire language-agnostic representations from chest x-
ray (CXR) scans and associated radiology reports. Med-UniC learns
the representation from 3 perspectives: visual invariants, visual-
textual invariants, and text invariants. Considering medical vision-
language tasks, such as zero-shot image classification, are dependent
on semantic information and language-independent, we propose
CTR (Cross-lingual Text Alignment Regularization) to explicitly
minimize linguistic disparities in cross-lingual representations within
the latent space, as visualized in Fig 1c and 1d. Consequently,
Med-UniC tackles non-English vision-language tasks without the
model bias stemming from the language model (LM) pre-trained
on predominantly English corpora. Additionally, we found that the
unified cross-lingual representation enhances performance across a
range of uni-modal visual tasks. This paper makes the following contributions:

• To the best of our knowledge, we are the first to empirically identify the existence of community
bias originating from diverse languages in cross-lingual medical VLP (displayed in Fig 1), and the
negative impact of community bias on both uni-modal and vision-language downstream tasks.

• We introduce the framework Med-UniC with CTR, designed to diminish community bias in medical
VLP by unifying cross-lingual latent representations. Med-UniC achieves SOTA results in medical
vision-language tasks across different languages, demonstrating its efficacy and broad applicability
across various language communities.

• Med-UniC achieves SOTA results on all uni-modal visual tasks. This highlights the advantages of
mitigating community bias and unifying cross-lingual representations in medical VLP, enabling
robust and comprehensive learning of visual representations.

• Med-UniC effectively mitigates community bias without the requirement for manual curation
or language-specific annotations. Importantly, Med-UniC enhances the accessibility of medical
VLP to non-English speaking populations, circumventing potential biases that may arise from
predominantly English datasets in traditional VLP.

2 Related Work

Medical VLP Complex medical reports and a shortage of large-scale medical image-text datasets
have limited medical VLP research. Previous works such as ConVIRT [5] and GLoRIA [6] utilized
contrastive objectives and global-local VLP to align image-text pairs. MGCA [7] used disease-
level annotations for alignment, while MedKLIIP [8] manually extracted medically relevant entities.
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Figure 3: Overview Med-UniC. CVL, SSV, CTR represent cross-lingual vision-language alignment,
self-supervised vision alignment, Cross-lingual Text Alignment Regularization, respectively.

MRM [9] replaced alignment with a reconstruction task involving masked visual and textual tokens.
However, these methods fail to capitalize on valuable cross-lingual knowledge and do not effectively
unify cross-lingual representations. As a result, their performance on cross-lingual tasks is consider-
ably limited.
Cross-lingual VLP Most recent cross-lingual VLP research has focused on a limited set of lan-
guages, with a few comparing natural cross-lingual VLP to English-only VLP [10]. Studies such
as [1–4] used machine-translated corpora and contrastive learning to generate language-agnostic
representations. Yet, cross-lingual VLP in the medical domain remains unexplored mainly due to two
main challenges: the limitations of machine translation for medical reports and the bias introduced
by hard positive-negative pairs in contrastive learning. We propose CTR, a negative-free disentangled
loss method, to unify cross-lingual text representations, addressing these issues.
Large General Model Recently, there have been impressive advances in large general models
for language and vision tasks, such as ChatGPT [11], SAM, and DINOv2 [11–13]. However, these
models still face significant limitations in the medical domain due to their lack of domain-specific
knowledge and inability to jointly process visual and textual information [14–16]. ChatGPT [11]
and SAM [12], currently limited to single-modality input, are unsuitable for vision-language tasks.
While SAM excelled at instance segmentation, it struggled with medical image pathology segmenta-
tion [16–18]. Conversely, Med-UniC addressed these constraints by utilizing visual and textual data,
integrating domain-specific knowledge without the high computational expenses of large general
models. Surprisingly, Med-UniC outperformed the extensive vision model, DINOv2 [13], trained on
1.2B images with 1B parameters, by a considerable margin in multiple visual tasks. This suggests
that Med-UniC is a more effective and efficient solution compared to large general models.

3 Method

3.1 Overall Framework of Med-UniC

Our Med-UniC framework aims to learn cross-lingual medical representation from CXR images
and paired radiology reports. Given a training set of N cross-lingual dataset S ∈ V × L consisting
of pairs (ve,i, le,i), where V and L are visual and text set, respectively, ve,i is a raw image and le,i
is a text report, e belongs to language domain (e.g., Spanish or English), i ∈ N . The Med-UniC
architecture mainly consists of an image encoder Fv : V 7→ RDv to encoder the raw image into the
embeddings with dimension Dv , and a cross-lingual text encoder Fl : L 7→ RDl to encoder the text
report to the embeddings with dimension Dl. Then S = {(ve,1, le,1) , (ve,2, le,2) , . . . , (ve,N , le,N )},
where ve,i = Fv(ve,i) and le,i = Fl(le,i).

As depicted in Fig 3, Med-UniC incorporates three concurrent alignment strategies: cross-lingual
vision-language alignment, self-supervised vision alignment, and cross-lingual text alignment regu-
larization. For cross-lingual vision-language alignment, we extend the text encoder from uni-lingual
into a cross-lingual style, which can equip the model with cross-lingual cross-modal ability by pulling
the embeddings of paired image-reports pairs together while pushing apart embeddings of unmatched
pairs, under the loss LCV L. Meanwhile, we employ self-supervised vision alignment, leveraging the
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loss LSSV , to enhance the robustness of visual representation [19]. More importantly, we introduce a
cross-lingual text alignment regularization, encompassing sample-level and feature-level approaches,
to mitigate community bias stemming from different languages. This regularization is supervised by
the loss LCTR. The learning objective of Med-UniC integrates the three strategies mentioned above
and can be formulated as follows:

L = LCVL + LSSV + LCTR (1)

This training scheme compels Med-UniC to assimilate information from diverse perspectives, fos-
tering a robust cross-modal, cross-lingual framework that concurrently learns visual invariants,
visual-textual invariants, and text invariants.

3.2 Cross-lingual Vision-language Alignment

Cross-lingual Medical LM To initialize Med-UniC with the ability to process different languages
and learn fundamental cross-lingual syntactic and semantic knowledge. We select CXR-BERT [20],
a uni-lingual LM pre-trained on a large-scale biomedical corpus, as our text encoder and further
adapted it for cross-lingual operation. The concrete steps proceed as follows: (1) Constructing a
cross-lingual vocabulary set T : we collected the radiology reports of the second language (e.g.,
Spanish PadChest dataset [21]), which is seldom used for medical pre-training compared to English
dataset [22, 23]. Then we leverage a general Spanish Spacy 3 to build a tokenizer and make use
of TF-IDF tool 4 to generate M ranked new tokens Tsp =

{
t1sp, t

1
sp, . . . , t

M
sp

}
according to their

importance from multiple reports. (2) Building new wording embeddings W: we augment the
original vocabulary Ten with the sorted Spanish tokens to generate T = {Ten, Tsp} then expand
a length of M random initialized vectors Wsp on CXR-BERT’s word embeddings Wen, where
W = [Wen;Wsp]. (3) Masked Cross-lingual Modeling: we following BERT [24], randomly mixed
English [22] and Spanish [21] medical reports as pre-train corpus. Then we randomly choose tokens
in the mixed sequences, replace them with the [MASK] token and set 15% masking probability as in
BERT [25]. We selectively update several high layers to alleviate catastrophic forgetting [26] during
vision-language pre-training. More details will be show in Sec 4.5.

Vision-Language Alignment Following CLIP framework [27], we incorporate a contrastive learning
object to predict the matched pair (ve,i, le,i) from N ×N possible image-text pairs while mapping
N2−N negative pairs far apart. Specifically, two non-linear visual and linguistic projectors Pl and Pv

are used to transform ve,i and le,i into the same dimension d, where v̂e,i = Pv(ve,i), l̂e,i = Pl(le,i),
and v̂e,i, l̂e,i ∈ Rd. Obtaining image feature vectors [v̂e,i]

N
i=1 and text feature vectors[̂le,i]Ni=1 from

a training batch, we compute cosine similarities sv2li,i = v̂⊤
e,i l̂e,i and sl2vi,i = l̂⊤e,iv̂e,i, representing

image-text and text-image similarities, respectively. LCVL is then formulated as follows:

Lv2l
v = − log

exp(sv2li,i /σ1)∑K
j=1 exp(s

v2l
i,j /σ1)

,Ll2v
i = − log

exp(sl2vi,i /σ1)∑K
j=1 exp(s

l2v
i,j /σ1)

(2)

LCVL =
1

2K

N∑
i=1

(
Lv2l
v + Ll2v

l

)
, (3)

where Lv2l
v and Ll2v

l are image-text and text-image InforNCE [28] contrastive loss, respectively. σ1

is the temperature hyper-parameter set to 0.07 in our experiments, K is the batch size for each step
and K ∈ N . Through overall loss LCVL, the model learns maximal mutual information between the
matched image-text pairs containing cross-lingual attributes within a batch.

3.3 Self-supervised Vision Alignment

To obtain more exhaustive visual representation, we include visual invariant learning as a parallel
objective during VLP. Drawing inspiration from [19], we initially apply random augmentations (such
as random cropping and flipping) to the original images to create augmented views as positive pairs
[(ve,i, v

′
e,i)]

N
i=1, while treating the rest of the images in the mini-batch as negative samples. We

follow the data augmentation strategy as per [19]. Subsequently, we extract the representations of

3https://spacy.io/models/es-dep-news-trf
4TfidfVectorizer: https://scikit-learn.org/
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the augmented views [v̂′]Ni=1 using the vision projector pv and vision encoder Fv, similar to [v̂]Ni=1.
Therefore, the visual invariant learning objective becomes:

LSSV = − 1

K

N∑
j=1

log
exp(sv2v

′

i,i /σ2)∑N
j=1 exp(s

v2v′
i,j /σ2)

, sv2v
′

i,i = v̂⊤
e,iv̂

′
e,i (4)

where σ2 is the temperature hyper-parameter also set to 0.07 for overall loss objective LSSV .

3.4 Cross-lingual Text Alignment Regularization

As illustrated in Fig 1, and corroborated by research in natural language processing [29, 30], cross-
lingual text representations tend to form distinct clusters based on their respective languages. This
trend introduces a community bias within data from different language communities, even when
no explicit language attribute is provided. This suggests that VLP processes medical data based
on their language community, risking unfairness in clinical applications and potentially decreasing
downstream task performance in both uni-modal and vision-language tasks [31–33]. To mitigate this
bias and potential risks, we introduce Cross-lingual Text Alignment Regularization (CTR) to learn
language-independent text representations and neutralize the adverse effects of community bias on
other modalities. CTR comprises three components:

Text augmentation We first adopt the dropout strategy [34] to generate augmented the text repre-
sentation l′e,i from the text encoder and obtain the matched pairs [(le,i, l′e,i)]

N
i=1, and then a separate

linguistic projector Pd designed for de-correlation is leveraged to generate two different view pairs
[(ZA

e,i,Z
B
e,i)]

N
i=1, where ZA

e,i = Pd(le,i), ZB
e,i = Pd(l

′
e,i)), and the new feature dimension

D′ > D.

Text-feature alignment To further alleviate information redundancy [35, 36] and obtain the shared
cross-lingual text representation, we first normalize the augmented embedding pairs

{
ZA

e ,ZB
e

}
∈

RN×D′
along the batch K dimension so that each feature dimension has a zero-mean and 1/

√
K

standard deviation distribution to generate Z̃e, and then compute their cross-correlation Z̃corr
e =

Z̃AT
e Z̃B

e . The formulas of feature-dimension decorrelation can be defined as:

LTF =
1

D′


D′∑
j

(
1−

K∑
i

Z̃A,jT
e,i Z̃B,j

e,i

)2

︸ ︷︷ ︸
cross-lingual invariance

+λ

D′∑
j

K∑
i̸=j

Z̃A,jT
e,i Z̃B,j

e,i︸ ︷︷ ︸
cross-lingual gap reduction


, Z̃e =

Ze − µK(Ze)√
Kσ(Ze)

(5)
The first term’s objective is to learn a language-invariant representation by optimizing the diagonal
elements of the correlation matrix to equal one. Simultaneously, the second term aims to shrink
the cross-lingual gap and optimize information utilization in each latent dimension by driving the
off-diagonal elements towards zero. Finally, We normalize the loss along with the feature dimension
D′.

Text-to-text alignment: Similarly, the text-to-text alignment decorrelates the cross-correlation matrix
along with feature dimension D′, and Ẑe is the normalized embeddings, Ẑcorr

e = ẐA
e ẐBT

e :

LTT =
1

K


K∑
j

1−
D′∑
i

ẐA,j
e,i Ẑ

B,j,T
e,i

2

+

︸ ︷︷ ︸
text instance alignment

λ

K∑
j

D′∑
i ̸=j

ẐA,j
e,i Ẑ

B,j,T
e,i︸ ︷︷ ︸

text consistency regularizer


, Ẑe =

Ze − µD′(Ze)√
D′σ(Ze)

(6)
where the text instance alignment term attempts to maximize the mutual information of a batch
of cross-lingual text samples, and the text consistency regularizer can also be deemed as the text
in-modal consistency [37] by reducing the mismatched text pairs into 0 in a batch K. Where λ in Eq
5, 6, is a non-negative hyperparameter trading off two terms. We also normalize the loss with the
batch dimension K. Therefore, the loss of Cross-lingual Text Alignment Regularization LCTR is:

LCTR = LTF + LTT (7)
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4 Experiments

4.1 Pre-training Configuration

Dataset We pre-train Med-UniC framework using MIMIC-CXR [38], which contains CXR images
and their corresponding radiology reports in English. Also, we involve PadChest [39], which includes
CXR images and their corresponding radiology reports collected in Valencia region, Spain. Both
datasets are pre-processed following the approach described in [5–7], including image resizing, pixel
value normalization, and text tokenization. Additionally, the dataset is filtered by excluding lateral
views and reports with less than three tokens. This results in a pre-training dataset of approximately
220k image-text pairs for MIMIC-CXR [38] and 160k pairs for PadChest [39].

Implementation In the VLP stage, we employ ResNet-50 [40] and ViT [41] as the vision backbones.
We report the linear classification results for these two vision encoders to illustrate the model-agnostic
capabilities of Med-UniC. Med-UniC is trained over 50 epochs using an early stop strategy on 16
V100 GPUs with a batch size of 128 per GPU. We utilize AdamW [42] as the optimizer, setting the
learning rate to 4e−5 and the weight decay to 5e−2. A linear warm-up and cosine annealing scheduler
are also deployed in this process. Additionally, The coefficients λ is set to 5.1e−3 following [36].

4.2 Downstream Tasks

Medical Image Linear Classification We perform this task on CheXpert [23], RSNA [43], and
COVIDx [44] datasets. Following the previous work [5–7], we only update the parameter of a random
initialized linear layer for classification and freeze the pre-trained vision backbone. We report the
AUC scores (AUC) on CheXpert and RSNA and accuracy (ACC) on COVIDx as the evaluation
metric following [6, 7].
Medical Image Zero-shot Classification We conduct this experiment on the CXP500 [45] and
PDC [39] datasets, which comprise CXR images annotated by clinicians from English-speaking and
Spanish-speaking countries, respectively. To circumvent prompt bias, we designate English positive
prompt as ‘{disease}’ and negative prompt as ‘No {disease}’. Prompts in Spanish are prepared by
native Spanish speakers, with the disease indicated as ‘{disease}’ and the negative prompt represented
as ‘No hay {disease}’. Med-UniC is evaluated using both English and Spanish prompts across the two
datasets, with additional experimental details provided in the Appendix. The results are represented
as the macro average of AUC and F1 scores across all categories.
Medical Image Semantic Segmentation This task is performed on the RSNA [43] and the
SIIM [46] datasets, following the data preprocessing in [6, 7]. Identical to [6, 7], the U-Net [47]
fine-tuning settings are adopted for segmentation. All pre-trained vision backbones are considered as
frozen encoders, and only the decoders of U-Net are updated during the fine-tuning. The segmentation
performance is evaluated using Dice scores (Dice).
Medical Image Object Detection This task is performed on the RSNA [43] and Object-CXR [48]
datasets, following the same preprocessing of [7]. Same as [7], we utilize YOLOv3 [49] as the
detection architecture, using our pre-trained vision encoder as the backbone and only updating the
detection head during fine-tuning. Mean Average Precision (mAP) with IOU thresholds 0.4∼0.75, is
adopted to evaluate the detection task.

For all downstream tasks, except zero-shot classification, we fine-tune with 1%, 10%, 100% of the
training data. More downstream tasks’ settings, including split information and train/valid/test set
details, can be found in the Appendix.

4.3 Comparison to the state-of-the-art

Zero-shot Classification To assess the cross-lingual visual-textual representation learned from Med-
UniC, we implement the zero-shot image classification task on two CXR datasets, which originate
from distinct linguistic communities and utilize different language prompts. Tab 1 illustrates that
Med-UniC surpasses all SOTA methods on both datasets, regardless of the language setting or the
linguistic community data source. Across both datasets, Med-UniC delivers an average increase
of over 20% in the F1 score when using English prompts and more than 15% when using Spanish
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Table 1: Zero-shot Image Classification results. F1 and AUC scores are reported. Best results of
each setting are in boldface. ‘En’ and ‘Sp’ respectively stand for prompts in English and Spanish
languages. Methods with ⋆ leverage disease-level annotations for pre-training.

CXP500(En) CXP500(Sp) PDC(En) PDC(Sp)
Method AUC F1 AUC F1 AUC F1 AUC F1

ConVIRT[5] 59.5 19.2 60.5 15.8 45.1 26.5 49.1 12.6
GLoRIA[6] 43.2 2.4 40.2 16.1 52.3 10.1 50.3 8.2
GLoRIA-MIMIC [6] 46.2 5.5 51.5 20.3 53.1 12.1 52.2 11.3
MGCA⋆ [7] 72.1 6.5 50.4 22.3 46.4 32.5 49.8 26.1
MedKILP⋆ [8] 70.5 14.7 55.6 21.9 50.5 28.7 51.7 25.8
MRM [9] 65.2 10.4 48.3 16.1 50.1 24.6 51.4 25.1

Ours 75.4 30.3 71.3 32.2 72.9 42.6 71.4 37.1

prompts. This showcases the effectiveness and adaptability of Med-UniC in managing cross-lingual
vision-language tasks.

Interestingly, the AUC score of other SOTA methods experiences a substantial drop when the prompts
transition from English to Spanish on CXP500 [45], a dataset collected from English-speaking
communities. Similarly, all compared methods show comparably poor performance on PDC [39],
a dataset derived from Spanish-speaking communities. MedKLIP [8], despite its commendable
performance on the CXP500 [45] in the English setting due to its supervised pre-training with disease
annotation, persistently shows a drop in performance on both the CXP500 [45] and PDC [39] when
Spanish prompts are used, and also on the PDC [39] when using English prompts. These results
highlight the significant community bias inherent in uni-lingual medical VLP models, even those
utilizing annotations for pre-training. This bias adversely impacts the diagnostic quality when dealing
with patients from non-English-speaking communities or those who do not speak English.

The unsatisfied performance of the compared methods also suggests that these models might in-
corporate linguistic community attributes during VLP, which negatively influences the learning of
semantic meanings. Consequently, As a result, these models have difficulties in effectively interpret-
ing CXR scans or prompts from non-English communities, which substantially limits the models’
transferability. Further analysis can be found in Sec 4.4.

Table 2: Linear classification results for CheXpert, RSNA, and COVIDx datasets with 1%, 10%,
and 100% training data. The best results are highlighted in bold. A standard ResNet-50 backbone is
denoted as CNN-based. Methods with ⋆ leverage disease-level annotations for pre-training.

CheXpert (AUC) RSNA (AUC) COVIDx (ACC)
Method 1% 10% 100% 1% 10% 100% 1% 10% 100%

Random Init 56.1 62.6 65.7 58.9 69.4 74.1 50.5 60.3 70.0
ImageNet Init 74.4 79.7 81.4 74.9 74.5 76.3 64.8 78.8 86.3

CNN-based
GLoRIA [6] 86.6 87.8 88.1 86.1 88.0 88.6 67.3 77.8 89.0
ConVIRT [5] 85.9 86.8 87.3 77.4 80.1 81.3 72.5 82.5 92.0
GLoRIA-MIMIC [6] 87.1 88.7 88.0 87.0 89.4 90.2 66.5 80.5 88.8
MedKLIP⋆ [8] 86.2 86.5 87.7 87.3 88.0 89.3 74.5 85.2 90.3
MGCA⋆ [7] 87.6 88.0 88.2 88.6 89.1 89.9 72.0 83.5 90.5
Med-UniC (ResNet-50) 88.2 89.2 89.5 89.1 90.4 90.8 76.5 89.0 92.8
ViT-based
MRM [9] 88.5 88.5 88.7 91.3 92.7 93.3 66.9 79.3 90.8
MGCA⋆ (ViT-B/16) [7] 88.8 89.1 89.7 89.1 89.9 90.8 74.8 84.8 92.3
Med-UniC (ViT-B/16) 89.4 89.7 90.8 91.9 93.1 93.7 80.3 89.5 94.5
Med-UniC (ViT-L/32) 89.9 90.5 91.2 92.2 93.8 94.5 81.5 91.8 95.2

Medical Image Linear Classification To assess the quality of the visual representations learned by
Med-UniC, we employ linear classification [50] on CheXpert [23], RSNA [43], and COVIDx [44]. As
illustrated in Tab 2, Med-UniC framework consistently surpasses all uni-lingual pre-trained baselines
across various settings and vision backbones. Significantly, even when MedKLIP [8] employs
supervised VLP with disease-level annotation, Med-UniC consistently surpasses MedKLIP [8] across
all tasks and settings. This exemplifies the adaptability and efficacy of the visual representations
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Table 3: Results of semantic segmentation on SIIM and RSNA datasets and object detection on
RSNA and Object-CXR datasets. The best results for each setting are highlighted in bold, and the ’-’
denotes mAP values smaller than 1%. Methods with ⋆ leverage disease-level annotations.

Semantic Segmentation (Dice) Object Detection (mAP)

SIIM RSNA RSNA Object CXR
Method 1% 10% 100% 1% 10% 100% 1% 10% 100% 1% 10% 100%

Random 9.0 28.6 54.3 6.9 10.6 18.5 1.0 4.0 8.9 - 0.5 4.4
ImageNet 10.2 35.5 63.5 34.8 39.9 64.0 3.6 8.0 15.7 - 2.9 8.3

ConVIRT[5] 25.0 43.2 59.9 55.0 67.4 67.5 8.2 15.6 17.9 - 8.6 15.9
GLoRA[6] 35.8 46.9 63.4 59.3 67.5 67.8 9.8 14.8 18.8 - 10.6 15.6
GLoRIA-MIMIC [6] 37.4 57.1 64.0 60.3 68.7 68.3 11.6 16.1 24.8 - 8.90 16.6
MGCA⋆ [7] 49.7 59.3 64.2 63.0 68.3 69.8 12.9 16.8 24.9 - 12.1 19.2
MedKLIP⋆ [8] 50.2 60.8 63.9 66.2 69.4 71.9 8.9 16.3 24.5 - 7.1 11.6

Ours 56.7 62.2 64.4 72.6 74.4 76.7 16.6 22.3 31.1 6.6 13.3 21.6

Table 4: Ablation study of Med-UniC on linear classification, semantic segmentation and zero-shot
classification. The best results of each setting are in boldface.

Learning Objective COVIDx (ACC) RSNA (AUC) SIIM (Dice) CXP500 (F1) PDC (F1)
SSV CVL CTR MLM 1% 10% 100% 1% 10% 100% 1% 10% 100% En Sp En Sp

✓ ✓ 72.8 85.5 91.8 87.7 88.5 89.4 51.9 56.5 58.7 63.5 59.8 62.2 58.5
✓ ✓ ✓ 74.5 85.8 92.2 88.1 89.3 89.9 53.4 58.7 60.1 68.5 62.1 64.6 61.7
✓ ✓ ✓ 75.0 84.3 92.5 88.2 89.6 89.7 53.8 59.6 61.5 70.3 65.9 65.4 63.7
✓ ✓ ✓ ✓ 76.5 89.0 92.8 89.1 90.4 90.8 56.7 62.2 64.4 75.4 71.3 72.9 71.4

cultivated by Med-UniC. Furthermore, this implies that unifying cross-lingual text representations
via CTR can also improve the performance of uni-modal visual tasks.

Medical Image Semantic Segmentation and Object Detection In Tab 3, we further assessed the
representation acquired by Med-UniC on segmentation and detection tasks. Impressively, Med-UniC
outperforms all SOTA methods across every data fraction in all four tasks. Notably, Med-UniC
achieves a Dice score of 72.6% on RSNA segmentation with only 1% data fine-tuning, exceeding the
performance of all other SOTA methods fine-tuned on 100% data. Furthermore, Med-UniC reaches
a 6.6% mAP on the Object-CXR dataset using just 1% data fine-tuning, surpassing other methods
that barely achieve a 1% mAP. These findings further highlight the advantageous effects of unifying
cross-lingual representations on vision-language tasks and uni-modal visual tasks.

4.4 Ablation Study and Bias Analysis

In this section, we ablate components of Med-UniC and present their performance on
linear classification, zero-shot image classification, and semantic segmentation in Table 4.

(a) (b)

Figure 4: Visualization of image embed-
dings with or without CTR.

In all tasks, the combinations of all learning objectives
achieve the highest performance, highlighting each com-
ponent’s crucial role in Med-UniC. Med-UniC, when in-
tegrated with CTR, significantly outperforms the version
with MLM in zero-shot tasks and nearly all uni-modal
visual tasks.

To further investigate the influence of CTR and MLM, we
randomly select 1000 English and 1000 Spanish image-
text pairs. We then illustrate the text and image embed-
dings in Fig 1 and Fig 4, respectively. Surprisingly, when
the text encoder is pre-trained with MLM, we notice that
the medical report embeddings tend to cluster by their re-
spective languages, as shown in Fig 1a,1b. However, when
employing CTR, the embeddings from diverse language
reports draw nearer, leading to a reduction in the distance between the two clusters compared to the
embeddings produced by MLM, as shown in Fig 1c,1d. This clear pattern illustrates CTR’s ability to
unify cross-lingual text representation within the latent space. Intriguingly, when pre-trained with
CTR, the image embeddings become less distinguishable by their language community. In contrast,
they form separate clusters according to their language community when pre-training does not involve
CTR. This observation implies that community bias affects not only the text modality but also the
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visual modality, as shown in Fig 4. Consequently, the reduction in community bias contributes to
superior performance across all tasks when Med-UniC is pre-trained with all learning objectives.
More details can be found in the Appendix.

4.5 Further Analysis

Visualization of Language-agnostic Visual-textual Attention We utilize Grad-CAM [51] to
illustrate the areas in CXR images corresponding to various disease terminologies in both English and
Spanish, as shown in Fig 5. Evidently, Med-UniC can accurately capture relevant regions that align
closely with the indicated disease, exhibiting robustness across various languages. Consequently,
the consistent cross-lingual visual-textual representations cultivated by Med-UniC underscore its
outstanding generalizability across multiple downstream tasks and language communities.

Ground Truth   Cardiomegaly        Cardiomegalia

Ground Truth Pleural Effusion      Derrame pleural

       Edema                       EdemGround Truth

Ground Truth  Atelectasis               Atelectasi

Figure 5: Attention heat-maps of the visual-textual association learned by Med-UniC, compared with
ground truth annotations provided by clinicians. The blue and orange words denote Spanish and
English types, respectively.

Table 5: Comparison with large vision model.

CheXpert RSNA COVIDx
Method 10% 100% 10% 100% 10% 100%

DINOv2 [52] 81.6 83.2 84.5 86.3 85.0 92.2

Med-UniC(ViT-B/16) 89.7 90.8 93.1 93.7 89.5 94.5
Med-UniC(ViT-L/32) 90.5 91.2 93.8 94.5 91.8 95.2

Table 6: Results of Med-UniC with dif-
ferent numbers of frozen layers.

COVIDx (AUC) RSNA (Dice)
Frozen layers 10% 100% 10% 100%

0 87.7 92.5 75.0 75.8
6 88.0 92.3 74.3 76.3
9 89.0 92.8 74.4 76.7
12 87.1 90.5 72.3 74.4

Comparison with Large Vision Model In a comparison with DINOv2 [52], a large vision model
trained on 1.2 billion images and comprising 1 billion parameters, Med-UniC outperforms it in linear
classification tasks across all datasets, using different data ratios and two ViT backbones, as shown in
Tab 5. This demonstrates the remarkable effectiveness of Med-UniC, even in scenarios with limited
domain-specific data.

Impact of Frozen Layers for LM To investigate the impact of freezing layers in LM, we experi-
mented with freezing various numbers (0, 6, 9, 12) in a 12-layer LM. Tab 6 shows that updating the
last three layers offers better results comparable to updating more layers, hinting that updating more
might cause catastrophic forgetting [26, 53] of cross-lingual MLM-acquired semantics. Performance
declined when all layers were frozen, indicating the necessity of properly updating layers.

Error Bars We conducted three separate runs of Med-UniC, using different random seeds and
ResNet-50 as the vision backbone for three tasks. We then reported the average metric and its standard
deviation. As indicated in Tab 7, the variability between different task runs is relatively minor,
demonstrating that Med-UniC consistently performs well in a variety of experiment configurations.

Table 7: Error bars analysis of linear classification, semantic segmentation, and object detection .

Ratio COVIDx(ACC) RSNA(Dice) Object CXR(mAP)

1% 76.54±0.32 72.60±0.33 6.62±0.67
10% 89.01±0.16 74.43±0.19 13.34±0.27
100% 92.82±0.35 76.67±0.45 21.63±0.24
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5 Conclusion

This work is the first to identify community bias in medical VLP stemming from diverse language
communities and illustrates its negative impact on various downstream tasks. We present Med-UniC,
a novel cross-lingual medical VLP framework, along with CTR, intended to unify cross-lingual
text representations and mitigate language-driven community bias. This bias impacts both text
and visual modalities, thereby affecting performance across vision-language and uni-modal visual
tasks. The superior performance of Med-UniC across various tasks and data ratios underscores its
efficiency and effectiveness. Through comprehensive ablation studies, we show that CTR significantly
enhances performance in both vision-language and uni-modal visual tasks by effectively reducing
community bias. This study provides a robust cross-lingual medical VLP framework and emphasizes
the importance of inclusivity beyond English-speaking communities.
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