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ABSTRACT

Low-Power Wide-Area Networks (LPWANs) are an emerging Internet-of-Things
(IoT) paradigm marked by low-power and long-distance communication. Among
them, LoRa is widely deployed for its unique characteristics and open-source
technology. By adopting the Chirp Spread Spectrum (CSS) modulation, LoRa
enables low signal-to-noise ratio (SNR) communication. The standard LoRa de-
modulation method accumulates the chirp power of the whole chirp into an en-
ergy peak in the frequency domain. In this way, it can support communication
even when SNR is lower than -15 dB. Beyond that, we proposed NELoRa Li
et al. (2021), a neural-enhanced decoder that exploits multi-dimensional infor-
mation to achieve significant SNR gain. This paper presents the dataset used
to train/test NELoRa, which includes 27,329 LoRa symbols with spreading fac-
tors from 7 to 10, for further improvement of neural-enhanced LoRa demodu-
lation. The dataset shows that NELoRa can achieve 1.84–2.35 dB SNR gain
over the standard LoRa decoder. The dataset and codes can be found at https:
//github.com/daibiaoxuwu/NeLoRa_Dataset.

1 INTRODUCTION

Recent years have witnessed the emergence of Low-Power Wide-Area Networks (LPWANs) as a
promising mechanism to connect billions of low-cost Internet of Things (IoT) devices for wide-area
data collection (e.g., smart-industry, smart-city, smart-agriculture) (Ma et al., 2021; Liu et al., 2020).
Long Range (LoRa) (Alliance, Retrieved by Nov 19th 2020), SIGFOX (Centenaro et al., 2016), and
NB-IoT (Research, Retrieved by Nov 19th 2020) are the three commercialized wireless technolo-
gies that facilitate the establishment of LPWANs. Among them, LoRa is the only open-source one
and works on unlicensed frequency bands. By modulating data via Chirp Spread Spectrum (CSS),
LoRa allows sensor nodes to send data at low data rates to gateways several or even tens of miles
away. Theoretically, the CSS mechanism expands each LoRa symbol to a long time period, and the
signal power in this time period can be condensed in the frequency domain by the dechirp process
during demodulation, constructively adding up into an energy peak, while the noise can only add up
destructively, thus raising the energy peak of the signal over the noise floor even in extremely low
signal-to-noise ratio (SNR).

Unfortunately, recent studies (Eletreby et al., 2017; Dongare et al., 2018; Gadre et al., 2020b;a;
Liu et al., 2021; Yao et al., 2019; Lin et al., 2020; Liando et al., 2019; Iova et al., 2017; Demetri
et al., 2019; Ren et al., 2022) show that the communication range of LoRa is far from the expec-
tation in complex real-world environments (e.g., urban areas, campus). The blockage attenuation
could severely degrade the SNR of LoRa packets, causing decoding failures even at a sub-kilometer
distance. Intuitively, if we can improve the LoRa demodulation methods to upgrade its decoding
success rate at low SNR, the communication range will be enlarged, increasing the usability of the
LPWANs, e.g., extended battery lifetime or reduced number of gateways (Ren et al., 2022; Gadre
et al., 2020a; Balanuta et al., 2020; Eletreby et al., 2017).
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Figure 1: Overview of LoRaWAN architecture.
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Figure 2: The illustration of a LoRa packet.

The standard LoRa demodulation process of the dechirp has not reached the optimal SNR tolerance.
The main reason is that the dechirp distinguishes the LoRa signal from noise by only examining the
energy in the frequency domain, and might miss valuable information in the time domain. Neural
networks, however, are suitable for efficiently extracting such multi-dimensional information. We
proposed NELoRa Li et al. (2021), a neural-based LoRa decoding method, achieving significant
SNR gain.

In this paper, we present the dataset used for training and testing NELoRa. It consists of LoRa
symbols captured in indoor environments with a USRP N210 Software Defined Radio (SDR). The
LoRa packets are preprocessed by locating their headers, removing their Carrier Frequency Offsets
(CFO) by the preambles, and slicing each LoRa symbol into a single file labeled with its packet
ID and its ground truth. The dataset consists of 4 spreading factors: 7, 8, 9, and 10, to support
LoRa decoding experiments on different spreading factors. The LoRa symbols have a bandwidth
of 125K. The dataset consists of 27,329 symbols in total. With the dataset, we show that NELoRa
can achieve 1.8-2.35 dB SNR gain compared to the dechirp. The dataset can be found at https:
//github.com/daibiaoxuwu/NeLoRa_Dataset. This dataset can serve as a benchmark
to inspire future research on all kinds of novel demodulation methods on LoRa signals.

2 UNDERSTANDING THE PROBLEM

As illustrated in Figure 1, a LoRaWAN consists of end nodes, gateways, a network server, and an
application server. The collected sensory data (e.g., temperature, humidity) transmitted from the
distributed end nodes is relayed by several gateways to the network server. A standard LoRa packet
consists of 3 parts: preamble, start frame delimiter (SFD), and payload, as illustrated in Fig. 2. LoRa
uses CSS modulation Berni & Gregg (1973). A base up-chirp is a signal whose frequency increases
linearly over time from −BW

2 to BW
2 , and the preamble consists of eight of them. The SFD consists

of two and a quarter of base down-chirps, which is the conjugate of up-chirp, whose frequency
decreases linearly over time from BW

2 to −BW
2 . The preamble is mainly used for packet detection,

and the SFD assists the preamble in calibrating frequency offsets during transmission. The payload
is the part that contains data. The data bits are then encoded by shifting the initial frequency of a
base up-chirp to fs, so the frequency increases linearly from fs to BW

2 , jumps to −BW
2 , and then

increases linearly from −BW
2 to fs. During LoRa demodulation, after packet detection and CFO

correction by the preamble and SFD Li et al. (2021); Tong et al. (2020b), we can slice out each
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Figure 3: In dechirp, the energy peak of a chirp symbol’s spectrum is distorted or overwhelmed as
the SNR decreases.

symbol and detect its initial frequency to decode which data it contains. LoRa further defines a
configuration parameter called SF , and divides the bandwidth −BW

2 to BW
2 into 2SF frequencies,

and the initial frequency of each data bit falls in one of these frequencies. Thus, each symbol can
encode SF bits, and there are a total of 2SF different LoRa symbols in total. The decoding of LoRa
symbols is actually a classification problem where we classify the received symbol as one of the
2SF symbols.

The standard way for decoding LoRa packets is the dechirp, shown in Fig. 3. It first multiplies the
chirp symbol with a time-aligned base down-chirp, and performs Fast Fourier Transform (FFT) on
the result. The FFT has 2SF bins, and the signal energy will be perfectly condensed into one of the
bins, resulting in a high signal peak if there is little noise (see Fig.3a), and we can determine the
signal by the highest FFT peak; Even if there is a certain degree of noise, the noise energy will be
scattered randomly into all the bins, thus making the signal peak stand out high above the noise floor
(see Fig.3b). However, if SNR becomes overwhelmingly low, the energy peak can be distorted or
even overwhelmed by the noise energy, and the dechirp method gives a wrong answer (see Fig.3c).

The dechirp method is efficient as it condenses the energy into a peak in the frequency domain. How-
ever, this method might miss important information in the time domain. We propose NELoRa Li
et al. (2021) to formulate the decoding as a classification problem. We utilize neural networks to
extract multi-dimensional features from LoRa symbols to achieve SNR gain. We run a neural net-
work on gateways or network servers to enhance the gateways’ decoding abilities. By leveraging the
gateway’s tolerance on power consumption and its extra compute resources, NELoRa adopts deep
learning techniques for weak chirp symbol decoding and increases the end nodes’ communication
range and battery life. Furthermore, LoRaWAN communications often consist of periodic sensory
data, which seldom require low transmission delays, so the time overhead induced by the neural
networks will not affect the usability of the LoRaWAN system.

3 DATASET

3.1 DATASET COLLECTION

Implementation: Figure 4 illustrates our data collection system. Specifically, we use the USRP
N210 SDR platform for capturing over-the-air LoRa signals, operating on a UBX daughter board at
the 470MHz bands and a sampling rate of 1MHz. The captured signal samples are then delivered
to a back-end host for pre-processing and demodulation. On the transmitter side, we use SX1278
client radio based commodity LoRa nodes for transmitting LoRa packets.
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Figure 4: USRP N210 based gateway and commodity SX1278 client radio based LoRa node.

Chirp Symbol Dataset: We collect LoRa packets at the high SNR (> 30 dB), including 4 SFs (e..g,
7, 8, 9, 10). Each packet contains around 60 symbols, and we preprocess and slice them into indi-
vidual symbols. For training and testing, we measure the signal amplitude and add corresponding
random-generated Gaussian white noise to render chirp symbols at different SNR, covering -40 dB
to 15 dB.

File structure: The dataset is contained in 4 folders, one for each SF configuration. Inside them,
there are around 100 subfolders, each indicating one packet. Inside each subfolder is around 60 files
which contain the I/Q samples for each LoRa symbol, represented as a binary 1-dimensional array
of 32-bit float numbers (two consecutive float numbers represent one I/Q sample, with the former
and the latter as the real and imaginary part). The ground truth symbol of this file is written in
its filename: each datafile’s filename is four numbers separated with underscores, indicating 1) the
position of the symbol in the packet (starting with 0); 2) The ground truth of this symbol (ranging
from 0 to 2SF − 1); 3) the ID of the packet that contains this symbol (remain the same in each
subfolder); 4) the spreading factors (ranging from 7 to 10). The code for the data extracting is
presented in the Python file data loader.py alongside the dataset.

3.2 PACKET DETECTION

The default packet detection method utilizes the preamble of a LoRa packet, which consists of mul-
tiple continuous base up-chirps. If we apply dechirp on the preamble, several continuous energy
peaks appear at FFT bin 0 of the multiple base up-chirps’ spectrum. In practice, a gateway con-
tinuously applies dechirp on recorded symbol-length signals (called window signals). If a LoRa
preamble appears, a window signal contains a chirp symbol (called window chirp) which may not
be exactly time-aligned with the base up-chirps in the LoRa preamble. Considering the multiple
continuous base up-chirps in a LoRa preamble, we will observe several identical window chirps. If
the energy peaks of several window signals appear at the same FFT bin, a LoRa packet is detected.

3.3 CFO CORRECTION

Due to CFO effects, the frequencies of the LoRa packets may be distorted, hindering proper LoRa
decoding. This effect can be mitigated by the SFD portion of the LoRa packets. The key idea is
as follows: The LoRa headers contain several base upchirps followed by several base downchirps,
and the CFO effects will modify their frequencies in the same way, supposing that the CFO remains
constant in the LoRa packet header. Thus, when we demodulate the preamble and SFD by multi-
plying them with base downchirp and base upchrip, the frequency shifts caused by the CFO on the
preamble and SFD will be opposite to each other, where we can measure and mitigate this CFO
effect. Thus, with the base down-chirps in the packet’s SFD, we remove CFO (Tong et al., 2020a)
to generate high-quality chirp symbols in the packet. The detailed preprocessing methods and codes
are the same as NELoRa (Li et al., 2021) and are presented as MATLAB code alongside the dataset.
After removing CFO in the whole packet, we can remove the header and slice the payload into
individual symbols, which we present in our dataset.
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Figure 5: Overall performance of NELoRa under different LoRa SF configurations. (a) illustrate the
SER-SNR curves under different SFs. The solid line and dashed line represent the performance of
NELoRa and dechirp, respectively. (b) illustrate the SNR gains under different SFs, with the SNR
threshold set at SER=10%.

4 TESTING ALGORITHMS

After constructing our dataset, we implement two methods for LoRa symbol demodulation: 1) the
baseline method used in standard LoRa protocol based on dechirp, and 2) our neural-enhanced
method NELoRaLi et al. (2021; 2022). The demodulation of LoRa symbols is actually a classifi-
cation problem. Each LoRa symbol is an up-chirp with varying initial frequencies, which contains
information about this symbol. The LoRa protocol divides the bandwidth into 2SF frequencies, with
SF denoting the spreading factor, and there are a total of 2SF LoRa symbols, each taking one of
the frequencies as the initial frequency of its upchirp. Consequently, the LoRa decoding problem
becomes a classification problem with 2SF classes. Consequently, we can use neural-network-based
methods to perform this kind of classification.

NELoRa Structure: We implement the neural network model in NELoRaLi et al. (2021), and
train and test it using our dataset. We synthetically add Gaussian White Noise on the input signals
to produce more training data at different levels of SNR for training and testing. We first apply
Short Time Fourier Transform (STFT) on the LoRa symbol, converting the input symbol into a
spectrogram. This spectrogram is a 2-dimensional complex-numbered matrix, and we view it as a
2-channel image, separating the real and imaginary parts as two channels. This way, we can apply
CNN to this data. We train a denoising CNN that accepts the spectrogram of the synthetic low-SNR
signal (added Gaussian White Noise) and uses the corresponding original signal as ground truth, and
this CNN will generate a noise-free spectrogram as output. At the same time, we train another CNN
network for classification: the input of this network is the output of the denoising CNN, and the
output of this network is a vector with a length of 2SF , indicating the classification result. The two
networks are trained simultaneously, and the loss of the two networks, the image MSE loss for the
denoising CNN and the classification loss for the classification CNN, are added and backpropagated
during training. The detailed description and code are available at NELoRaLi et al. (2021) alongside
the dataset. We train an individual DNN model for each LoRa spreading factor configuration based
on the chirp symbol dataset with the corresponding configuration. We further split the dataset into
training and test sets. One containing 80% chirp symbols is used for the DNN model training. The
test set includes the rest 20% of chirp symbols. This test set is also used to test the dechirp method
for a fair comparison, which we explain in the following section.

5 EVALUATION

5.1 EXPERIMENT SETTINGS

After implementing the two LoRa demodulation methods: dechirp and NELoRa, we now evaluate
them on our dataset. We measure the signal amplitude of each symbol and add corresponding
degrees of Gaussian White Noise onto the symbols to generate data with different levels of SNR,
and evaluate the signal error rate (SER) of the two methods on different levels of SNR.
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5.2 RESULTS

The results are shown in Figure 5. We can observe that NELoRa (e.g., solid line) has obtained con-
sistently lower SER than dechirp (e.g., dashed line) for SFs from 7 to 10 across all SNR levels. For
different SFs, the SNR gain is ranging from 1.84 dB (e.g., SF=8) to 2.35 dB (e.g., SF=7) The results
verify the efficiency of our DNN demodulator in ultra-low SNR. And multi-dimensional pattern fea-
tures are successfully abstracted during the model training process with millions of chirp symbols.
Our DNN model can be further refined as more diverse chirp symbols are used for training.

6 CONCLUSION

This paper presents a comprehensive dataset of LoRa symbols, covering a spreading factor of 7 to
10 and containing 27,329 symbols. We collect the data on real-life devices and perform thorough
preprocessing to detect packets, remove CFO, and slice the payload into individual packets. We
further implement two methods: the baseline method dechirp and the neural-based method NELoRa,
and evaluate their performances on our dataset. We anticipate that our dataset will support research
on new LoRa demodulation methods, especially neural-based ones, and we hope that our dataset
can become a benchmark for the evaluation of future LoRa demodulation methods.

ACKNOWLEDGEMENT

This study is supported in part by NSF Awards CNS-1909177 and NSFC Grant 61972218.

REFERENCES

LoRa Alliance. A technical overview of lora and lorawan. In https://lora-alliance.org/resource-
hub/what-lorawanr, Retrieved by Nov 19th 2020.

Artur Balanuta, Nuno Pereira, Swarun Kumar, and Anthony Rowe. A cloud-optimized link layer
for low-power wide-area networks. In Proceedings of ACM MobiSys, 2020.

Albert Berni and WO Gregg. On the utility of chirp modulation for digital signaling. IEEE Trans-
actions on Communications, 1973.

M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi. Long-range communications in unlicensed
bands: the rising stars in the iot and smart city scenarios. IEEE Wireless Communications, 2016.
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