
TimelyFL: Heterogeneity-aware Asynchronous Federated Learning with
Adaptive Partial Training

Tuo Zhang1, Lei Gao1, Sunwoo Lee2, Mi Zhang3, Salman Avestimehr1
1University of Southern California

2Inha University
3The Ohio State University

tuozhang@usc.edu

Abstract

In cross-device Federated Learning (FL) environments,
scaling synchronous FL methods is challenging as strag-
glers hinder the training process. Moreover, the availabil-
ity of each client to join the training is highly variable over
time due to system heterogeneities and intermittent connec-
tivity. Recent asynchronous FL methods (e.g., FedBuff
[22]) have been proposed to overcome these issues by al-
lowing slower users to continue their work on local train-
ing based on stale models and to contribute to aggregation
when ready. However, we show empirically that this method
can lead to a substantial drop in training accuracy as well
as a slower convergence rate. The primary reason is that
fast-speed devices contribute to many more rounds of ag-
gregation while others join more intermittently or not at all,
and with stale model updates. To overcome this barrier, we
propose TimelyFL, a heterogeneity-aware asynchronous
FL framework with adaptive partial training. During the
training, TimelyFL adjusts the local training workload
based on the real-time resource capabilities of each client,
aiming to allow more available clients to join in the global
update without staleness. We demonstrate the performance
benefits of TimelyFL by conducting extensive experiments
on various datasets (e.g., CIFAR-10, Google Speech, and
Reddit) and models (e.g., ResNet20, VGG11, and ALBERT).
In comparison with the state-of-the-art (i.e., FedBuff),
our evaluations reveal that TimelyFL improves participa-
tion rate by 21.13%, harvests 1.28× - 2.89×more efficiency
on convergence rate, and provides a 6.25% increment on
test accuracy.

1. Introduction

Federated learning (FL) has emerged as a promising
distributed machine learning paradigm that preserves pri-
vacy [12, 28]. The gist of FL is to keep the clients’ pri-

vate data on the devices and perform local model training
for each client. A central server will collect these locally
trained models to update a global model and then push it
back for the next round of training.

Most existing FL protocols are based on synchronous FL
training (SyncFL), meaning that at each round all clients (or
a selected cohort of clients) are updating their local mod-
els based on the latest update broadcast by the server at the
beginning of that round. Due to the unbalanced commu-
nication or hardware capabilities and non-identical training
data distribution, however, the time consumption for a lo-
cal update can vary substantially from device to device, and
some clients may even be temporarily disconnected dur-
ing the training process [27]. Thus, leaving the server with
two suboptimal choices: to wait for all clients participating
in each round to finish their local training and contribute
to model aggregation (which will cause significant delays
due to stragglers), or to only wait for a subset of the faster
clients (which will ignore all the work and contributions
from slower clients). These critical challenges largely im-
pede the scalability of SyncFL and make it difficult to land
in large-scale cross-device scenarios.

To address those challenges, recent works have proposed
asynchronous federated learning (AsyncFL) [3, 9, 22, 30],
which allows slower clients to continue local training and
contribute to future aggregation rounds. AsyncFL de-
couples client local training from global model aggrega-
tion/updates, as only certain clients would simultaneously
get an update from the cloud server, which decreases the
impact of stragglers. The most recent AsyncFL work –
FedBuff [9,22] – proposes that the server should perform
a gradient aggregation to create a global model once the
number of received local updates reaches a requisite thresh-
old, which is a tunable parameter referred as aggregation
goal. The slower clients can still upload their updates later
as long as they finish local training, but their updates may
not be included based on staleness information.



(a) Participation rate distribution across all de-
vices

(b) Number of participated clients during FL
training rounds

(c) Time-to-accuracy performance for each strat-
egy

Figure 1. Empirical performance of SyncFL, FedBuff, and TimelyFL in CIFAR-10 classification task with FedOpt as server aggregator
(for experiment details and other evaluations see Section 4). TimelyFL includes more devices join in global update during the training
(shown in (a) and (b)). As more devices participate timely, TimelyFL harvests both convergence rate and accuracy boost compared to
FedBuff (shown in (c)).

As highlighted in Figure 1c, we empirically demonstrate
that while FedBuff achieves much faster convergence to
a certain intermediate accuracy, it can, unfortunately, lead
to a substantial drop in final accuracy compared to SyncFL.
The intuitive explanation is that, as FedBuff only accepts
a fixed number of local updates to contribute to the global
model in every communication round, it decreases the par-
allel computing efficiency by blocking other completed lo-
cal updates into global aggregation, which turns them into
stale updates as they would be postponed to the next round
of global update. Moreover, the server aggregator prefers
the fast-speed devices contributing more rounds of train-
ing, whereas low-speed devices may not enjoy the same
frequency of contribution. Even when the slow devices par-
ticipate in global training, they occasionally send the staled
updates that potentially harm the convergence of the global
loss. As shown in Figure 1a and 1b, compared to SyncFL,
FedBuff only includes a fixed number of local updates per
round, and achieves a low participation rate (i.e., the num-
ber of aggregation participated divided by the total number
of aggregation rounds) on average with a biased distribu-
tion, indicating that the inclusiveness of a group has been
diminished, which is the root cause of the test accuracy gap.

To close the gap between SyncFL and AsyncFL, we pro-
pose TimelyFL, a heterogeneity-aware asynchronous fed-
erated learning framework based on adaptive partial train-
ing. One key distinction of TimelyFL from previous
AsyncFL works is that TimelyFL does not set a fixed
number limit to the number of local updates for the global
aggregation per round. Instead, to accommodate a flexi-
ble number of clients joining in the global update, we set
a wall-clock time limit for every aggregation interval. The
aggregation interval equals the kth fastest local update time
among all clients, where k is a tunable parameter. As long
as the device can deliver its model update to the server

within this interval, it will be part of the global aggrega-
tion. To include more available devices to join in global
aggregation without staleness, we introduce partial model
training for clients with low capacity. Instead of fully train-
ing a model, only a part of the model that composes of a
subset of consecutive output-side layers will be assigned to
them for backward pass training. With partial model train-
ing, both local computation time and communication time
will decrease for stale clients.

As shown in Figure 2, TimelyFL unifies the local
training time by adaptively adjusting the workload (i.e.,
the local epoch number and partial training ratio) for each
client, making it feasible for clients to finish the local train-
ing and upload the updates to the server within the calcu-
lated aggregation interval in every communication round.
As such, TimelyFL tackles the system heterogeneity is-
sue and eliminates the staleness of local update reports for
slower devices.

We evaluate the performance of TimelyFL across vari-
ous application tasks, including image classification, speech
recognition, and natural language processing on CIFAR-
10 [13], Google Speech Command [29], and Reddit Com-
ment [1] benchmark datasets, respectively, with two com-
monly used aggregation functions, FedAvg [20] and Fe-
dOpt [23]. Our results show that 66.4% of devices increase
the participation rate and the average participation rate in-
creases by 21.1% in TimelyFL compared to FedBuff.
Under the same scale of the FL system, TimelyFL outper-
forms FedBuff [22] on both time-to-accuracy and final
test accuracy, as shown in Figure 1c.

2. Related Work
Asynchronous Federated Learning. Due to inter-

mittent connectivity and availability among clients, asyn-
chronous FL is a promising solution to tackle device het-



Figure 2. FedBuff (top): Server updates the global model as it receives the requisite number of local updates, and slower devices still
could send their updates at a later time to the server. Fast devices participate more times in the global update, while slow devices contribute
less or no participation. TimelyFL (bottom): Server updates the individual workload every round based on the real-time availability of
each client to include more devices in global update timely, largely increases the participation rate for slow devices.

erogeneity in FL [34]. Most asynchronous FL works con-
centrate on solving the straggler problem, such as [19], [30],
and [31]. PAPAYA [9] and FedBuff [22] have been pro-
posed to mitigate stragglers and enable secure aggregation
jointly. Specifically, the individual updates are not incorpo-
rated by the server as soon they arrive. Instead, the server
will keep receiving local updates in a secure buffer, where
the buffer size is a tunable parameter, and update the global
model whenever the buffer is full. The slow devices can also
send the local update to the server after the global aggrega-
tion. Their update will be considered for the next available
global update. However, practically speaking, fast devices
participate in global updates many more times than slow
devices, and some slow devices cannot join in the global
aggregation even once due to the staleness control.

All of the above approaches assume that the client should
process the local training within the full-model size. As the
slower users participate in the global aggregation, they can
only contribute with stale updates. Some previous works
have pointed out that the effects of the stale update on
distributed machine learning can directly harm the over-
all convergence behavior for the final model, aligned with
the asynchronous distributed optimization theory suggested
by [4, 5, 36]. Moreover, the participation rate is mainly un-
balanced due to the high-speed devices contributing more
rounds to global updates compared to the slow-speed de-
vices. In contrast to previous approaches, we focus on en-
abling all clients to join in the global aggregation effectively
based on their local resources to improve the inclusiveness
of the final global model training.

Partial Model Training. Partial model training can be
viewed as an efficient approach to reduce both communica-

tion and computation workload on the client-side of the FL
system [2]. FedPrune [21] proposes a method that prunes
the global model for each client based on their device capa-
bilities, where slow clients are served smaller models and
faster clients train on larger models. FedPT [25] lever-
ages the partially trainable neural networks on clients to re-
duce communication costs and enable faster training with
a smaller memory footprint and with few implications on
model performance. Other works such as [17, 24, 32] also
address that partial model training can save both communi-
cation cost and memory usage in cross-device FL. All of the
above works maintain the partial ratio for the sub-model of a
certain client as constant during the entire FL training pro-
cess, which neglects that the availability of each device is
not stable throughout the time. In this work, we adaptively
adjust the partial ratio for the local model training based
on the real-time device availability, which aims to improve
both efficiency and utility for each client.

3. Our Method

3.1. Standard Asynchronous Federated Learning

Figure 3 (left) illustrates the standard asynchronous FL
framework. Instead of waiting for all clients to finish the
local model training, the server stores the individual up-
dates from clients in a buffer and then adjusts the global
model once the buffer size reaches the requisite number of
the aggregation goal. Other non-participating devices will
postpone their contribution to global updates in the latter
communication round once they finish the training. Given
that the standard AsyncFL framework suffers from inclu-
siveness constraints described in the introduction section,



Figure 3. Left: The standard AsyncFL framework. The server will initiate the global update once it collects the requisite number of
local updates. The other clients will be postponed to a latter communication round with stale update information. Right: The proposed
TimelyFL. The server will include all the received local updates within aggregation interval to global update. Clients with a weaker
capacity are assigned to train a subset of the model to catch the aggregation interval time.

we propose an efficient AsyncFL framework as shown in
Figure 3 (right) to address this issue.

3.2. TimelyFL Design

3.2.1 Preliminaries

To increase the participation rate for the slow clients, we
aim to design a cross-device asynchronous federated learn-
ing framework where each device can finish the local up-
date within a limited time interval by adaptively adjusting
its workload per round. Here, the workload is defined as the
product of local training epoch number E and partial model
training ratio α. To formalize this, our time utility function,
which considers the local training optimization at the client
side, is designed as follows:

argmax
E,α

(t̃cmp,c × E × α+ t̃com,c × α) ≤ Tk (1)

where t̃cmp,c is the estimated local computation time, and
t̃com,c is the estimated local communication time of the
client c for one epoch of full model training in a certain
communication round calculated by the server. Note that
both t̃cmp,c and t̃com,c are not constant throughout the train-
ing due to the nature of mobile devices. By adjusting E
and α, each device is supposed to participate in the global
aggregation every communication round timely and max-
imally utilize its resource capability within aggregation in-
terval Tk. Therefore, the overall distributed optimization in-
volves more iterations on diverse datasets, leading to faster
convergence.

3.2.2 Adaptive Model Training

Due to resource limitations, some weak devices may not
finish the full model training effectively within the time in-
terval Tk, making them become stale clients in the system

and impeding them from contributing to the global model.
To address this issue, we introduce partial model training to
slow devices. Figure 3 (right) illustrates our approach when
partial model training lands on the device heterogeneity FL
system. Instead of a full training model, weak devices will
be assigned to train partial models composed of a subset of
consecutive output-side layers. During the training, only the
subset of assigned layers will operate both forward pass and
backward propagation, while the other layers will only pro-
cess the forward pass for the input data but be frozen during
weight updates. After local training finishes, the partially-
trained clients only return the update for the assigned layers
to the server for the global aggregation, as the frozen layers
are unchanged during training.

We target to solve two bottlenecks in the cross-device
FL with partial model training, communication and compu-
tation efficiency for the stale clients. In edge computing, the
backward propagation consumes much more time than the
forward pass. Partial model training would essentially re-
duce the training time, as it does not need to calculate gradi-
ents for the frozen parameters. The reduced time is roughly
proportional to the reduced model size, as we empirically
shown in the Appendix A.2.1. Moreover, we only send the
trainable part of updates to the server, substantially improv-
ing communication efficiency, especially when stragglers
with limited network connections exist. By implementing
partial model training, we aim to let low-capacity devices
report their local updates to the server timely without stal-
eness, thereby improving their participation rate during FL
training.

3.2.3 TimelyFL Algorithm

Based on the adaptive model training, we propose the
TimelyFL. TimelyFL tries to unify each client’s round



time to the limited aggregation interval Tk by adaptively
adjusting the workload concerning its real-time availability
per communication round. The workload is defined as the
product of the partial training ratio α and the local epoch
number E. TimelyFL framework is composed of three
main parts, TimelyFL server, local time update, and work-
load scheduling.

Algorithm 1: TimelyFL.
Input: k: the aggregation participation target, n:

the number of training concurrency
1 for r ∈ {0, · · · , R− 1} communication rounds do
2 Global server do:
3 Sample n clients uniformly at random to

define S, and send W r
s to clients in S ;

4 Clients c ∈ S in parallel do:
5 t̃total, t̃cmp, t̃com = LocalTimeUpdate(M) ;
6 Global server do:
7 T r

k ← the kth smallest number in ⟨t̃total⟩ ;
8 ⟨Er⟩, ⟨αr⟩, ⟨trrpt⟩ =

WorkloadScheduling(Tk
r, ⟨t̃cmp⟩, ⟨t̃com⟩) ;

9 Clients c ∈ S in parallel do:
10 W r

c ← adaptive model training ;
11 Global server do:
12 W r+1

s ← aggregate ⟨W r
c ⟩ ;

13 end
Output: WR

s

TimelyFL Server. TimelyFL server is in charge of
adjusting the aggregation interval Tk, local training epoch
E, and partial training ratio α for each device during the
FL training, as summarized in Algorithm 1. The aggre-
gation interval Tk in each round equals the kth smallest
value among ⟨t̃total⟩, as the estimated unit total time for
all clients. At each communication round, TimelyFL
server randomly samples n clients to construct the collec-
tion S and distributes the global model to the clients inside
S, which means n clients would start the local training in
this round, same as the definition of training concurrency
in the FedBuff. Each selected client would perform one
data batch full model training to estimate its time consump-
tion and report it to the server. Then, aggregation interval
time Tk and training hyperparameters for client c (i.e., lo-
cal training epoch number E and partial training ratio α)
would be adjusted based on all selected clients’ status dur-
ing the FL training process. The server would also return a
local computation budget time trpt,c, as the wall-clock time
when the client must report its training status.

Local Time Update. To efficiently accommodate the
capabilities, each participant needs to update its time con-
sumption to the server as summarized in Algorithm 2.
Specifically, each client would collect the real computation

time tcmp from one data batch full model training. The unit
computation time t̃cmp is estimated by tcmp and progress β,
where β is defined as the ratio of trained batch number to
the total data batch number. The local communication time
equals the model’s file size M over the device’s real-time
network bandwidth Bw, as the same setting in the previous
FL system work [14].

Algorithm 2: Local Time Update.
Input: M : the file size of the received global model,

Bw: the real-time network bandwidth
1 tcmp, β ← one data batch training ;
2 t̃com = M/Bw ;
3 t̃cmp = tcmp/β ;
4 t̃total = t̃cmp + t̃com ;

Output: t̃total, t̃com, t̃cmp

Workload Scheduling. TimelyFLwould adjust the lo-
cal epoch number E and partial training ratio α for each
client in every communication round based on the estimated
t̃com,c, t̃cmp,c and aggregation interval Tk, as the relation-
ship shown in 1. If one’s unit total time is smaller than
Tk, then the server would try to maximize its local training
utility and minimize the idle time, as to assign more than
one local epoch training for the next round. Otherwise, the
server would assign less amount of workload to them by de-
creasing the model training ratio α, which guarantees they
can finish at least one local epoch training within the report
time trpt,c and catch up the global aggregation timely. We
summarized the scheduler as Algorithm 3.

Algorithm 3: Workload Scheduling.

Input: Tk: aggregation interval time, ⟨t̃cmp⟩: unit
computation time, ⟨t̃com⟩: unit
communication time

1 for each client c ∈ S in parallel do
2 Ec = max(⌊(Tk − t̃com,c)/t̃cmp,c⌋, 1) ;
3 αc = min(Tk/(t̃com,c + t̃cmp,c), 1) ;
4 trpt,c = Tk − t̃com,c × αc ;
5 end

Output: ⟨E⟩, ⟨α⟩, ⟨trpt⟩

4. Experiment

4.1. Experimental Settings

Datasets, Models, and Tasks. To demonstrate
TimelyFL’s effectiveness across tasks, we evaluate
TimelyFL on three benchmark datasets from various cat-
egories of FL applications:



Table 1. Wall clock training time to reach target validation accuracy on benchmark datasets (lower is better). “> 200 hr” indicates the
target accuracy was not reached.

Dataset Agg. function Accuracy/Loss TimelyFL FedBuff SyncFL

CIFAR-10
FedAvg 60% 5.50 ±2.5% hr 7.86 ±2.1% hr (1.43×) 76.81 ±2.4% hr (13.96×)

70% 12.81 ±1.8% hr > 200 150.98 ±1.7% hr (11.78×)

FedOpt 60% 3.58 ±2.5% hr 5.68 ±2.6% hr (1.59×) 34.87 ±2.3% hr (9.74×)
70% 6.46 ±1.8% hr 18.73 ±2.3% hr (2.89×) 58.84 ±0.8% hr (9.11×)

Google Speech
FedAvg 70% 22.90 ±2.1% hr 42.71 ±2.3% hr (1.87×) 103.07 ±2.1% hr (4.50×)

80% 40.54 ±1.2% hr 70.60 ±2.0% hr (1.74×) 187.93 ±1.2% hr (4.64×)

FedOpt 70% 18.08 ±1.1% hr 30.60 ±1.7% hr (1.69×) 66.13 ±1.2% hr (3.66×)
80% 31.39 ±0.9% hr 53.36 ±0.9% hr (1.70×) 107.38 ±0.7% hr (3.42×)

Reddit
FedAvg 7.0 (ppl) 9.56 ±3.1% hr 15.82 ±2.9% hr (1.65×) 23.36 ±1.5% hr (2.44×)

6.8 (ppl) 17.99 ±0.7% hr > 200 67.32 ±0.5% hr (3.74×)

FedOpt 7.0 (ppl) 10.99 ±2.7% hr 14.09 ±2.8% hr (1.28×) 27.25 ±2.1% hr (2.48×)
6.8 (ppl) 12.86 ±0.6% hr > 200 57.65 ±0.4% hr (4.48×)

1. Image Classification. The CIFAR-10 dataset [13]
consists of 60,000 colour images in 10 classes. There
are 50,000 training images and 10,000 test images. To
follow the realistic non-iid data in FL scenarios, we
partition both datasets into 128 clusters using a Dirich-
let distribution with α equals 0.1. We evaluate the
dataset with ResNet-20 [7] model.

2. Speech Recognition. The Google Command speech
dataset [29] covers 105,829 audio recordings collected
from 2,618 clients. The training set includes record-
ings from 2,112 speakers, the validation set includes
256 speakers, and the test set includes 250 speak-
ers. The data set is composed of 35 common words
from the everyday vocabulary, such as ”Yes”, ”No”,
”Up”, and ”Down”. We evaluate the dataset with
VGG11 [26] model for a 35-class keyword spotting
task. We also evaluate the dataset with a lightweight
model based on one related work [33], and the de-
tailed data-preprocessing methods are presented in Ap-
pendix A.1.2.

3. Natural Language Processing. Reddit [1] consists of
comments from 1,660,820 users in the Reddit forum.
In this dataset, we filter the users with less than 20
words in total and restrict to the 30k most frequently
used words, as the same settings in the previous work
[14]. Then, we train the lightweight Albert [16] model
for the next-word-prediction task. The performance is
evaluated by the perplexity loss (ppl), which lower is
better.

Experiment Setup. We use the FedML platform [6,35],
an open-source framework for FL, to execute our frame-
work. On the CPU/GPU training side, to approach the real-
world heterogeneous client system performance in emula-
tion, we acquire the local computation times of deep learn-

ing models across hundreds of device types from the AI
benchmark [10] and communication times from Network
Measurements on mobiles [8]. These data will be assigned
to the simulated devices we create in the experiment, the
same as the settings in previous FL works [14, 15, 18]. The
distribution of heterogeneous system utility across simu-
lated clients will be shown in the Appendix A.1.2.

Evaluation Metrics and Baselines. We compare
TimelyFL with FedBuff [9, 22] as the AsyncFL base-
line. To demonstrate applicability of TimelyFL, we
present the evaluation results using two aggregation func-
tion, FedAvg [20] and FedOpt [23]. We evaluated the per-
formance of TimelyFL and its baseline using the follow-
ing three metrics: test accuracy/loss, time-to-accuracy, and
participation rate. The participation rate is defined as the
total number of rounds that the device contributes to the
global update divided by the total communication round
number. The rate is distributed in the interval between 0
and 1, which implies how often a client participates in the
global model update.

Hyperparameter Settings. We searched for the client
learning rate in a range from 10−6 to 100, server learn-
ing rate in a range from 10−4 to 100, input batch size in
a range from 8 to 256, and total training round in a range
from 1000 to 10000. The aggregation goal and aggregation
participation target is searched from 30% to 50% of train-
ing concurrency per round for FedBuff and TimelyFL,
respectively. We list the detailed hyperparameter selection
for each experiment setup in the Appendix A.1.3.

4.2. End-to-End Performance

We begin by comparing the end-to-end performance
of TimelyFL on benchmark datasets, conducting on the
CPU/GPU-based training. The training concurrency is set
to 128 for CIFAR-10 related experiments, 20 for Google



(a) CIFAR-10 with FedOpt (b) Google Command with FedOpt (c) Reddit with FedOpt

Figure 4. Time-to-accuracy performance for SyncFL, FedBuff and TimelyFL.

(a) Participation rate for each client

(b) Participation rate distribution

Figure 5. Participation rate evaluation.

speech related experiments, and 100 for Reddit related ex-
periments. The communication round is set to be 2000,
1000, and 500 for CIFAR-10, Google speech, and Red-
dit, respectively. For both FedBuff and TimelyFL, we
set the aggregation goal and aggregation participation tar-
get equal to 50% of training concurrency for a fair com-
parison. We run each experiment five times with different
random seeds and report its mean and standard deviation for
the time consumption in the Table 1.

Speedup of TimelyFL. Given the same heterogeneous
data, TimelyFL achieves the shortest training time to
reach all target accuracy/loss. Table 1 shows the train-
ing time needed to converge to the target accuracy/loss
for each strategy considered. Compared to TimelyFL,
synchronous FL requires 2.44 - 13.96× more times, and

FedBuff needs 1.28 - 2.89× in terms of wall clock time.
Besides of the time-to-accuracy speedup, TimelyFL also
harvests test accuracy increment compared to FedBuff
within the same communication rounds. As the learn-
ing curve in the Figure 4, TimelyFL achieves 3.27%
and 4.01% higher final accuracy on CIFAR-10 and Google
Command, and 0.43 lower ppl on Reddit in comparison
to FedBuff with FedOpt. Under FedAvg, TimelyFL
achieves 4.93% and 6.25% higher final accuracy on CIFAR-
10 and Google Command, respectively, and 0.20 lower ppl
on Reddit compared to FedBuff.

4.3. Understanding the Advantages of TimelyFL

TimelyFL improves inclusiveness1. In Table 1, we
view the SyncFL as the standard baseline that does not in-
clude any asynchronous technique and FedBuff as the
baseline that only introduces a fixed buffer size to accel-
erate the training. Instead of fixed buffer size, TimelyFL
adopts a flexible buffer size controlled by aggregation inter-
val time, which allows more available clients to participate
in the global update per round. As illustrated in Figure 5,
66.4% of devices are able to achieve an increased partici-
pation rate, and the average participation rate per client in-
creases by 21% in TimelyFL compared to FedBuff un-
der the CIFAR-10 experiment setting we implemented in
the last section. The average participation rate increment is
the main reason for the time-to-accuracy speed-up. As each
client joins the global model update more rapidly, the learn-
ing efficiency increases during the FL training. In addi-
tion, combined with more devices contributing to the global
model more frequently, TimelyFL improves inclusiveness
during the model training compared to FedBuff.

The contribution of inclusiveness for model perfor-
mance is especially significant when training on the non-
iid dataset, where each client brings a unique local up-
date to the global model. To demonstrate our point, we
test both TimelyFL and Fedbuff with FedAvg as an

1In this paper, the inclusiveness increment represents the participation
rate increment in the FL training.



Table 2. Wall clock training time to reach target validation accuracy on benchmark datasets (lower is better).

Dataset Agg. function Accuracy TimelyFL FedBuff SyncFL

Google Speech
FedAvg 70% 2.23 ±2.1% hr 3.55 ±1.9% hr (1.59×) 18.37 ±0.6% hr (8.24×)

80% 4.16 ±1.3% hr 6.13 ±1.4% hr (1.47×) 32.46 ±0.4% hr (7.80×)

FedOpt 70% 0.48 ±1.7% hr 1.66 ±1.0% hr (3.46×) 4.61 ±2.1% hr (9.60×)
80% 1.13 ±1.2% hr 3.25 ±0.8% hr (2.88×) 7.47 ±1.1% hr (6.61×)

Figure 6. Time-to-accuracy performance under different non-iid
distribution.

Figure 7. TimelyFL performance under adaptive and non-
adaptive workload schedule.

aggregator on the CIFAR-10 dataset using a non-iid parti-
tion. As shown in Figure 6, as the parameter for Dirich-
let distribution goes up, the convergence-time gap be-
tween TimelyFL and Fedbuff increases as well, which
demonstrates our advantage for non-iid data training com-
pared to Fedbuff.
TimelyFL is heterogeneity-aware. Under cross-

device federated learning, most participating entities have
limited computing capability and intermittent connectivity.
As such, it could not be guaranteed that devices would
complete their training workload in every communication
round as assigned initially. To effectively resist the dis-
turbance, the training hyperparameters, such as the par-

tial training ratio and local epoch number, should be adap-
tively scheduled based on the real-time capability of each
device. To demonstrate our strategy, we test the training un-
der the TimelyFL framework both with and without adap-
tive workload scheduling on the CIFAR-10 dataset, with
the training concurrency equals to 64. Figure 7 shows the
learning curves for both scenarios. With adaptive workload
scheduling, TimelyFL saves 4.09× convergence time to
50% accuracy and 10.89% test accuracy increment, which
illustrates that real-time workload scheduling essentially
improves both learning efficiency and accuracy.

TimelyFL is effective on the lightweight model. To
investigate the effectiveness of the lightweight model on
the TimelyFL framework, we implement one lightweight
model on the Google Speech Commands dataset for the
keyword spotting task. Following one previous work [33],
we choose the model that consists of two convolution lay-
ers followed by one Gated Recurrent Units (GRU) layer.
An average pooling layer is connected to the GRU output,
which is then fed through two dense layers to generate the
predictions. The parameter size of this model is equal to
79044. We adopt the same baseline selections as in Sec-
tion 4. The hyperparameters for the experiments are listed
in Section A.1.3. The experiment results are summarized
in Table 2. TimelyFL achieves a higher convergence speed
compared with the other two strategies before reaching the
test accuracy, which confirms the simulation results elabo-
rated in Section 4.2 and demonstrates the effectiveness of
the TimelyFL on the lightweight model architecture.

5. Conclusion

In this work, we propose TimelyFL, a heterogeneity-
aware asynchronous FL scheme with adaptive partial train-
ing. To include more available devices joining in global ag-
gregation in a timely manner, TimelyFL introduces par-
tial model training to the slow-speed devices. Moreover,
TimelyFL is resilient to system heterogeneity by adjusting
the local training workload based on the real-time resource
capabilities of each client during FL training. Our exper-
imental results demonstrate that TimelyFL could outper-
form major AsyncFL proposals in terms of both time-to-
accuracy and test accuracy.



References
[1] Reddit Comment Data. https://files.pushshift.

io/reddit/comments/. 2, 6, 11
[2] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang.

FedRolex: Model-Heterogeneous Federated Learning with
Rolling Sub-Model Extraction. In Conference on Neural In-
formation Processing Systems (NeurIPS), 2022. 3

[3] Dmitrii Avdiukhin and Shiva Prasad Kasiviswanathan. Fed-
erated learning under arbitrary communication patterns. In
ICML, 2021. 1

[4] Wei Dai, Yi Zhou, Nanqing Dong, H. Zhang, and Eric P.
Xing. Toward understanding the impact of staleness in dis-
tributed machine learning. ArXiv, abs/1810.03264, 2019. 3

[5] Niv Giladi, Mor Shpigel Nacson, Elad Hoffer, and Daniel
Soudry. At stability’s edge: How to adjust hyperparame-
ters to preserve minima selection in asynchronous training
of neural networks? ArXiv, abs/1909.12340, 2020. 3

[6] Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi
Wang, Xiaoyang Wang, Praneeth Vepakomma, Abhishek
Singh, Han Qiu, Li Shen, Peilin Zhao, Yan Kang, Yang
Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram,
and Salman Avestimehr. Fedml: A research library
and benchmark for federated machine learning. ArXiv,
abs/2007.13518, 2020. 6

[7] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016. 6, 11

[8] Junxian Huang, Cheng Chen, Yutong Pei, Zhaoguang Wang,
Zhiyun Qian, Feng Qian, Birjodh Tiwana, Qiang Xu, Z Mao,
Ming Zhang, et al. Mobiperf: Mobile network measurement
system. Technical Report. University of Michigan and Mi-
crosoft Research, 2011. 6

[9] Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu,
Michael G. Rabbat, Ashkan Yousefpour, Carole-Jean Wu,
Hongyuan Zhan, Pavel Ustinov, Harish Srinivas, Kaikai
Wang, Anthony Shoumikhin, Jesik Min, and Mani Malek.
Papaya: Practical, private, and scalable federated learning.
ArXiv, abs/2111.04877, 2021. 1, 3, 6

[10] Andrey D. Ignatov, Radu Timofte, Andrei Kulik, Seungsoo
Yang, Ke Wang, Felix Baum, Max Wu, Lirong Xu, and
Luc Van Gool. Ai benchmark: All about deep learning on
smartphones in 2019. 2019 IEEE/CVF International Confer-
ence on Computer Vision Workshop (ICCVW), pages 3617–
3635, 2019. 6, 11

[11] Xiaotang Jiang, Huan Wang, Yiliu Chen, Ziqi Wu, Lichuan
Wang, Bin Zou, Yafeng Yang, Zongyang Cui, Yuezhi Cai,
Tianhang Yu, Chengfei Lv, and Zhihua Wu. Mnn: A univer-
sal and efficient inference engine. ArXiv, abs/2002.12418,
2020. 12

[12] Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, et al. Advances and open problems in federated learn-
ing. Foundations and Trends® in Machine Learning, 14(1–
2):1–210, 2021. 1

[13] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009. 2, 6, 11

[14] Fan Lai, Yinwei Dai, Xiangfeng Zhu, and Mosharaf Chowd-
hury. Fedscale: Benchmarking model and system perfor-
mance of federated learning. Proceedings of the First Work-
shop on Systems Challenges in Reliable and Secure Feder-
ated Learning, 2021. 5, 6, 11

[15] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and
Mosharaf Chowdhury. Oort: Efficient federated learning via
guided participant selection. In OSDI, 2021. 6

[16] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin
Gimpel, Piyush Sharma, and Radu Soricut. Albert: A lite
bert for self-supervised learning of language representations.
ArXiv, abs/1909.11942, 2020. 6, 11

[17] Sunwoo Lee, Tuo Zhang, Chaoyang He, and Salman Aves-
timehr. Layer-wise adaptive model aggregation for scalable
federated learning. ArXiv, abs/2110.10302, 2021. 3

[18] Chenning Li, Xiao Zeng, Mi Zhang, and Zhichao Cao. Pyra-
midFL: A Fine-grained Client Selection Framework for Effi-
cient Federated Learning. In ACM International Conference
on Mobile Computing and Networking (MobiCom), 2022. 6

[19] Xingyu Li, Zhe Qu, Bo Tang, and Zhuo Lu. Stragglers are
not disaster: A hybrid federated learning algorithm with de-
layed gradients. ArXiv, abs/2102.06329, 2021. 3

[20] H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hamp-
son, and Blaise Agüera y Arcas. Communication-efficient
learning of deep networks from decentralized data. In AIS-
TATS, 2017. 2, 6

[21] Muhammad Tahir Munir, Muhammad Mustansar Saeed, Ma-
had Farah Ali, Zafar Ayyub Qazi, and Ihsan Ayyub Qazi.
Fedprune: Towards inclusive federated learning. ArXiv,
abs/2110.14205, 2021. 3

[22] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan
Yousefpour, Michael G. Rabbat, Mani Malek, and Dzmitry
Huba. Federated learning with buffered asynchronous aggre-
gation. ArXiv, abs/2106.06639, 2021. 1, 2, 3, 6, 11

[23] Sashank J. Reddi, Zachary B. Charles, Manzil Zaheer,
Zachary Garrett, Keith Rush, Jakub Konecný, Sanjiv Ku-
mar, and H. B. McMahan. Adaptive federated optimization.
ArXiv, abs/2003.00295, 2021. 2, 6

[24] Jae Hun Ro, Theresa Breiner, Lara McConnaughey,
Mingqing Chen, Ananda Theertha Suresh, Shankar Kumar,
and Rajiv Mathews. Scaling language model size in cross-
device federated learning. ArXiv, abs/2204.09715, 2022. 3

[25] Hakim Sidahmed, Zheng Xu, Ankush Garg, Yuan Cao, and
Mingqing Chen. Efficient and private federated learning with
partially trainable networks. ArXiv, abs/2110.03450, 2021. 3

[26] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2015. 6, 11

[27] Saeed Vahidian, Sreevatsank Kadaveru, Woo-Ram Baek,
Weijia Wang, Vyacheslav Kungurtsev, Chen Chen, Mubarak
Shah, and Bill Lin. When do curricula work in federated
learning? ArXiv, abs/2212.12712, 2022. 1

[28] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi,
H Brendan McMahan, Maruan Al-Shedivat, Galen Andrew,
Salman Avestimehr, Katharine Daly, Deepesh Data, et al.

https://files.pushshift.io/reddit/comments/
https://files.pushshift.io/reddit/comments/


A field guide to federated optimization. arXiv preprint
arXiv:2107.06917, 2021. 1

[29] Pete Warden. Speech commands: A dataset for limited-
vocabulary speech recognition. ArXiv, abs/1804.03209,
2018. 2, 6, 11

[30] Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten
Maple, and Stephen A. Jarvis. Safa: A semi-asynchronous
protocol for fast federated learning with low overhead. IEEE
Transactions on Computers, 70:655–668, 2021. 1, 3

[31] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Asyn-
chronous federated optimization. ArXiv, abs/1903.03934,
2019. 3

[32] Tien-Ju Yang, Dhruv Guliani, Franccoise Beaufays, and Gio-
vanni Motta. Partial variable training for efficient on-device
federated learning. ArXiv, abs/2110.05607, 2021. 3

[33] Tuo Zhang, Tiantian Feng, Samiul Alam, Sunwoo Lee, Mi
Zhang, Shrikanth S. Narayanan, and Salman Avestimehr.
Fedaudio: A federated learning benchmark for audio tasks.
ArXiv, abs/2210.15707, 2022. 6, 8, 11

[34] Tuo Zhang, Lei Gao, Chaoyang He, Mi Zhang, Bhaskar Kr-
ishnamachari, and Salman Avestimehr. Federated learning
for internet of things: Applications, challenges, and oppor-
tunities. IEEE Internet of Things Magazine (IEEE IoTM),
2022. 3

[35] Tuo Zhang, Chaoyang He, Tian-Shya Ma, Mark Ma, and
Salman Avestimehr. Federated learning for internet of things.
Proceedings of the 19th ACM Conference on Embedded Net-
worked Sensor Systems, 2021. 6

[36] Zhengyuan Zhou, P. Mertikopoulos, Nicholas Bambos, Pe-
ter W. Glynn, Yinyu Ye, Li-Jia Li, and Li Fei-Fei. Dis-
tributed asynchronous optimization with unbounded delays:
How slow can you go? In ICML, 2018. 3



A. Appendix
A.1. Experiment Settings

A.1.1 Computing Infrastructure

The simulation experiments are conducted on a computing
server with one GPU. The server is equipped with AMD
EPYC 7502 32-Core Processor and 1024G memory. The
GPU is NVIDIA RTX A4000.

A.1.2 Datasets and Models

AI Benchmark. AI Benchmark [10] is a public dataset
that is designed for evaluating the performance of impor-
tant AI tasks on mobile devices. AI Benchmark provides
diverse models’ training and inference speed across vari-
ous devices, including chipsets from Qualcomm, HiSilicon,
Samsung, MediaTek, and Unisoc. Figure 8a illustrates the
distribution of the computation efficiency across clients in
the AI Benchmark. The slowest device would take around
13.3× computational times than the fastest device for the
same task. To approach the dynamic availability of devices,
such as low-power mode or multi-process running, we de-
sign a coefficient w as follows:

x ∼ N (1, 0.3)

w =


1 x ≤ 1

x 1 ≤ x ≤ 1.3

1.3 x ≥ 1.3

(2)

In this work, we assign the values from AI Benchmark as
base computation time to the clients to emulate real devices,
analogous to the usage in FedScale [14]. We also generate
the coefficient w every round for each client to simulate the
natural disturbance to availability. The local computation
time in each round equals the product of w and the base
computation time for each client.

MobiPerf. MobiPerf is a public dataset for measuring
network performance on mobile devices, which collects the
available cloud-to-edge network throughput of over 100k
worldwide mobile clients. Figure 8b illustrates the distribu-
tion of communication consumption of MobiPerf. Note that
the best communication channel can be 200× better than the
worst one. We randomly assign a value from MobiPerf to
a simulated device every communication round to emulate
intermittent connectivity in a real deployment.

CIFAR-10. The CIFAR-10 dataset [13] consists of
60,000 32x32 colour images in 10 classes. There are 50,000
training images and 10,000 test images. We normalize the
images by the mean and standard deviation of the dataset.
We evaluate the dataset with ResNet-20 [7] model. To
emulate the realistic non-iid distribution, we partition the
dataset using a Dirichlet distribution, following the previ-
ous works [22].

Google Command. The Google Command speech
dataset [29] covers 105,829 audio recordings collected from
2,618 clients. The training set includes recordings from
2,112D speakers, the validation set includes 256 speakers,
and the test set includes 250 speakers. The data set is com-
posed of 35 common words from the everyday vocabulary,
such as ”Yes”, ”No”, ”Up”, and ”Down”. We evaluate the
dataset with VGG11 [26] model and a lightweight model
based on one related work [33] for a 35-class keyword spot-
ting task.

For the VGG11-based experiment on Google Speech
Commands, we use the Mel-frequency cepstral coefficients
(MFCC) method to pre-process the raw audio data. Specif-
ically, a sequence of overlapping Hamming windows is ap-
plied to the raw speech signal with a time shift of 10 ms and
window size of 25ms. The MFCC is used for training the
keyword spotting model.

For the lightweight model experiment, to pre-process
the raw audio data, a sequence of overlapping Hamming
windows is applied to the raw speech signal with a time
shift of 10 ms. We calculate the discrete Fourier trans-
form (DFT) with a frame length of 1,024 and compute
the Mel-spectrogram with a dimension of 128. The Mel-
spectrogram is used for training the keyword spotting
model. We follow [33] for this setup.

Reddit. Reddit [1] consists of comments from 1,660,820
users in the Reddit forum. Each client corresponds to a user,
whose data are all of their personal posts. Thus it follows
the real non-iid data under FL scenarios. In this dataset, we
filter the users with less than 20 words in total and restrict
to the 30k most frequently used words, as the same settings
in the previous work [14]. Then, we train the lightweight
Albert [16] model for the next-word-prediction task. The
performance is evaluated by the perplexity loss (ppl), which
lower is better.

A.1.3 Hyperparameter Settings

We searched for the client learning rate in a range from
10−6 to 100, server learning rate in a range from 10−4 to
100, input batch size in a range from 8 to 256, and total
training round in a range from 1000 to 10000. The aggre-
gation goal and aggregation participation target is searched
from 30% to 50% of training concurrency per round for
FedBuff and TimelyFL, respectively.

After hyper-parameter searching, we fixed the follow-
ing hyperparameters: for CIFAR-10 related experiments,
the total training round is 2000, and training concurrency
is 128 for all setups. The aggregation goal and aggregation
participation target is 50% of the training concurrency for
both FedBuff and TimelyFL. For CIFAR-10 with Fe-
dAvg related experiments, the batch size is 8, and the client
learning rate is 0.8. For CIFAR-10 with FedOpt related ex-



(a) Diverse computation efficiency in AI Benchmark

(b) Diverse communicate efficiency in Mobiperf

Figure 8. Heterogeneous system utility across simulated clients.

periments, the batch size is 10, the client learning rate is
0.03, and the server learning rate is 0.001 with ADAM as
server optimizer.

For Google command related experiments with VGG11
model, the total training round is 1000, and training con-
currency is 20 for all setups. The aggregation goal and ag-
gregation participation target is 50% of the training concur-
rency for both FedBuff and TimelyFL. The batch size
is 32, and the client learning rate is 0.01. Under the FedOpt,
the server learning rate is 0.001 with ADAM as server opti-
mizer.

For Google command related experiments with the
lightweight model, the total training round is 5000, and
training concurrency is 106 for all setups. The aggrega-
tion goal and aggregation participation target is 50% of the
training concurrency for both FedBuff and TimelyFL.
The batch size is 16, and the client learning rate is 0.1 under
the FedAvg. Under the FedOpt, the client learning rate is
0.05 for synchrounous FL and TimelyFL, and the client
learning rate is 0.2 for FedBuff. The server learning rate
is 0.001 with ADAM as server optimizer for all setups.

Finally, for Reddit related experiments, the total training
round is 500, and training concurrency is 20 for all setups.
The aggregation goal and aggregation participation target
is 50% of the training concurrency for both FedBuff and
TimelyFL. The batch size is 20, and the client learning
rate is 0.0005 for SyncFL and TimelyFL, and 0.0003 for
FedBuff. Under the FedOpt, the server learning rate is
0.001 with ADAM as server optimizer.

Figure 9. Partial training system performance in on real edge de-
vices.

A.2. System Performance

A.2.1 Partial Training Performance

Due to different parameters and tensor shapes among dif-
ferent layers, the training time (computational time of the
forward and backward propagation) is not strictly linear to
the trainable layer numbers and varies with the model struc-
tures. For simplicity and generality, we define the training
time of the partial model as the linear multiplication of the
training time of the full model and the training ratio. This
linear relationship is verified through our real measurement
on a Samsung Galaxy S20 with ResNet-20 model using
MNN [11] library. As shown in Figure 9, most of the test
results are below the linear straight line (except the ratio is
below 0.2), justifying the rationality of our choice.


	. Introduction
	. Related Work
	. Our Method
	. Standard Asynchronous Federated Learning
	. TimelyFL Design
	Preliminaries
	Adaptive Model Training
	TimelyFL Algorithm


	. Experiment
	. Experimental Settings
	. End-to-End Performance
	. Understanding the Advantages of TimelyFL

	. Conclusion
	. Appendix
	. Experiment Settings
	Computing Infrastructure
	Datasets and Models
	Hyperparameter Settings

	. System Performance
	Partial Training Performance



