
FedSEA: A Semi-Asynchronous Federated Learning
Framework for Extremely Heterogeneous Devices

Jingwei Sun1, Ang Li1, Lin Duan1, Samiul Alam4,3, Xuliang Deng1, Xin Guo2,
Haiming Wang2, Maria Gorlatova1, Mi Zhang3,4, Hai Li1, Yiran Chen1

1Department of Electrical and Computer Engineering, Duke University 2Lenovo Research
3The Ohio State University 4Michigan State University

1{jingwei.sun, ang.li630, lin.duan, xuliang.deng, maria.gorlatova, hai.li, yiran.chen}@duke.edu,
2{guoxin9, wanghm14}@lenovo.com,3{mizhang.1}@osu.edu,4{alamsami}@msu.edu

ABSTRACT
Federated learning (FL) has attracted increasing attention as a promis-
ing technique to drive a vast number of edge devices with artificial
intelligence. However, it is very challenging to guarantee the effi-
ciency of a FL system in practice due to the heterogeneous com-
putation resources on different devices. To improve the efficiency
of FL systems in the real world, asynchronous FL (AFL) and semi-
asynchronous FL (SAFL) methods are proposed such that the server
does not need to wait for stragglers. However, existing AFL and
SAFL systems suffer from poor accuracy and low efficiency in re-
alistic settings where the data is non-IID distributed across devices
and the on-device resources are extremely heterogeneous. In this
work, we propose FedSEA – a semi-asynchronous FL framework for
extremely heterogeneous devices. We theoretically disclose that the
unbalanced aggregation frequency is a root cause of accuracy drop
in SAFL. Based on this analysis, we design a training configuration
scheduler to balance the aggregation frequency of devices such that
the accuracy can be improved. To improve the efficiency of the sys-
tem in realistic settings where the devices have dynamic on-device
resource availability, we design a scheduler that can efficiently pre-
dict the arriving time of local updates from devices and adjust the
synchronization time point according to the devices’ predicted ar-
riving time. We also consider the extremely heterogeneous settings
where there exist extremely lagging devices that take hundreds of
times as long as the training time of the other devices. In the real
world, there might be even some extreme stragglers which are not
capable of training the global model. To enable these devices to
join in training without impairing the systematic efficiency, Fed-
SEA enables these extreme stragglers to conduct local training on
much smaller models. Our experiments show that compared with
status quo approaches, FedSEA improves the inference accuracy
by 44.34% and reduces the systematic time cost and local training
time cost by 87.02× and 792.9×. FedSEA also reduces the energy
consumption of the devices with extremely limited resources by
752.9×.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’22, November 6–9, 2022, Boston, MA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9886-2/22/11. . . $15.00
https://doi.org/10.1145/3560905.3568538

CCS CONCEPTS
• Computing methodologies → Machine learning; • Human-
centered computing→ Ubiquitous and mobile computing.

KEYWORDS
federated learning, device heterogeneity, edge intelligence

ACM Reference Format:
Jingwei Sun1, Ang Li1, Lin Duan1, Samiul Alam4,3, Xuliang Deng1, Xin
Guo2,, Haiming Wang2, Maria Gorlatova1, Mi Zhang3,4, Hai Li1, Yiran
Chen1. 2022. FedSEA: A Semi-Asynchronous Federated Learning Frame-
work for Extremely Heterogeneous Devices. In The 20th ACM Confer-
ence on Embedded Networked Sensor Systems (SenSys ’22), November
6–9, 2022, Boston, MA, USA. ACM, Boston, MA, USA, 14 pages. https:
//doi.org/10.1145/3560905.3568538

1 INTRODUCTION
Federated learning (FL) [4, 10, 25, 27, 35, 36] has attracted increas-
ing attention as a promising technique to empower a vast number
of edge devices with artificial intelligence [11, 22, 33, 39]. FL en-
ables massive devices to train a shared model in a federated fashion
without transferring their local data. A central server coordinates
the FL process, where each participating device communicates only
the model parameters with the central server while keeping local
data private. Currently, most FL systems follow synchronous proto-
cols [19, 27, 28] which are called synchronous FL. In synchronous
FL, all the selected devices are required to complete local training
and the server will not perform the aggregation until receiving all
the local updates for each communication round. One representative
synchronous FL framework is FedAvg [27]. However, due to the
computational resource heterogeneity of edge devices in practice,
the time needed to complete local training may vary significantly
across devices. By applying the synchronous protocol, the server is
required to wait for slow devices, i.e., stragglers, in each communi-
cation round, which decreases the efficiency of FL. In addition, in
realistic settings, the devices may face the risk of network crash and
power-off, which makes them fail to complete training and upload
the updates. In such cases, the synchronous protocol will lead to
extremely long waiting time for the server and poor scalability of
FL systems.

Status Quo and their Limitations. To improve the efficiency of FL
systems, FL algorithms with asynchronous settings are proposed and
can be categorized into two types: asynchronous FL (AFL) [5, 24,
31, 38] and semi-asynchronous FL (SAFL) [6, 26, 34, 37, 40]. The
overview of synchronous, asynchronous, and semi-asynchronous

https://doi.org/10.1145/3560905.3568538
https://doi.org/10.1145/3560905.3568538
https://doi.org/10.1145/3560905.3568538

SenSys ’22, November 6–9, 2022, Boston, MA, USA
Jingwei Sun1, Ang Li1, Lin Duan1, Samiul Alam4,3, Xuliang Deng1, Xin Guo2,

Haiming Wang2, Maria Gorlatova1, Mi Zhang3,4, Hai Li1, Yiran Chen1

Figure 1: The workflow of different FL protocols.

FL protocols is shown in Figure 1. In asynchronous FL, the server
updates the global model as soon as it collects a local update. By
applying asynchronous protocols, the efficiency can be improved
significantly since the server does not need to wait for the stragglers.
However, asynchronous FL always faces two drawbacks: (1) the
communication cost of asynchronous FL is much higher compared
to synchronous FL due to the frequent communication between the
server and devices; (2) the asynchronous protocol leads to the cata-
strophic staleness of the slow devices, especially under large-scale
FL, which introduces errors into the global model and causes accu-
racy drop. To improve efficiency and mitigate the unacceptable stal-
eness, semi-asynchronous FL was proposed. In semi-asynchronous
FL, there are synchronous time points but devices are not required
to synchronize with the server in every communication round. By
requiring a part of the devices to synchronize with the server, semi-
asynchronous FL improves the training efficiency because the server
does not need to wait for the slow devices. At the same time, the
communication cost of semi-asynchronous FL is controllable by
adjusting the synchronization frequency. Semi-asynchronous FL
looks more promising in efficiency and performance compared with
synchronous and asynchronous FL frameworks. However, existing
semi-asynchronous FL frameworks still have some fatal design flaws
that set obstacles to achieving high efficiency and hinder the conver-
gence of the global model in realistic settings.

The key to improving the efficiency of semi-asynchronous FL is
an effective scheduler of synchronization. Existing semi-asynchronous
FL frameworks follow two methodologies to conduct synchroniza-
tion. The first methodology is that the system sets a fixed time
interval 𝑇𝑓 𝑖𝑥 [34, 37]. The server conducts aggregation to update
the global model and lets a part of devices synchronize with the
server every 𝑇𝑓 𝑖𝑥 . The second type is that the server holds a cache
storing the local updates uploaded from the devices [26, 40]. When
the cache is full, the server conducts aggregation based on the local
updates stored in the cache and requires a part of the devices to
synchronize with the server by distributing the new global model
to these devices. In realistic settings where computation power and
communication latency on the edge are dynamic along with the time
and heterogeneous across devices, both synchronization methods
cannot guarantee efficiency. For the first methodology, it might be
possible to derive a suitable 𝑇𝑓 𝑖𝑥 by profiling all the devices before
training. However, the availability of computation and communi-
cation resources on devices tends to change along with training,
and it is unrealistic to find a fixed 𝑇𝑓 𝑖𝑥 suitable for each round of
training. A large𝑇𝑓 𝑖𝑥 will make the server wait for long time periods
without receiving any local update. A small 𝑇𝑓 𝑖𝑥 will aggravate the
staleness of slow devices and increases communication cost. The
second methodology of using a cache mechanism is adaptive to the
resource changes during training, but it cannot solve the problem

caused by resource heterogeneity across devices. Suppose the server
has a cache length of 100 updates, it might take 1 minute to receive
95 local updates but more than half an hour to receive the rest 5
due to the slow training and bad communication conditions on these
devices, which makes the system inefficient.

Besides low efficiency caused by the design of the synchroniza-
tion scheduler, existing SAFL algorithms also suffer from accuracy
drops in the global model under non-IID settings. To mitigate the
straggling problems caused by the stale updates, existing SAFL ei-
ther applies a weight decaying mechanism [6, 24, 31, 34, 38, 40]
which assigns a smaller weight to the stale model updates during
aggregation, or abandons the model updates that are too stale alto-
gether [14, 26, 30, 37]. These methods are promising in IID settings
but would cause accuracy degradation in non-IID settings. In the real
world, there will be some slow devices holding unique and important
data. Always decaying or abandoning the updates of these slow de-
vices during aggregation will degrade the global model performance
on the important data they hold. With the increase in device hetero-
geneity, there will be extremely lagging devices that are hundreds of
times slower than the other devices to train and upload the local mod-
els to the server. Furthermore, these devices might be incapable to
train the global model (i,e, limited energy, not enough computation
power, etc.). Current SAFL designs will exclude these extremely
lagging devices from contributing to the global model.

Overview of the Proposed Approach. Motivated by the limitations
of existing works, we propose FedSEA, a unified SAFL framework
that simultaneously (1) improves the time efficiency in realistic
settings; (2) mitigates the accuracy drop caused by applying the
semi-asynchronous protocol; and (3) enables extremely lagging
devices to contribute to the training of the global model.

To achieve the first goal, we design a practical synchronization
scheduler that can reduce the wasted waiting time of the server.
Different from existing designs where the server sets a fixed time
interval or applies a cache of model updates, our synchronization
scheduler can dynamically adapt the time point of synchronization
for each round. The server can predict the arriving time of local
model updates and conduct synchronization at a time point when
the benefit of continuing waiting (i,e, the number of arriving devices
within unit time) degrades significantly.

To achieve the second goal, we first investigate the cause of the
accuracy drop in SAFL. We theoretically show that besides the
straggling problem of stale model updates, unbalanced aggregation
frequency across devices is also an essential cause of performance
degradation on the global model. Thus, we design a module that
can schedule local training configurations of devices and is able to
simultaneously mitigate the problem of staleness and unbalanced ag-
gregation frequency. The intuition is that the slow devices train fewer
steps such that they can upload updates more frequently. We also em-
pirically and theoretically show that the accuracy drop is mitigated
after applying the scheduler of local training configurations.

To achieve the third goal, FedSEA enables the extremely lagging
devices to train smaller models rather than the global model. There
are some works enabling the slow devices to train heterogeneous
models [19, 20], but the small models in these works are subnets
of the global model which limits the improvement of computation

FedSEA: A Semi-Asynchronous Federated Learning Framework for Extremely Heterogeneous Devices SenSys ’22, November 6–9, 2022, Boston, MA, USA

Table 1: Comparison between FedSEA and existing AFL/SAFL
frameworks.

Method
Time Efficiency in
Realistic Settings

High Global Model
Performance

Participation of
Extreme Stragglers

AsyncFL [38] ✓ X X
FedCS [30] ✓ X X
SAFA [37] X X X
FedSEA " " "

reduction. FedSEA does not have this limitation of the model archi-
tecture. The extremely lagging devices can train an MLP while the
global model is CNN or LSTM, which reduces the computation cost
of the lagging devices significantly.

System Implementation and Experimental Results. We imple-
mented FedSEA and conducted extensive experiments to evaluate
its performance. We applied FedSEA to develop three representa-
tive deep learning applications on edge devices. These applications
are developed based on five datasets that are widely used in the com-
puter vision and mobile sensing community. In addition, we also
implemented four status quo approaches for comparisons, including
FedAvg, FedCS, AsyncFL, and SAFA. Our results show that:

• FedSEA outperforms the compared baselines, improving
inference accuracy by 11.8%-44.34% and reducing time cost
by 1.27×-87.2×.
• FedSEA significantly reduces on-board resource cost caused

by local training. Specifically, slow devices in FedSEA achieve
as much as 792.9× reduction in local training time, 4.9× re-
duction on memory footprint, and 752.9× savings on energy
consumption.

Summary of Contributions. To the best of our knowledge, FedSEA
represents the first SAFL framework that practically improves time
efficiency and global model performance under realistic settings
where the devices are extremely heterogeneous and have dynamic
on-board resource availability. We provide a theoretical explanation
of the accuracy drop of the global model when applying for existing
SAFL works, and how FedSEA mitigates this accuracy degradation.
Table 1 provides a comparison between FedSEA and status quo AFL
and SAFL methods. FedSEA proposes a series of novel techniques
that effectively address the limitations of status quo methods. We
believe our work represents a significant step towards enhancing the
efficiency of FL systems.

2 BACKGROUND AND MOTIVATION
2.1 Heterogeneous and Dynamic Resource

Availability on Devices
In the real world, the devices participating in FL are heterogeneous
in terms of on-board resources. In addition, the edge devices usually
run several primary tasks besides FL tasks, which leads to dynamic
on-board resource availability. Such heterogeneous and dynamic
on-board resource availability makes the synchronous protocol un-
realistic when deploying FL frameworks in practice. To show the
heterogeneous and dynamic resource across devices and the ineffi-
ciency of synchronous FL, we conduct experiments on two common
edge devices: Jetson TX2 and Raspberry Pi 4. We train a LeNet-5

using CIFAR10 on these two devices. We set the batch size as 10
and measure the time cost of one step of training. To evaluate the
impact of dynamic resource availability on the training time, we run
two primary tasks on Jetson TX2: playing a 4-K video and conduct-
ing real-time object detection. The training time of two devices in
different statuses is shown in Figure 2. It is shown that Raspberry
Pi 4 needs nearly 100× longer time to complete one step of training
compared with the idle Jetson TX2. When conducting the object
detection application, the Jetson TX2 is nearly 10× slower than
the idle status to complete training. Such huge heterogeneous and
dynamic resource availability on board makes it necessary to apply
asynchronous and semi-asynchronous protocols when deploying FL
systems in real life.

0.215 0.51

2.14

19.53

0

5

10

15

20

T
ra

in
in

g
 T

im
e

(s
)

 Jetson TX2 (idle)

 Jetson TX2 (video)

 Jetson TX2 (object detection)

 Raspberry Pi 4

Figure 2: Time cost of one step of training on different devices.

2.2 Performance Degradation of Federated
Learning with Asynchronous Settings

To reduce the problem of staleness in asynchronous FL, existing
works apply weight decaying mechanisms that assign a smaller
weight to the stale model updates during aggregation or abandon the
model updates that are too stale from training. These methods are
promising in IID settings but would cause accuracy degradation in
non-IID settings. In the real world, there may be some slow devices
holding unique and important data. Always decaying or abandoning
the updates of these slow devices during aggregation will degrade
the global model performance on the long-tail data they hold. We
conduct experiments of FedAsync and SAFA on MNIST and CIFAR
under non-IID settings. The evaluation is based on two types of de-
vices: fast devices which are idle Jetson TX2 and slow devices which
are Jetson TX2 conducting real time object detection. We partition
the data following the configurations in [19], but only slow devices
have access to the data of class 9-10 such that the slow devices hold
unique classes of data. We set local epoch 𝐸 as 1 and batch size 𝐵 as
32. We apply SGD optimizer and set the learning rate [to 0.01. In
each synchronization, the server randomly selects 10 idle devices to
participate in training. We apply simple CNNs with 2 convolutional
layers to both datasets. We conduct 1000 communication rounds of
training for MNIST and 2000 communication rounds for CIFAR10.
The results are shown in Table 2. It is shown that there is a significant
accuracy drop when applying the weight decaying mechanism under
non-IID settings.

SenSys ’22, November 6–9, 2022, Boston, MA, USA
Jingwei Sun1, Ang Li1, Lin Duan1, Samiul Alam4,3, Xuliang Deng1, Xin Guo2,

Haiming Wang2, Maria Gorlatova1, Mi Zhang3,4, Hai Li1, Yiran Chen1

Table 2: Results of FedAsync and SAFA under non-IID settings.

Methods MNIST CIFAR10

FedAvg 96.63 55.84
SAFA 93.85 51.52
FedAsync 83.26 43.14

①

①

①

②

②

②

③ ④

④

④

③

③

…

⑤
Aggregation

…

Device 1

Device 2

Device N

Server

Figure 3: Overview of FedSEA.

2.3 The Exclusion of Extremely Lagging Devices
Due to the huge device heterogeneity in the real world, there are
some devices with extremely limited computation and communi-
cation resources. These devices might take hundreds of times as
long as the training time of the other devices to finish local training
and upload the updates to the server. Furthermore, some extremely
lagging devices might have no capacity to train the global model
which is trained by the other devices. Even though these devices
will not degrade the efficiency of FL with asynchronous settings,
these extremely lagging devices are more likely to be excluded from
training due to the extreme staleness or incapacity of training the
global model. A natural option is to support heterogeneous model ar-
chitectures across devices. However, existing frameworks[9, 19, 20]
supporting model heterogeneous settings have three problems: 1)
Existing works usually derive sub-networks from the dense network
and these extremely lagging devices might not be able to even train
such a sub-network. For example, the global model is CNN, whose
sub-networks are also CNN, but the extremely lagging devices might
only be able to train an MLP. 2) Even if the devices can train a sub-
network of the global model, aggregating sub-models will hinder the
convergence of the global model. Existing FL frameworks support
heterogeneous architectures by allowing devices to train sub-models
to achieve good performance on personalized models, but the global
model performance degrades significantly. 3) The process of seek-
ing the sub-network usually starts from training the dense network,
which is inapplicable in realistic settings. Thus, we need to design
a practical method that helps the devices with extremely limited
resources to join in training without introducing additional computa-
tion and communication overhead to the devices.

3 DESIGN
3.1 Overview
Figure 3 depicts an overview of the proposed framework. Our sys-
tem follows the general protocol of semi-asynchronous FL and has
a synchronous time point for each communication round. At the
start of each communication round, the server randomly selects a
set of available devices which are not conducting local training and
distributes the up-to-date global model to these devices (1). Af-
ter receiving the starting signal and the global model, the selected
devices set up training configurations and run local training (2).
During local training, the devices continue communicating with the
server. The server adapts the local training configuration of each
device based on the computation power and network latency of all
participating devices to improve convergence and efficiency (3).
The communication between the devices and the server is unblocked,
such that the devices can upload the model updates to the server
once they complete local training (4).

Our framework also considers the devices whose resources are
extremely constrained that cause unacceptable staleness or are in-
capable to train the same model architecture as the other devices.
These extremely lagging devices conduct local training based on
the model with a smaller architecture. We do not introduce addi-
tional computation overhead to the devices in FedSEA to handle
device heterogeneity, and the energy and communication cost can
be significantly reduced for the extremely lagging devices. At the
end of each communication round, the server conducts aggregation
on the received heterogeneous model updates (5). To aggregate
the heterogeneous local models, the server extracts the knowledge
contained in the smaller model on extremely lagging devices and
fuses it into the larger global model.

The above process (1 - 5) repeats until reaching a predefined
number of communication rounds.

3.2 Design Challenges
The design of our system has three key challenges:

Challenge#1: How to mitigate the performance degradation
of the global model? In AFL, the lagging devices are inevitable,
and directly aggregating stale model updates will do harm to the
convergence of the global model. Previous works consider that the
accuracy drop comes from the straggling problem caused by the stale
model updates. They apply weight decaying mechanisms or abandon
stale models during aggregation to solve the straggling problem
but cause a serious accuracy drop of the global model. The weight
decaying mechanism and abandoning stale models can indeed reduce
the straggling problem caused by the stale model updates, but there
should be some other reasons that lead to global model performance
degradation under asynchronous settings. Therefore, we need to
further explore the essential cause of performance degradation of
the global model and design a method that can effectively alleviate
the problem of accuracy drop.

Challenge#2: How to aggregate the smaller models trained
by the devices with extremely limited resources into the global
model? We design a module that allows extremely lagging devices
to train a smaller model. This module is based on an unlabeled
auxiliary dataset on the server which is more realistic since it is

FedSEA: A Semi-Asynchronous Federated Learning Framework for Extremely Heterogeneous Devices SenSys ’22, November 6–9, 2022, Boston, MA, USA

easy for the server to collect public data, but it is very expensive to
label these data samples. At the beginning of a round, this module
distills the knowledge of the global model into a smaller model, and
the extremely lagging devices conduct local training based on this
smaller model. After the lagging device completes local training
and uploads the updated small model to the server, this module will
infuse the knowledge of the updated smaller models into the global
model. The design is inspired by knowledge distillation (KD) [13, 15,
32] in deep learning, but KD cannot be directly applied to our system
for two challenges: (1) KD is based on labeled data while in our
system there is no labeled public data. Conducting distillation based
on unlabeled data will introduce unacceptable error; (2) conventional
KD is to distill knowledge from a large model to a small model.
However, in our design, we need to infuse information from a small
local model into the large global model, and directly applying KD
will cause a catastrophic overfitting problem in our system. Hence,
we need to design novel distillation and infusion methods to support
effective knowledge transfer between the small local model and the
global model, such that the extremely lagging devices can participate
in training by training based on a small model.

Challenge#3: How to determine the synchronization time
point in realistic settings? The key point of improving the efficiency
of semi-asynchronous FL is the design of an effective scheduler of
synchronization. In the real world, due to the dynamic and het-
erogeneous resource availability, the distributions of local updates’
arriving time are different across communication rounds. Setting a
fixed time interval or applying the cache mechanism cannot guaran-
tee efficiency in practice. Natural thinking is conducting profiling
for the device participating in training before the start of each com-
munication round and deriving the real-time resource availability.
However, conducting extra profiling for each communication round
is extremely inefficient. In addition, even if the server has access to
the real-time resource availability of devices, it is still not clear when
to finish this communication round and conduct synchronization.
Thus, it is a challenge to design an effective and efficient synchro-
nization scheduler and improve the efficiency of the pipeline in
realistic settings.

3.3 Training Configuration Scheduler
As described in section 2.2, although decaying the weight of stale
model updates as previous works can reduce the error caused by
the stale model, it still causes an accuracy drop on the data held
by the slow devices. We analyze that this accuracy drop mainly
comes from the low aggregating frequency of slow devices. Such
unbalanced aggregating frequency causes unbalanced performance
across the global data distribution. To show the impact of unbalanced
aggregating frequency theoretically, we formulate the problem in a
simplified setting. The learning objective of FL is defined as:

𝑾 = min
𝑾
{𝐹 (𝑾) ≜

𝑁∑︁
𝑘=1

𝑝𝑘𝐹𝑘 (𝑾) }, (1)

where𝑾 is the weights of the global model, 𝑁 represents the number
of devices, 𝐹𝑘 is the local objective of the 𝑘-th device, 𝑝𝑘 is the
weight of the 𝑘-th device, 𝑝𝑘 ≥ 0 and

∑𝑁
𝑘=1 𝑝

𝑘 = 1.
Equation 1 is computed in an iterative device-server communica-

tion fashion. For a given communication round (e.g. the 𝑡-th), the

central server first randomly selects 𝐾 devices according to a proba-
bility vector [𝑞1, 𝑞2, ..., 𝑞𝑁] to compose a set of participating devices
S𝑡 and then broadcasts the latest global model 𝑾𝑡−1 to these devices.
Afterwards, each device (e.g. the 𝑘-th) in S𝑡 performs 𝐼 iterations of
local training using their local data following:

𝑾𝑘
𝑡,𝑖+1 ←𝑾𝑘

𝑡,𝑖 − [𝑡,𝑖∇𝐹𝑘 (𝑾𝑘
𝑡,𝑖 , b

𝑘
𝑡,𝑖), (2)

where [𝑡,𝑖 is the learning rate, b𝑘
𝑡,𝑖

is a batch of data samples uni-

formly chosen from the 𝑘-th device, and 𝑾𝑘
𝑡,0 is initialized as 𝑾𝑡−1.

Finally, the server averages the local updates of the selected 𝐾 de-
vices and updates the global model as follows:

𝑾𝑡 ←
𝑁

𝐾

∑︁
𝑘∈S𝑡

𝑝𝑘𝑾𝑘
𝑡,𝐼 . (3)

With the above formulation, we analyze the impact of the prob-
ability vector [𝑞1, 𝑞2, ..., 𝑞𝑁] on the convergence of 𝐹 (𝑊). Before
presenting our theoretical results, we first make the following As-
sumptions 1-4 same as [21].

ASSUMPTION 1. 𝐹 1, 𝐹 2, ..., 𝐹𝑁 are L-smooth: ∀𝑽 ,𝑾 , 𝐹𝑘 (𝑽) ≤
𝐹𝑘 (𝑾) + (𝑽 −𝑾)𝑇∇𝐹𝑘 (𝑾) + 𝐿2 | |𝑽 −𝑾 | |

2
2.

ASSUMPTION 2. 𝐹1, 𝐹2, ..., 𝐹𝑁 are `-strongly convex:∀𝑽 ,𝑾 , 𝐹𝑘 (𝑽) ≥
𝐹𝑘 (𝑾) + (𝑽 −𝑾)𝑇∇𝐹𝑘 (𝑾) + `2 | |𝑽 −𝑾 | |

2
2.

ASSUMPTION 3. Let b𝑘𝑡 be sampled from the 𝑘-th device’s local
data uniformly at random. The variance of stochastic gradients in
each device is bounded: E| |∇𝐹𝑘 (𝑾𝑘

𝑡,𝑖
, b𝑘
𝑡,𝑖
) − ∇𝐹𝑘 (𝑾𝑘

𝑡,𝑖
) | |2 ≤ 𝜎2

𝑘
for

𝑘 = 1, ..., 𝑁 .

ASSUMPTION 4. The expected squared norm of stochastic gra-
dients is uniformly bounded, i.e., E| |∇𝐹𝑘 (𝑾𝑘

𝑡,𝑖
, b𝑘
𝑡,𝑖
) | |2 ≤ 𝐺2 for all

𝑘 = 1, ..., 𝑁 , 𝑖 = 0, ..., 𝐼 − 1 and 𝑡 = 0, ...,𝑇 − 1.

We define 𝐹 ∗ and 𝐹𝑘∗ as the minimum value of 𝐹 and 𝐹𝑘 and the
total number of rounds is 𝑇 . Then, we have the following theorem
about the convergence of 𝐹 (𝑾𝑇).

THEOREM 1. Let Assumptions 1-4 hold. If 𝑞𝑖 does not follow
uniform distribution, which means that the uploading frequency of
devices is unbalanced, then there will be error involved to hinder the
convergence of E[𝐹 (𝑾𝑇)]. Except for the error involved, the con-

vergence rate is also hindered by the variance of 𝑞𝑖 as O
(

1+𝑁 2𝜎2
𝑞

𝑇

)
,

where 𝜎2
𝑞 is the variance of 𝑞𝑖 .

PROOF. Our proof is mainly inspired by [21]. Following [21], we
describe the training process of the setting in Theorem 1 as: for all
𝑘 ∈ [𝑁]

𝑽𝑘𝑡,𝑖+1 =𝑾𝑘
𝑡,𝑖 − [𝑡,𝑖∇𝐹𝑘 (𝑾𝑘

𝑡,𝑖 , b
𝑘
𝑡,𝑖),

𝑾𝑘
𝑡,𝑖+1 =

𝑽𝑘
𝑡,𝑖+1 if 𝑖 + 1 ≠ 𝐼 ,

samples S𝑡with {𝑞 𝑗 } 𝑗 ∈ [𝑁]
and average {𝑽𝑘

𝑡,𝑖+1}𝑘∈S𝑡 if 𝑖 + 1 = 𝐼 .

(4)

Similar with [21], we define two virtual sequences �̄�𝑡,𝑖 =
∑𝑁
𝑘=1 𝑝𝑘𝑽

𝑘
𝑡,𝑖

and �̄�𝑡,𝑖 =
∑𝑁
𝑘=1 𝑝𝑘𝑾

𝑘
𝑡,𝑖

to support the analysis. For convenience, we

also define𝑔𝑡,𝑖 =
∑𝑁
𝑘=1 𝑝𝑘∇𝐹

𝑘 (𝑾𝑘
𝑡,𝑖
) and𝑔𝑡,𝑖 =

∑𝑁
𝑘=1 𝑝𝑘∇𝐹

𝑘 (𝑾𝑘
𝑡,𝑖
, b𝑘
𝑡,𝑖
).

Therefore, �̄�𝑡,𝑖+1 = �̄�𝑡,𝑖+1 − [𝑡,𝑖𝑔𝑡,𝑖 .
Note that

SenSys ’22, November 6–9, 2022, Boston, MA, USA
Jingwei Sun1, Ang Li1, Lin Duan1, Samiul Alam4,3, Xuliang Deng1, Xin Guo2,

Haiming Wang2, Maria Gorlatova1, Mi Zhang3,4, Hai Li1, Yiran Chen1

∥�̄�𝑡,𝑖+1 −𝑾 ∗ ∥2 =∥�̄�𝑡,𝑖+1 − �̄�𝑡,𝑖+1 + �̄�𝑡,𝑖+1 −𝑾 ∗ ∥2
= ∥�̄�𝑡,𝑖+1 − �̄�𝑡,𝑖+1 ∥2︸ ︷︷ ︸

𝐴1

+ ∥�̄�𝑡,𝑖+1 −𝑾 ∗ ∥2︸ ︷︷ ︸
𝐴2

+ 2
〈
�̄�𝑡,𝑖+1 − �̄�𝑡,𝑖+1, �̄�𝑡,𝑖+1 −𝑾 ∗〉︸ ︷︷ ︸

𝐴3

.

(5)

If 𝑞𝑖 = 1
𝑁

for 𝑖 ∈ [𝑁] which means that the probability of sam-
pling is balanced across devices, 𝐴3 would vanish and ∥�̄�𝑡,𝑖+1 −
𝑾∗∥2 is able to converge to zero with specific learning rates. How-
ever, if the sampling is unbalanced across devices as claimed in
Theorem 1, 𝐴3 cannot vanish and the bound ∥�̄�𝑡,𝑖+1 −𝑾∗∥2 can
achieve when 𝑖 + 1 = 𝐼 without additional assumptions is:

∥�̄�𝑡,𝑖+1 −𝑾 ∗ ∥2 ≤2∥�̄�𝑡,𝑖+1 − �̄�𝑡,𝑖+1 ∥2 + 2∥�̄�𝑡,𝑖+1 −𝑾 ∗ ∥2
≤(2 − 2[𝑡,𝑖)E∥�̄�𝑡,𝑖 −𝑾 ∗ ∥2 + 2[2

𝑡,𝑖 (𝑄 +𝐶)
= (1 − 2[𝑡,𝑖)E∥�̄�𝑡,𝑖 −𝑾 ∗ ∥2 + 2[2

𝑡,𝑖 (𝑄 +𝐶)︸ ︷︷ ︸
𝐷1

+ E∥�̄�𝑡,𝑖 −𝑾 ∗ ∥2︸ ︷︷ ︸
𝐷2

,

(6)

where𝑄 =
𝑁∑
𝑘=1

𝑝2
𝑘
𝜎2
𝑘
+ 6𝐿Γ + 8(𝐼 − 1)2𝐺2,𝐶 is the upper bound of

1
[2
𝑡,𝑖

ES𝑡 ∥�̄�𝑡,𝑖+1 − �̄�𝑡,𝑖+1∥2. The first inequality comes from Cauchy-

Schwarz inequality and AM-GM inequality. The second inequality
comes from Lemma 1-3 and Lemma 5 in [21]. From Equation 6
we can see that the existence of 𝐷2 hinders the convergence of
∥�̄�𝑡,𝑖+1 −𝑾∗∥2, and 𝐷2 comes from the failure of vanishment of 𝐴3
in Equation 5. We have shown that 𝐴3 in Equation 5 does not vanish
because of the inequality of 𝑞𝑖 , which represents the unbalanced
uploading frequency across devices. Thus, we can derive that if the
uploading frequency of devices is unbalanced, then there will be
error involved to hinder the convergence of the learning objective.

If we do not consider the error caused by the unbalanced upload-
ing frequency in Equation 5, which means that we assume 𝐴3 is able
to vanish, then we can analyze the convergence rate of ∥�̄�𝑡,𝑖 −𝑾∗∥2
by deriving𝐶, which is the upper bound of 1

[2
𝑡,𝑖

ES𝑡 ∥�̄�𝑡,𝑖+1− �̄�𝑡,𝑖+1∥2:

1
[2
𝑡,𝑖

ES𝑡
�̄�𝑡,𝑖+1 − �̄�𝑡,𝑖+1

2

=
1
[2
𝑡,𝑖

ES𝑡
(�̄�𝑡,𝑖+1 − �̄�𝑡,0

)
+
(
�̄�𝑡,𝑖+1 − �̄�𝑡,0

)
2

=
1
[2
𝑡,𝑖

 𝑁∑︁
𝑘=1

𝑞𝑘

(
𝑽𝑘𝑡,𝑖+1 − 𝑽𝑘𝑡,0

)
−

𝑁∑︁
𝑘=1

1
𝑁

(
𝑽𝑘𝑡,𝑖+1 − 𝑽𝑘𝑡,0

)
2

≤ 𝑁

[2
𝑡,𝑖

𝑁∑︁
𝑘=1

(𝑞𝑘 − 1
𝑁

) (
𝑽𝑘𝑡,𝑖+1 − 𝑽𝑘𝑡,0

)
2

≤ 𝑁

[2
𝑡,𝑖

𝑁∑︁
𝑘=1

(
𝑞𝑘 −

1
𝑁

)2
𝐼

𝑖∑︁
𝑗=0
E
[𝑡,𝑗∇𝐹𝑘 (𝑾𝑘

𝑡,𝑗 , b
𝑘
𝑡,𝑗)

2

≤4𝑁 (𝑁 − 1)𝐼 2𝐺2𝜎2
𝑞,

(7)

where 𝜎2
𝑞 is the variance of 𝑞𝑘 . The first inequality comes from

the convexity of ∥ · ∥2. The second inequality comes from Cauchy-
Schwarz inequality. In the last inequality, we use the fact that [𝑡,𝑖 is

non-increasing and [𝑡,0 ≤ 2[𝑡,𝐼 . Then from Theorem 3 in [21], we
derive that except for the error involved by the unbalanced uploading

frequency, E[𝐹 (𝑾𝑇)] converges as O
(

1+𝑁 2𝜎2
𝑞

𝑇

)
.

□

REMARK 1. Besides the error involved in the convergence, un-
balanced uploading frequency also hinders the scalability of an FL
system. From theorem 1 we can see that, when the variance of 𝑞𝑖 is
not zero, the convergence will be slower when the number of devices
𝑁 is larger.

Based on this analysis, we balance the uploading frequencies of
different devices by adjusting the training configuration of devices.
The basic idea is that the slow devices should train fewer steps such
that the error caused by the staleness and the performance unbalance
can be reduced simultaneously. Following this idea, we reduce the
local training steps of slow devices and conduct experiments follow-
ing the settings in Section2.2. We reduce the steps of slow devices of
SAFA by 5 and 10 times which are noted as SAFA(#step ↓,5×) and
SAFA(#step ↓,10×), respectively. The results are shown in Table3.

Table 3: Results of reducing the training steps of slow devices.

Methods MNIST CIFAR10

FedAvg 96.63 55.84
SAFA 93.85 51.52
FedAsync 83.26 43.14
SAFA(#step ↓,5×) 94.15 50.9
SAFA(#step ↓,10×) 93.54 50.62
SAFA(#step ↓, lr↑,5×) 96.32 54.34
SAFA(#step ↓, lr↑,10×) 96.36 54.13

Algorithm 1 Scheduler of Training Configuration.

Input: The anticipated end training time 𝑡 𝑗
𝑒𝑛𝑑

; Anticipated time for
this round 𝑇𝑎 ; Pre-set #batch 𝐵; Pre-set Learning rate [;

Output: #batch �̂�; learning rate [̂
1: function TRAINING_CONFIG_SCHEDULER(𝑡𝑖

𝑒𝑛𝑑
,𝑇𝑎, 𝐵)

2: if 𝑡𝑖
𝑒𝑛𝑑

> 𝛼𝑇𝑎 then
3: �̂� = ⌊𝐵 𝛼𝑇𝑎

𝑡𝑖
𝑒𝑛𝑑

⌋;

4: [̂ = [
𝑡𝑖
𝑒𝑛𝑑

𝛼𝑇𝑎
;

5: else
6: �̂� = 𝐵;
7: [̂ = [;
8: end if
9: return {�̂�, [̂};

10: end function

We can see that simply reducing training steps cannot improve
accuracy. The reason is that even if the slow devices upload the
model updates more frequently, the fewer training steps will obliter-
ate the contribution of slow devices during aggregation. To solve this
problem, we increase the learning rate of the slow devices of SAFA
by the same times of reducing training steps. The results are shown

FedSEA: A Semi-Asynchronous Federated Learning Framework for Extremely Heterogeneous Devices SenSys ’22, November 6–9, 2022, Boston, MA, USA

in Table 3 and are listed as SAFA(#step ↓, lr↑,5×) and SAFA(#step
↓, lr↑,10×), respectively. It is shown that by increasing the learning
rate of slow devices, the accuracy gap between synchronous FL and
semi-asynchronous FL is nearly eliminated. Following this prelimi-
nary result, we design a training_configuration_scheduler on the
server to adjust the training configurations of training devices, and
the detailed algorithm is shown in algorithm 1. It is notable that this
scheduler depends on the anticipated training time of the device and
the anticipated lasting time of this round. These two variables are
generated by the end_time_predictor on the server, which will be
introduced later. Involving the end_time_predictor is also the key
of our design since in the real world we cannot reschedule the slow
devices by foreseeing the latency and training time of all the devices
in the system as we did in Table 3.

3.4 Distillation Module and Infusion Module
We have shown that dynamically scheduling training configurations
of devices can improve the balance of aggregation across devices,
thereby improving the performance of the global model. However,
in the real world, there are some devices with extremely limited
resources. To guarantee a balanced aggregation frequency, these
devices might be forced to train very few iterations before uploading
the model updates to the server. In addition, some extreme strag-
glers might derive �̂� less than 1 by directly applying algorithm 1 or
even have not enough power to train the global model. To support
the devices with extremely limited resources to participate in train-
ing and improve the convergence of the global model, we design
a distillation_module and an infusion_module which enable the
extremely lagging devices to train models with smaller architec-
tures. By doing this, the extremely slow devices are not required to
have unacceptably large manipulations on the training configurations
since training the smaller model will be much faster. Moreover, the
devices which have not enough resource to train the global model
can also participate in training by training a smaller model. The
design of distillation_module and infusion_module is inspired by
knowledge distillation (KD) [15] in deep learning, and the workflow
is shown in Figure 4. At the start of each communication round 𝑡 , the
server utilizes the distillation_module to distill the knowledge from
the up-to-date global model𝑊𝑡 to a smaller model �̂�𝑡 (1) and dis-
tributes�̂�𝑡 to an extremely lagging device (says the 𝑘-th) (2). Then
the 𝑘-th device conducts local training based on �̂�𝑡 (3). After 𝜏
communication rounds, the 𝑘-th device completes local training and
uploads �̂� 𝑘

𝑡+𝜏 to the server (4) and the server stores it into a cache.
Before the end of this communication round, the server aggregates
the cached small local models uploaded by the set of slow devices
S𝑠𝑙𝑜𝑤 (𝑡+𝜏) in this round and gets a small model�̂�𝑡+𝜏 (5). Then the
server calls the infusion_module to infuse the knowledge from �̂�𝑡+𝜏
to the global model in current round and gets a large model𝑊 ′𝑡+𝜏
(6). At the end of this round, the infused model𝑊 ′𝑡+𝜏 is aggregated
into the global model with the weight of

∑
𝑘∈S𝑠𝑙𝑜𝑤 (𝑡+𝜏) 𝑝

𝑘 .
In our design, there is an unlabeled public dataset 𝐷𝑝𝑢𝑏 on the

server as an auxiliary dataset. This is a practical setting since it is
easy for the server to collect public data but very expensive to label
the data points. For example, if a company wants to develop an FL
application of face recognition, this company will store a public
dataset of face analysis such as CelebA [23] on the central server.

Server

In
fu

sio
n

m
od

ul
e

Di
st

ill
at

io
n

m
od

ul
e

Data

Device 𝑘𝑘

① ②
③𝑊𝑊𝑡𝑡

�𝑊𝑊𝑡𝑡

�𝑊𝑊𝑡𝑡

④
⑤

�𝑊𝑊𝑡𝑡+𝜏𝜏
𝑘𝑘

�𝑊𝑊t+𝜏𝜏

⑥

𝑊𝑊t+𝜏𝜏
′

Figure 4: The workflow of distillation_module and
infusion_module.

For the distillation_module, we utilize the soft label produced by the
global model𝑊𝑡 to distill knowledge to a smaller model �̂�𝑡 . Given
a sample b𝑖 from 𝐷𝑝𝑢𝑏 , the logits output by𝑊𝑡 and �̂�𝑡 are 𝑓 (b𝑖 ;𝑊𝑡)
and 𝑓 (b𝑖 ;�̂�𝑡), respectively. Given a logit 𝑧, the probability vector is
𝑝 = 𝑔(𝑧;𝑇), where 𝑔(𝑧;𝑇) is defined as:

𝑝𝑖 = 𝑔 (𝑧;𝑇)𝑖 =
𝑒𝑥𝑝 (𝑧𝑖/𝑇)∑
𝑗 𝑒𝑥𝑝 (𝑧 𝑗 /𝑇)

, (8)

where 𝑇 is the temperature of distillation. Then the learning ob-
jective of �̂�𝑡 in distillation_module is formulated as:

�̂�𝑡 = arg min
𝑊

|𝐷𝑝𝑢𝑏 |∑︁
𝑖

𝐷𝐾𝐿 (𝑔 (𝑓 (b𝑖 ;𝑊𝑡) ;𝑇) | |𝑔 (𝑓 (b𝑖 ;𝑊) ;𝑇)) . (9)

Compared with the conventional KD, the infusion_module has
two key unique challenges. First, the public dataset on which the
distillation is based has no true labels. Only applying the soft label
generated by the global model in distillation_module is acceptable
since the global model contains the knowledge from a tremendous
number of devices, which is less overfitted and of high quality.
However, only applying the soft label generated by the aggregated
small model�̂�𝑡+𝜏 in infusion_module will introduce significant noise
into the global model. The reason is that �̂�𝑡+𝜏 is aggregated by the
local models uploaded by very few extremely lagging devices in the
system, which is usually much more overfitted than the global model.
The second challenge is that conventional knowledge distillation
is to distill the knowledge from a larger model to a smaller model,
but the infusion_module in our design is to infuse the knowledge
from a smaller model to a larger model. When teaching a model
with higher representation capacity by learning knowledge from a
simpler model, directly applying KD in infusion_module will cause
an unacceptable overfitting problem. To reduce the error from the
small model �̂�𝑡+𝜏 infused to the global model, infusion_module
teaches𝑊 ′𝑡+𝜏 to learn knowledge from both the aggregated small
model �̂�𝑡+𝜏 and current global model 𝑊𝑡+𝜏 . Then, the infusion
objective of𝑊 ′𝑡+𝜏 in infusion_module can be formulated as:

SenSys ’22, November 6–9, 2022, Boston, MA, USA
Jingwei Sun1, Ang Li1, Lin Duan1, Samiul Alam4,3, Xuliang Deng1, Xin Guo2,

Haiming Wang2, Maria Gorlatova1, Mi Zhang3,4, Hai Li1, Yiran Chen1

𝐿𝑖𝑛𝑓 (𝑊 ′𝑡+𝜏) = 𝛼𝑖𝑛𝑓
|𝐷𝑝𝑢𝑏 |∑︁
𝑖

𝐷𝐾𝐿 (𝑔 (𝑓 (b𝑖 ;�̂�𝑡+𝜏) ;𝑇) | |𝑔 (𝑓 (b𝑖 ;𝑊 ′𝑡+𝜏) ;𝑇))

+ (1 − 𝛼𝑖𝑛𝑓)
|𝐷𝑝𝑢𝑏 |∑︁
𝑖

𝐷𝐾𝐿 (𝑔 (𝑓 (b𝑖 ;𝑊𝑡+𝜏) ;𝑇) | |𝑔 (𝑓 (b𝑖 ;𝑊 ′𝑡+𝜏) ;𝑇)),

(10)
where 𝛼𝑖𝑛𝑓 ∈ (0, 1) controls the trade-off between infusing more

knowledge from the local models and the global model. To mitigate
the overfitting problem caused by infusing �̂�𝑡+𝜏 to𝑊 ′𝑡+𝜏 , we add
an L2-norm regularization term to the learning objective. Then the
learning objective of𝑊 ′𝑡+𝜏 is formulated as:

𝑊 ′𝑡+𝜏 = arg min
𝑊

𝐿𝑖𝑛𝑓 (𝑊 ;𝛼𝑖𝑛𝑓) + 𝛽 ∥𝑊 ∥2 . (11)

As shown in Figure 4, there is no additional computational over-
head on local devices by applying the distillation_module and in-
fusion_module. All the computational overhead introduced on the
server is at most one time of distillation and infusion in one com-
munication round. In real systems, the central servers are usually
much more powerful than the edge devices, and only one time of
distillation and infusion on the server would not impair the efficiency
of the system.

3.5 End Time Predictor and Round Time
Scheduler

To improve the efficiency of the pipeline, we need to design a practi-
cal synchronization_scheduler to manage when to stop the current
communication round and conduct synchronization. The signifi-
cant information needed to schedule the deadline of this commu-
nication round is the anticipated end time of local training of the
devices. In addition, as stated in Section 3.3, the design of train-
ing_configuration_scheduler also requires the end time of local
training of each device to adapt its local training configurations.
Thus, we design an end_time_predictor to predict the end time of
local training of each device. The natural thought is to profile the
training time of each device before they join the FL training. How-
ever, in real life, the devices would often have dynamic computation
power, which makes it necessary to profile a device before the start
of training in each round of participation. By doing this, the devices
will suffer from tremendous computation overhead and the efficiency
of the whole system will be significantly harmed. In addition, to
improve the precision of prediction, it is always required to profile
multiple steps of training, which increases the overhead further. To
avoid incurring additional computation overhead and improve effi-
ciency, we propose to conduct profiling as long as the starting steps
of local training. After receiving the global model, the participating
devices (says the 𝑘-th) will start training and record the training
time of each step (says the 𝑏-th) 𝑡𝑘

𝑡𝑟𝑎𝑖𝑛,𝑏
. After several steps, the

𝑘-th device will send the collected training time of steps {𝑡𝑘
𝑡𝑟𝑎𝑖𝑛,𝑏

}
and the number of training steps 𝐵𝑘 to the server. The specific time
point when the devices upload the profiling information to the server
will be introduced in the next section. After receiving the profiling
information, the server calls the end_time_predictor to predict the
end time of training 𝑡𝑘

𝑒𝑛𝑑
of the 𝑘-th device.

The basic assumption of end_time_predictor is that within a cer-
tain interval of local training, the training time of each step follows a
normal distribution. The end_time_predictor inferences the statistics
of the distribution of training time of one device. Then it derives
the predicted end time point of local training by which there is an
80% probability that this device can complete local training and
successfully upload the updated model to the server. The detailed
algorithm of end_time_predictor is shown in Algorithm 2.

Algorithm 2 End time predictor of local training.

Input: Local training time of iterations {𝑡𝑡𝑟𝑎𝑖𝑛,𝑘 }; Start training time
𝑡𝑠𝑡𝑎𝑟𝑡 ; Latency 𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦 ; Number of batch 𝐵;

Output: End time of training 𝑡𝑒𝑛𝑑 ;
1: function END_TIME_PREDICTOR(𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦, {𝑡𝑡𝑟𝑎𝑖𝑛,𝑘 })

2: ˆ̀ = 1
𝐾

𝐾∑
𝑘=1

𝑡𝑡𝑟𝑎𝑖𝑛,𝑘 ;

3: 𝜎2 = 1
𝐾−1

𝐾∑
𝑘=1
(𝑡𝑡𝑟𝑎𝑖𝑛,𝑘 − ˆ̀)2;

4: 𝑡𝑒𝑛𝑑 = 𝑡𝑠𝑡𝑎𝑟𝑡 + 𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦 + 𝐵 ˆ̀ +
√
𝐵�̂�Φ−1 (0.8);

5: return 𝑡𝑒𝑛𝑑 ;
6: end function

With the set of predicted end time of local training {𝑡𝑘
𝑒𝑛𝑑
} cached

on the server, the synchronization_scheduler determines when to fin-
ish this communication round. The specific time point when the syn-
chronization_scheduler will conduct scheduling will be introduced
in the next section. The intuition of synchronization_scheduler is
to find the "bonus" time point after which the "benefit" of waiting
will decrease, which means that fewer devices can arrive by waiting
for the same time. The detailed design of synchronization_scheduler
is shown in Algorithm 3. An important parameter of the train-
ing_configuration_scheduler and synchronization_scheduler is the
anticipated time of the round𝑇𝑎 . At the start of the first round, we pre-
dict the training time of the selected devices with the end_time_predictor
and derive the initial 𝑇𝑎 by averaging the predicted training time
of these devices. In the following rounds, we update 𝑇𝑎 with the
weighted sum of the latest 𝑇𝑎 and the real lasting time of the last
round.

Algorithm 3 Scheduler of Synchronization.

Input: The set of anticipated end training time {𝑡 𝑗
𝑒𝑛𝑑
}; Anticipated time for

this round𝑇𝑎 ;
Output: The end time of this round𝑇 ;

1: function SYNCHRONIZAION_SCHEDULER({𝑡 𝑗
𝑒𝑛𝑑
},𝑇𝑎)

2: Sort {𝑡 𝑗
𝑒𝑛𝑑
} in increasing order to get a list𝑄;

3: for 𝑘 = 1, 2, ... do
4: if𝑄𝑘+1 − 𝑄𝑘 > 0.5𝑇𝑎 or𝑄𝑘+1 > 1.5𝑇𝑎 then
5: 𝑇 = 𝑄𝑘 ;
6: end if
7: end for
8: return𝑇 ;
9: end function

3.6 Workflow Overview
In our system, there is no additional computation overhead on the
devices, and the main scheduling operations happen on the server.

FedSEA: A Semi-Asynchronous Federated Learning Framework for Extremely Heterogeneous Devices SenSys ’22, November 6–9, 2022, Boston, MA, USA

Infusion_Module

Manager

Training_Config_
Scheduler

End_Time_Predictor

Synchronization_
Scheduler

Distillation_Module
Aggregation_Module

Figure 5: The structure of the server.

The structure of the central server is shown in Figure 5. The aggre-
gation_module is responsible for aggregating the received model
updates and we follow the aggregation method of FedAvg. The
manager is responsible for communicating with edge devices and
coordinating the other modules on the server. As shown in Figure5,
the end_time_predictor is embedded in the manager.

The workflow of our system is shown in Figure 6. In each com-
munication round (says the 𝑡-th), the manager randomly selects a set
of available devices which are not conducting local training to partic-
ipate in FL training. The manager sends the up-to-date global model
𝑊𝑡 , the anticipated lasting time of this round 𝑇𝑎 , the default learning
rate [, and the start signal to the selected devices at the start of this
communication round, and the devices receive the information later
due to the network latency (1). If the device (says the 𝑖-th) has
enough computation power and energy to conduct training based on
𝑊𝑡 , it will start to set up the local training program. Due to the net-
work latency and time needed to set up the training program, the start
time of local training is not the time point when a device receives the
start signal of this round. At the start of local training, this selected
device sends the time stamp of the training start 𝑡𝑖𝑠 and the network
latency of transferring the neural network 𝑡𝑖

𝑙
back to the manager

(2). During local training, the device records the training time of
each batch (says the 𝑏-th batch) 𝑡𝑖

𝑡𝑟𝑎𝑖𝑛,𝑏
. At 1

10𝑇𝑎 after the arrival of

the start signal, the device uploads the training time set
{
𝑡𝑖
𝑡𝑟𝑎𝑖𝑛,𝑏

}
of batches it has trained and the total number of batches it needs to
train 𝐵𝑖 to the server (3). The numbers of local training batches
per round in our platform of different applications are set to be more
than 30. Therefore, we ask the devices to upload the training time set
after 1

10𝑇𝑎 , such that the server can have local training time of more
than 3 batches to estimate the distribution of local training time. If
the device cannot finish one batch of training within 1

10𝑇𝑎 after the
start signal, it uploads the training time of the first batch once after
it completes the first batch of training. After receiving

{
𝑡𝑖
𝑡𝑟𝑎𝑖𝑛,𝑏

}
and 𝐵𝑖 , the manager calls the end_time_predictor to inference the
end time of local training 𝑡𝑖

𝑒𝑛𝑑
of the 𝑖-th device. Then the man-

ager sends 𝑡𝑖
𝑒𝑛𝑑

, 𝑇𝑎 and 𝐵𝑖 to the training_configuration_scheduler
and gets the adjusted learning rate [̂𝑖 and the adjusted number of
batches to train �̂�𝑖 for the 𝑖-th device. Then the manager sends the
adjusted training configurations [̂𝑖 and �̂�𝑖 to the 𝑖-th device (4)
and the device continues training with the new configurations. With
the new number of training steps �̂�𝑖 , the manager updates the end

�𝟏𝟏 𝟏𝟏𝟏𝟏𝑻𝑻𝒂𝒂

�𝟏𝟏 𝟏𝟏𝟏𝟏𝑻𝑻𝒂𝒂

�𝟏𝟏 𝟏𝟏𝟏𝟏𝑻𝑻𝒂𝒂

…

…

…

Device 𝒊𝒊

Device 𝒋𝒋

Device 𝑵𝑵

…

Round 𝒕𝒕 Round 𝒕𝒕+1

𝑾𝑾𝒕𝒕
𝜼𝜼

𝒕𝒕𝒔𝒔𝒊𝒊
𝒕𝒕𝒍𝒍𝒊𝒊

𝒕𝒕𝒕𝒕𝒕𝒕𝒂𝒂𝒊𝒊𝒕𝒕,𝒃𝒃
𝒊𝒊

𝑩𝑩𝒊𝒊
�𝑩𝑩𝒊𝒊

�𝜼𝜼𝒊𝒊
𝑾𝑾𝒕𝒕

𝒊𝒊

�𝑾𝑾𝒕𝒕
𝒋𝒋

distillation
request

𝑻𝑻𝒂𝒂

𝑾𝑾𝒕𝒕
𝜼𝜼
𝑻𝑻𝒂𝒂 �𝑾𝑾𝒕𝒕 𝒕𝒕𝒔𝒔

𝒋𝒋
𝒕𝒕𝒍𝒍
𝒋𝒋 𝒕𝒕𝒕𝒕𝒕𝒕𝒂𝒂𝒊𝒊𝒕𝒕,𝒃𝒃

𝒋𝒋

𝑩𝑩𝒋𝒋
�𝑩𝑩𝒋𝒋

�𝜼𝜼𝒋𝒋

𝑾𝑾𝒕𝒕
𝜼𝜼

𝒕𝒕𝒔𝒔𝑵𝑵
𝒕𝒕𝒍𝒍𝑵𝑵

𝒕𝒕𝒕𝒕𝒕𝒕𝒂𝒂𝒊𝒊𝒕𝒕,𝒃𝒃
𝑵𝑵

𝑩𝑩𝑵𝑵
�𝑩𝑩𝑵𝑵

�𝜼𝜼𝑵𝑵𝑻𝑻𝒂𝒂

�𝟏𝟏 𝟐𝟐𝑻𝑻𝒂𝒂
time

The start of a
communication
round

Communication
with the server

One step
of local
training

The server
schedules the end
time of this round

① ② ③ ④ ⑤

Idle status

②-a

②-b

Figure 6: The workflow of FedSEA.

time of local training 𝑡𝑖
𝑒𝑛𝑑

. At 1
2𝑇𝑎 after the start of this communi-

cation round, the server starts to schedule the ending time of this
communication round based on the expected ending time of local
training of different devices

{
𝑡𝑖
𝑒𝑛𝑑

}
that have been cached in the

manager. The manager sends the cached
{
𝑡𝑖
𝑒𝑛𝑑

}
and 𝑇𝑎 to the syn-

chronization_scheduler, and the synchronization_scheduler outputs
the scheduled lasting time of this communication round 𝑇𝑡 . The
communication between the device and the manager is unblocked,
such that the device can upload its updated local model𝑊 𝑖

𝑡 (5) to
the manager once the local training is completed. It is notable that
devices are not required to finish training and upload their updated
model to the server within one communication round (e.g., the 𝑁 -th
device). At 𝑇𝑡 after the start of this communication round, the man-
ager sends the cached set of local updates

{
𝑊 𝑖
𝑡

}
and current global

model𝑊𝑡 to the aggregating_module and gets the global model of
the next round𝑊𝑡+1. After getting𝑊𝑡+1, the manager updates𝑇𝑎 and
starts the next communication round.

The device (says the 𝑗-th) which does not have sufficient resources
to train the global model𝑊𝑡 will send a distillation request to the
manager (2 -a) after receiving the start signal of this communica-
tion round. Then the manager coordinates the distillation_module to
generate a smaller model �̂�𝑡 which contains the knowledge in𝑊𝑡
and sends �̂�𝑡 to device 𝑗 (2 -b). After that, the 𝑗-th device conducts
local training and interacts with the server as same as the other de-
vices and derives the updated local model �̂� 𝑗

𝑡 . At 4
5𝑇𝑡 after the start

of this communication round, the server aggregates the uploaded
small models and coordinates the infusion_module to derive a large
model𝑊 ′𝑡 which contains the knowledge of small models uploaded
in this round. 𝑊 ′𝑡 is aggregated into the new global model at the
end of this communication round. The server aggregates the small
models at 4

5𝑇𝑡 after the start of this round rather than 𝑇𝑡 because we
expect the server to complete infusion before the end of this round.
In our platform, the server can train a network more than 5 times
faster than the edge devices. Thus, the server can hopefully complete
infusion within 1

5𝑇𝑡 .

SenSys ’22, November 6–9, 2022, Boston, MA, USA
Jingwei Sun1, Ang Li1, Lin Duan1, Samiul Alam4,3, Xuliang Deng1, Xin Guo2,

Haiming Wang2, Maria Gorlatova1, Mi Zhang3,4, Hai Li1, Yiran Chen1

4 EVALUATION
4.1 System Implementation
We have implemented FedSEA on 3 NVIDIA Jetson TX2s and 6
Raspberry Pi 4s. The central server is equipped with an Intel Xeon
E5-2630@2.6GHz, 128G RAM, and 4 RTX TITAN GPUs. We use
TL-SG116 to connect the server and devices. It is hard to evaluate
FL applying asynchronous protocols with hundreds of devices using
only 9 physical devices. Thus, we collect local training time for
multiple batches and the overhead of communication and scheduling
on physical devices and conduct simulations using software. To
evaluate the performance of FedSEA in realistic settings where the
devices conduct some other primary tasks other than FL training and
have dynamic resource availability, we divide Jetson TX2 devices
into two groups. For one group, the devices switch between the
idle condition and the condition of playing 4K videos, which are
referred to as fast devices in our system for convenience. For the
other group, the TX2 devices conduct real-time object detection with
the restriction of at most 5% FPS drop caused by conducting FL
training and are referred to as medium devices. The Raspberry Pi 4s
which have no GPUs are referred to as slow devices in the system.

4.2 Applications, Datasets, and Models
To demonstrate that FedSEA performs well in different applications,
we apply FedSEA to three representative edge AI applications that
benefit significantly from FL. The statistics of the datasets that
are used in these applications are summarized in Table 4. Even
though previous works [37, 38] partition data following non-IID
configurations, the overall data distribution of slow devices is the
same as the fast devices, which means that abandoning slow devices
will not cause a significant accuracy drop. In addition to following
the non-IID configurations in [19] to build the non-IID datasets, the
overall data distribution is heterogeneous across different levels of
on-device resource availability, i.e., slow devices having unique data
essential to the global model performance, which is more realistic.
Application#1: Image Classification (IC). Image classification is
a popular computer vision application to classify images into cat-
egories. With the increasing computation capabilities on devices,
image classification applications are widely deployed on edge de-
vices. In this work, we use MNIST, EMNIST [8] and CIFAR10 [18]
datasets to develop three image classification applications, i.e., IC-
MNIST, IC-CIFAR10 and IC-EMNIST. The models of IC-MNIST
and IC-CIFAR10 are the same as in section. 2.2. The model of IC-
EMNIST is a CNN with 2 convolutional layers and 2 FC layers.
EMNIST is a handwriting image classification dataset grouped by
the writers, and hence we naturally distribute one writer’s images to
one user. In this application, we sample 2000 writers’ data and dis-
tribute them to users. For MNIST and CIFAR10, each device holds
2-class data and these two classes can be varied across users. For all
these three applications, 60% users will conduct local training on fast
devices, 20% users train on medium devices and the rest 20% users
train on slow devices. To evaluate under the setting of heterogeneous
data distributions across different levels of on-device resources, there
are some non-overlapped classes between fast, medium, and slow
devices. The detailed class distribution is shown in Table 4. The
auxiliary dataset of the IC-MNIST and IC-CIFAR10 are SVHN [29]
and CIFAR100 [17], respectively. For the IC-EMNIST, we sample

Table 4: Class distribution of data distributed to devices.

Dataset Fast devices Medium devices Slow devices

MNIST 1-6 7-8 9-10
EMNIST [8] 21-62 11-62 1-62
CIFAR10 [18] 1-6 7-8 9-10
HAR [1] 1-3 1-4 1-6
Shakespeare [27] 40-80 20-80 1-80

additional 400 writers’ data as the auxiliary dataset, which are in
different data distributions compared with the data on devices.
Application#2: Human Activity Recognition (HAR). Human ac-
tivity recognition has become a popular feature for wearable devices
using data collected from different types of on-board sensors, such
as accelerometers, gyroscopes, etc. This application is developed
for recognizing various activities performed by the device owner
based on the sensor data. In this work, we use HAR [1] dataset to
build this application. HAR collects smartphone accelerometer and
gyroscope data from 30 individuals, including six labeled activities:
walking, walking upstairs, walking downstairs, sitting, standing, and
lying down. We employ a 3-layer fully connected neural network to
recognize human activities. We distribute 15 individuals’ data to fast
devices, 5 individuals’ data to medium devices, and 5 individuals’
data to slow devices. The class distribution is shown in Tabel 4. The
rest 5 individuals’ data without labels is used as auxiliary data.
Application#3: Next-Character Prediction (NCP). Next-character
prediction is a very practical application on smartphones, e.g., text
auto-completion in the virtual keyboard. This application aims to
predict what character comes next given the current input. We apply
Shakespeare [27] dataset to develop this application. This dataset is
built on The Complete Works of William Shakespeare by separately
extracting different roles’ dialogues. In this dataset, the dialogues
are distributed to devices according to the speaking role. We build an
RNN constructed by an 8-D encoder, including two LSTM layers and
three fully connected layers, as the global model for this application.
We sample 90 users to train on fast devices, 30 users to train on
medium devices, and 30 users to train on slow devices. We also
sample data from 30 users as the auxiliary data without labels.

4.3 Experimental Setup
Baselines. To comprehensively evaluate the performance of FedSEA,
we compare FedSEA against five baselines:
• Standalone trains a model using local data only on each

device without collaborations between devices. To make fair
comparisons, devices in the standalone method conduct the
same epochs of local training as in FedSEA. As there is no
global model in Standalone, we average the accuracy of the
local models to get the global accuracy.
• FedAvg [27] is the most classical synchronous FL method

and has been applied to commercial products [3]. Devices
communicate updated local parameters to the central server
and download the aggregated global model for continuous
local training.
• FedCS [14] is an efficient FL framework that is aware of

resource heterogeneity across devices. FedCS estimates the
speed at which devices work and filters out some slow clients
proactively (at the stage of client selection) to improve the
overall efficiency of FL.

FedSEA: A Semi-Asynchronous Federated Learning Framework for Extremely Heterogeneous Devices SenSys ’22, November 6–9, 2022, Boston, MA, USA

• FedAsync [38] is an asynchronous FL method that provides
a theoretical convergence guarantee. There is no synchroniza-
tion time point in FedAsync and the server updates the global
model as soon as it receives any uploaded model updates.
• SAFA [37] is the state-of-the-art semi-asynchronous FL frame-

work. The system requires a part of the devices to be synchro-
nized with the server every fixed time interval. In each round
of synchronization, the system will aggregate the uploaded
model updates to update the global model. For a fair compari-
son, we set the fixed time interval as 0.5×, 1× and 2× of the
initial 𝑇𝑎 of FedSEA, and get the baseline of SAFA(short),
SAFA(medium) and SAFA(long), respectively.

The slow devices (i.e., Raspberry Pi 4) will train smaller models
in FedSEA and train the global model the same as the other devices
in the baselines. In IC-MNIST and IC-CIFAR10, the slow devices
train a 2-layer MLP with a hidden layer of dimension 256. In IC-
EMNIST, the slow devices train a small CNN composed of one
convolutional layer with 10 kernels and one fully connected layer. In
HAR, the slow devices train a multiclass logistic regression model.
In NCP, the devices train a small RNN with only one LSTM layer.

Evaluation Metrics. We evaluate the training performance of Fed-
SEA using two sets of metrics:

• Metrics for Training Performance: (1) inference accuracy:
for IC-MNIST and IC-CIFAR10, we evaluate the inference
accuracy of the global model on the global test data. For IC-
EMNIST, HAR and NCP, we evaluate the inference accuracy
of the global model on each device’s test data and report
the average accuracy for evaluations; (2) time cost:for a fair
comparison, we fix the communication cost (i,e, data volume
of communication) of the whole system and measure the time
cost of the system to finish training, and normalize it as the
ratio to the time cost of FedAvg as reported time cost;
• Metrics for On-board Resource Cost: for a fair comparison,

FedSEA and baselines will stop training after consuming an
identical communication cost. We evaluate the cost of various
on-board resources for federated training: (1) local training
time: we measure the time cost for local training performed on
devices during the whole federated training and normalize it
as the ratio to the local training time of FedAvg. We report the
normalized training time as the local training time; (2) energy
consumption: we measure the average energy consumption
across devices brought by participating in FL and calculate the
energy consumption saving percentage; (3) memory footprint:
we measure the memory footprint of different applications on
device and calculate the memory footprint reduction on the
extremely lagging devices during training.

4.4 Training performance
We compare FedSEA with the baselines in terms of the accuracy-
time cost tradeoff. For a fair comparison, we set the communication
cost (i,e, transmitted data volume) to be the cost of 2000 rounds of
FedAvg for FedSEA and baselines. Ideally, we expect the FL system
finishes training in a shorter time with higher accuracy.

We first compare FedSEA with the SOTA semi-asynchronous
FL algorithm SAFA. It is shown that by setting longer synchroniza-
tion intervals, SAFA can achieve higher accuracy but needs to take

0.0 0.2 0.4 0.6 0.8 1.0

20

30

40

50

0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0

30

40

50

60

70

80

0.0 0.2 0.4 0.6 0.8 1.0

40

60

80

100

0.0 0.2 0.4 0.6 0.8 1.0
25

30

35

40

45

50

(b) IC-MNIST

 FedAvg

 Standalone

 FedCS

 AsyncFL

 SAFA(short)

 SAFA(medium)

 SAFA(long)

 FedSEA

In
fe

re
n
ce

 A
cc

u
ra

cy
(%

)

Normalized Time Cost

(a) IC-CIFAR10

(d) HAR(c) IC-EMNIST

In
fe

re
n
ce

 A
cc

u
ra

cy
(%

)

Normalized Time Cost

In
fe

re
n
ce

 A
cc

u
ra

cy
(%

)

Normalized Time Cost

In
fe

re
n
ce

 A
cc

u
ra

cy
(%

)

Normalized Time Cost

(e) NCP

In
fe

re
n
ce

 A
cc

u
ra

cy
(%

)

Normalized Time Cost

Figure 7: Comparison between FedSEA and baselines in
inference accuracy-time cost space.

longer time to finish training, which is more like a zero-sum game
between performance and efficiency. However, FedSEA is able to
improve inference accuracy and system efficiency simultaneously
compared with SAFA. In particular, compared with SAFA applying
medium synchronization interval, FedSEA improves inference accu-
racy by 11.9%, 5.97%, 37.44%, 17.6%, and 15.7% on IC-MNIST,
IC-CIFAR10, IC-EMNIST, HAR, and NCP, respectively. Besides, it
also reduces 8.62×, 12.5×, 15×, 2.05× and 8.81× time cost in those
applications, respectively.

Second, compared with FedAsync which focuses on time effi-
ciency, FedSEA achieves higher inference accuracy while having
comparable time cost. Specifically, FedSEA improves inference ac-
curacy by 27.9%, 17.3%, 44.34%, 15.13%, and 16.7% on IC-MNIST,
IC-CIFAR10, IC-EMNIST, HAR, and NCP, respectively.

Third, compared with FedCS, FedSEA improves inference accu-
racy and system efficiency simultaneously. The key reason is that
FedCS does not consider the data distribution heterogeneity across
devices when sampling devices to participate in training. In particu-
lar, FedSEA improves inference accuracy by 21.9%, 11.8%, 36.04%,
25.5%, and 16.3% on IC-MNIST, IC-CIFAR10, IC-EMNIST, HAR,
and NCP, respectively. In addition, FedSEA also reduces 1.27×,
1.75×, 2.01×, 1.43× and 6.74× time cost, respectively.

Fourth, compared to FedAvg which is the vanilla synchronous
FL, FedSEA does not outperform in inference accuracy since Fe-
dAvg does not consider the time efficiency. However, FedSEA can
achieve a significant reduction in time cost compared with FedAvg.
Specifically, FedSEA reduces 72.3×, 83.3×, 87.2×, 4.76× and 34.7×
time cost on IC-MNIST, IC-CIFAR10, IC-EMNIST, HAR, and NCP,
respectively. It is also notable that there are some realistic scenarios
where slow devices do not have the capability to train the global
model. In this case, FedSEA can still achieve high inference accu-
racy by letting the slow devices train smaller models, but FedAvg

SenSys ’22, November 6–9, 2022, Boston, MA, USA
Jingwei Sun1, Ang Li1, Lin Duan1, Samiul Alam4,3, Xuliang Deng1, Xin Guo2,

Haiming Wang2, Maria Gorlatova1, Mi Zhang3,4, Hai Li1, Yiran Chen1

will suffer a serious accuracy drop due to the exclusion of those
extremely lagging devices.

For standalone, although the devices do not need to communicate
with the server nor wait for the other devices for training, it is still
time-consuming for slow devices to train the global model. Unsur-
prisingly, without collaborations across devices, the local models
trained locally perform poorly on the global dataset.
Scheduling overhead. The only scheduling overhead that would
affect the efficiency of the whole system is the scheduler of synchro-
nization since the other scheduling actions are conducted in parallel
with local training. To schedule the synchronization, the server only
needs to sort an array of numbers and compute the difference be-
tween the elements, which is significantly efficient. For example, the
local training time of one batch on an idle Jetson TX2 is nearly 0.2
seconds for IC-CIFAR10. However, the time cost of the server in
our platform to schedule even 10,000 devices, which are much more
than the devices in our evaluation, is lower than 0.007 seconds and
not comparable with one step of local training. Thus, the impact of
scheduling overhead on the efficiency of the system is negligible.

4.5 Hyper-parameter Evaluation
Number of Participating Devices: In each round of synchroniza-
tion, FedSEA randomly selects several idle devices to participate in
training. We evaluate the impact of the number of selected devices in
each synchronization on the performance. We conduct experiments
on IC-EMNIST, IC-CIFAR10 and NCP, and vary the number of se-
lected devices in each round as {20, 40, 60}. Figure 8 shows that the
inference accuracy increases slightly when the number of selected
devices increases. Specifically, the inference accuracy increases by
2.47%, 1.1% and 2.6% for IC-EMNIST, IC-CIFAR10 and NCP
when the number of selected devices increases from 20 to 60.

20 30 40 50 60
30

40

50

60

70

80

In
fe

re
n
ce

 A
cc

u
ra

cy
(%

)

#Selected Devices

 IC-EMNIST

 IC-CIFAR10

 NCP

Figure 8: Impact of the number of selected devices in each
round of synchronization on the inference accuracy.

Configuration Scheduler Hyper-parameter 𝛼: An important hyper-
parameter of FedSEA is the tolerance of staleness, which is 𝛼 in the
algorithm of training_config_scheduler. We conduct experiments on
IC-EMNIST, IC-CIFAR10, NCP and vary 𝛼 as {2, 4, 6, 8, 10} to
explore the impact of 𝛼 on the performance of FedSEA. The results
are shown in Figure 9. The results illustrate that reducing 𝛼 improves
the inference accuracy of FedSEA. The reason for accuracy improve-
ment is that training_config_scheduler can mitigate the staleness
and improve the balance of aggregating frequency across devices
by applying a smaller 𝛼 , which is consistent with our Theorem 1. It

Table 5: The reduction of local training time.

Applications Reduction of local training time
Jetson TX2 Raspberry Pi 4

IC-MNIST 2.1× 714.5×
IC-CIFAR10 2.7× 792.9×
IC-EMNIST 3.1× 13.4×
HAR 1.6× 4.9×
NCP 2.3× 12.7×

is also notable that when decreasing 𝛼 extremely (i,e, from 4 to 2),
the inference accuracy shows a slight drop. The accuracy drop after
applying extremely small 𝛼 comes from the significant manipulation
of local training configurations. However, this accuracy drop is mar-
ginal because the distillation&infusion_module avoids extremely
significant manipulation on local training configurations, and this
marginal accuracy drop will not be an obstacle to applying FedSEA
in the real world.

2 4 6 8 10
30

40

50

60

70

80

90

In
fe

re
n
ce

 A
cc

u
ra

cy
(%

)

α

 IC-EMNIST

 IC-MNIST

 IC-CIFAR10

Figure 9: Impact of the tolerance of staleness 𝛼 on the inference
accuracy.

4.6 On-board Resource Cost
Local Training Time: One key benefit of applying FedSEA is that
devices can reduce the local training time because the slow devices
train fewer steps in each round or conduct local training based on
a smaller model. This reduction of training time will promote the
application of FL systems in practice since the local training of FL
will hinder the performance of the primary task on edge devices such
as real-time object detection. To quantify the benefit of local training
time reduction, we compare the average training time of Jetson
TX2s with the primary task of objective detection and Raspberry
Pi 4s in FedSEA with the corresponding devices in FedAvg with
the same communication cost. Table 5 shows that applying FedSEA
devices can reduce local training time significantly, especially for
the extremely lagging devices (i,e, Raspberry Pi 4s). For example,
Raspberry Pi 4 can reduce local training time by 714.5× and 792.9×
in IC-MNIST and IC-CIFAR10, respectively. The reason for such a
huge reduction is that Raspberry Pi 4s in FedSEA just train 2-layer
MLP rather than CNN in IC-MNIST, IC-CIFAR10.

Energy Consumption: FedSEA can reduce the energy consumption
of devices by decreasing the local training steps and letting slow
devices train smaller models. We measure the average energy con-
sumption of a Raspberry Pi 4 to complete one round of local training

FedSEA: A Semi-Asynchronous Federated Learning Framework for Extremely Heterogeneous Devices SenSys ’22, November 6–9, 2022, Boston, MA, USA

Table 6: Memory footprint reduction of FedSEA.

Applications Memory footprint (MB)
FedSEA Baselines

IC-MNIST 1.01 4.85
IC-CIFAR10 3.98 7.47
IC-EMNIST 6.59 14.19
HAR 0.32 0.72

and compare the results between FedSEA and the other baselines
in Figure 10. The results demonstrate that devices in FedSEA can
complete one round of local training with less than 3 mWh energy
consumption, which saves more than 700× energy compared with
other baselines in IC-MNIST and IC-CIFAR10.

IC-MNIST IC-CIFAR10 HAR
0

1

2

3

1500

1600

1700

1800

1900

2000

2100

2200

5.2x

752.9x

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

m
W

h
)

 baselines

 FedSEA

732.1x

Figure 10: Comparison between FedSEA and the baselines on
energy consumption (Raspberry Pi 4).

Memory Footprint: FedSEA is able to dramatically reduce the
memory footprint of local training on slow devices by allowing them
to train smaller models. To quantify the benefit of memory footprint
reduction, we set the batch size as 64 and measure the memory
needed by a Raspberry Pi 4 to conduct local training in different
applications. For the baselines, devices conduct local training on the
same model architecture, and hence the reported result is the same
for all the baselines. As Table 6 shows, FedSEA is able to reduce
memory footprint by 4.9×, 1.9×, 2.2×, and 2.3× in IC-MNIST, IC-
CIFAR10, IC-EMNIST, and HAR, respectively. This reduction in
memory footprint will be even more significant when applying larger
batch sizes or larger global model sizes in the real world.

5 DISCUSSION
Extra Communication Cost. It is notable that FedSEA introduces
extra communications between the server and the local devices. How-
ever, these extra communications are only for control information
exchange. The communication energy and time for control informa-
tion are not comparable with the exchange of model parameters. In
addition, the exchange of control information happens in parallel
with local training and will not affect the efficiency of the system.

Client Selection. There have been many works [2, 7, 12] discussing
the improve or client selection in FL. Most of the works focus on
solving the non-IID problem to improve or accelerate the conver-
gence of the global model. A fairness-guaranteed algorithm termed
RBCS-F [16] was proposed to model the fairness-guaranteed client
selection as a Lyapunov optimization problem. It is an interesting

topic that we apply active client selection to FedSEA and improve
the efficiency of the system further.

6 RELATED WORK
Asynchronous and Semi-asynchronous FL. To improve the effi-
ciency of FL systems, asynchronous and semi-asynchronous FL are
proposed. However, existing AFL and SAFL systems cannot guaran-
tee efficiency in realistic settings and suffer from the accuracy drop
of the global model. One major challenge of AFL and SAFL systems
is how to mitigate the straggling problem caused by the stale models.
Current AFL and SAFL frameworks use two strategies to solve the
straggling problem: (1) Stale model updates are set smaller weights
during aggregation [6, 24, 31, 34, 38, 40]; (2) Extremely stale model
updates are abandoned by the server [14, 26, 30, 37]. Both meth-
ods cause a serious accuracy drop under non-IID settings where
slow devices hold unique and important data. The other challenge is
to improve the efficiency of the FL system in reality. An effective
scheduler of synchronization is the key to improving the efficiency
of SAFL. Previous works either set fixed time intervals for synchro-
nization [34, 37] or apply a cache for model updates [26, 40] which
is fully filed before aggregation. Both schemes cannot guarantee
efficiency when the devices have dynamic resource availability.
Knowledge Distillation. Knowledge distillation [15] was proposed
to reduce the model size and boost the training of small models. It is
based on the observation that when you conduct KD from a teacher
model to a student model, the convergence of the student model out-
performs directly training it. Our distillation and infusion modules
differ from conventional KD in two aspects: (1) Conventional KD
requires the original training dataset with labels, while in FedSEA
the server only has an unlabeled public dataset that is non-IID with
the data on devices; (2) Conventional KD distill knowledge from
a large model to a small model, while the infusion module in our
system infuses the knowledge from a small model to a large model.

7 CONCLUSION
In this paper, we present the design, implementation and evaluation
of FedSEA, an efficient semi-asynchronous FL framework for ex-
tremely heterogeneous devices. By applying FedSEA, the central
server can adjust the training configurations of participating devices
such that the problems of staleness and unbalanced aggregation fre-
quency are mitigated, and hence the performance of the global model
is improved. The synchronization strategy of FedSEA is adaptive
to the predicted training time of devices and the dynamic on-device
resource availability, which significantly improves the system’s effi-
ciency. FedSEA also enables the extremely lagging device to partici-
pate in training, which improves the scalability of FL systems. We
evaluate FedSEA using three representative FL applications. The
results demonstrate that FedSEA significantly outperforms the state-
of-the-art methods in accuracy, time efficiency, local training time,
energy consumption, and memory footprint. FedSEA improves the
efficiency of FL systems and represents a significant step towards
the deployment of efficient FL systems in real life.

ACKNOWLEDGEMENT
This work is supported in part by NSF 1822085, IUCRC for ASIC
and the memberships contributed by Lenovo, etc.

SenSys ’22, November 6–9, 2022, Boston, MA, USA
Jingwei Sun1, Ang Li1, Lin Duan1, Samiul Alam4,3, Xuliang Deng1, Xin Guo2,

Haiming Wang2, Maria Gorlatova1, Mi Zhang3,4, Hai Li1, Yiran Chen1

REFERENCES
[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis

Reyes-Ortiz. 2013. A public domain dataset for human activity recognition using
smartphones.. In Esann, Vol. 3. 3.

[2] Ravikumar Balakrishnan, Tian Li, Tianyi Zhou, Nageen Himayat, Virginia Smith,
and Jeff Bilmes. 2021. Diverse client selection for federated learning: Submodular-
ity and convergence analysis. In ICML 2021 International Workshop on Federated
Learning for User Privacy and Data Confidentiality.

[3] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
H Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. arXiv preprint arXiv:1902.01046 (2019).

[4] Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. 2020. Vafl: a method
of vertical asynchronous federated learning. arXiv preprint arXiv:2007.06081
(2020).

[5] Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. 2020. Asynchro-
nous online federated learning for edge devices with non-iid data. In 2020 IEEE
International Conference on Big Data (Big Data). IEEE, 15–24.

[6] Yang Chen, Xiaoyan Sun, and Yaochu Jin. 2019. Communication-efficient fed-
erated deep learning with layerwise asynchronous model update and temporally
weighted aggregation. IEEE transactions on neural networks and learning systems
31, 10 (2019), 4229–4238.

[7] Yae Jee Cho, Jianyu Wang, and Gauri Joshi. 2020. Client selection in federated
learning: Convergence analysis and power-of-choice selection strategies. arXiv
preprint arXiv:2010.01243 (2020).

[8] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017.
EMNIST: Extending MNIST to handwritten letters. In 2017 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2921–2926.

[9] Enmao Diao, Jie Ding, and Vahid Tarokh. 2020. HeteroFL: Computation and
communication efficient federated learning for heterogeneous clients. arXiv
preprint arXiv:2010.01264 (2020).

[10] Zhixu Du, Jingwei Sun, Ang Li, Pin-Yu Chen, Jianyi Zhang, Hai Li, Yiran Chen,
et al. 2022. Rethinking Normalization Methods in Federated Learning. arXiv
preprint arXiv:2210.03277 (2022).

[11] Biyi Fang, Jillian Co, and Mi Zhang. 2017. Deepasl: Enabling ubiquitous and
non-intrusive word and sentence-level sign language translation. In Proceedings
of the 15th ACM Conference on Embedded Network Sensor Systems. 1–13.

[12] Jack Goetz, Kshitiz Malik, Duc Bui, Seungwhan Moon, Honglei Liu, and Anuj
Kumar. 2019. Active federated learning. arXiv preprint arXiv:1909.12641 (2019).

[13] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. 2021. Knowl-
edge distillation: A survey. International Journal of Computer Vision 129, 6
(2021), 1789–1819.

[14] Jiangshan Hao, Yanchao Zhao, and Jiale Zhang. 2020. Time efficient federated
learning with semi-asynchronous communication. In 2020 IEEE 26th International
Conference on Parallel and Distributed Systems (ICPADS). IEEE, 156–163.

[15] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. 2015. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531 2, 7 (2015).

[16] Tiansheng Huang, Weiwei Lin, Wentai Wu, Ligang He, Keqin Li, and Albert Y
Zomaya. 2020. An efficiency-boosting client selection scheme for federated
learning with fairness guarantee. IEEE Transactions on Parallel and Distributed
Systems 32, 7 (2020), 1552–1564.

[17] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[18] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2014. The cifar-10 dataset.
online: http://www. cs. toronto. edu/kriz/cifar. html 55 (2014).

[19] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and Hai
Li. 2020. Lotteryfl: Personalized and communication-efficient federated learning
with lottery ticket hypothesis on non-iid datasets. arXiv preprint arXiv:2008.03371
(2020).

[20] Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. 2021.
Fedmask: Joint computation and communication-efficient personalized federated
learning via heterogeneous masking. In Proceedings of the 19th ACM Conference
on Embedded Networked Sensor Systems. 42–55.

[21] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2019.
On the Convergence of FedAvg on Non-IID Data. In International Conference on
Learning Representations.

[22] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time
object detection for mobile augmented reality. In The 25th Annual International
Conference on Mobile Computing and Networking. 1–16.

[23] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2018. Large-scale
celebfaces attributes (celeba) dataset. Retrieved August 15, 2018 (2018), 11.

[24] Xiaofeng Lu, Yuying Liao, Pietro Lio, and Pan Hui. 2020. Privacy-preserving
asynchronous federated learning mechanism for edge network computing. IEEE
Access 8 (2020), 48970–48981.

[25] Yunlong Lu, Xiaohong Huang, Yueyue Dai, Sabita Maharjan, and Yan Zhang.
2019. Differentially private asynchronous federated learning for mobile edge
computing in urban informatics. IEEE Transactions on Industrial Informatics 16,

3 (2019), 2134–2143.
[26] Qianpiao Ma, Yang Xu, Hongli Xu, Zhida Jiang, Liusheng Huang, and He Huang.

2021. FedSA: A semi-asynchronous federated learning mechanism in heteroge-
neous edge computing. IEEE Journal on Selected Areas in Communications 39,
12 (2021), 3654–3672.

[27] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[28] Yuchen Mu, Navneet Garg, and Tharmalingam Ratnarajah. 2022. Communication-
Efficient Federated Learning For Massive MIMO Systems. In 2022 IEEE Wireless
Communications and Networking Conference (WCNC). IEEE, 578–583.

[29] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-
drew Y Ng. 2011. Reading digits in natural images with unsupervised feature
learning. (2011).

[30] Takayuki Nishio and Ryo Yonetani. 2019. Client selection for federated learning
with heterogeneous resources in mobile edge. In ICC 2019-2019 IEEE interna-
tional conference on communications (ICC). IEEE, 1–7.

[31] Jungwuk Park, Dong-Jun Han, Minseok Choi, and Jaekyun Moon. 2021. Sageflow:
Robust federated learning against both stragglers and adversaries. Advances in
Neural Information Processing Systems 34 (2021), 840–851.

[32] Mary Phuong and Christoph Lampert. 2019. Towards understanding knowledge
distillation. In International Conference on Machine Learning. PMLR, 5142–
5151.

[33] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. 2018.
Deepdecision: A mobile deep learning framework for edge video analytics. In
IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE,
1421–1429.

[34] Dimitris Stripelis and José Luis Ambite. 2021. Semi-synchronous federated
learning. arXiv preprint arXiv:2102.02849 (2021).

[35] Jingwei Sun, Ang Li, Louis DiValentin, Amin Hassanzadeh, Yiran Chen, and
Hai Li. 2021. Fl-wbc: Enhancing robustness against model poisoning attacks in
federated learning from a client perspective. Advances in Neural Information
Processing Systems 34 (2021), 12613–12624.

[36] Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li, and Yiran Chen.
2021. Soteria: Provable defense against privacy leakage in federated learning
from representation perspective. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 9311–9319.

[37] Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and Stephen Jarvis.
2020. SAFA: A semi-asynchronous protocol for fast federated learning with low
overhead. IEEE Trans. Comput. 70, 5 (2020), 655–668.

[38] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934 (2019).

[39] Xiao Zeng, Kai Cao, and Mi Zhang. 2017. MobileDeepPill: A small-footprint
mobile deep learning system for recognizing unconstrained pill images. In Proceed-
ings of the 15th Annual International Conference on Mobile Systems, Applications,
and Services. 56–67.

[40] Chendi Zhou, Hao Tian, Hong Zhang, Jin Zhang, Mianxiong Dong, and Juncheng
Jia. 2021. TEA-fed: time-efficient asynchronous federated learning for edge com-
puting. In Proceedings of the 18th ACM International Conference on Computing
Frontiers. 30–37.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Heterogeneous and Dynamic Resource Availability on Devices
	2.2 Performance Degradation of Federated Learning with Asynchronous Settings
	2.3 The Exclusion of Extremely Lagging Devices

	3 Design
	3.1 Overview
	3.2 Design Challenges
	3.3 Training Configuration Scheduler
	3.4 Distillation Module and Infusion Module
	3.5 End Time Predictor and Round Time Scheduler
	3.6 Workflow Overview

	4 Evaluation
	4.1 System Implementation
	4.2 Applications, Datasets, and Models
	4.3 Experimental Setup
	4.4 Training performance
	4.5 Hyper-parameter Evaluation
	4.6 On-board Resource Cost

	5 Discussion
	6 Related Work
	7 Conclusion
	References

