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Federated Learning For the internet 
oF things: appLications, chaLLenges, 

and opportunities 

IntroductIon
The rapid advancement and expansion of the Internet of Things 
(IoT) result in exponential growth of data being generated at 
the network edge. Such advancement and expansion pose 
new challenges to the conventional cloud-based centralized 
approaches for data analysis from primarily two aspects. First, 
the centralized approaches no longer fit the 5G/6G era due 
to the extremely high communication and storage overhead 
(e.g., high-frequency data from high-volume time-series sensors 
such as video cameras or Lidar sensors) for pooling data from 
millions or billions of IoT devices. Second, the data being col-
lected is increasingly viewed as threatening user privacy. With 
the cloud-based centralized approaches, user data could be 
shared between or even sold to various companies, violating 
privacy rights and negatively affecting data security, further 
driving public distrust with data-driven applications. Therefore, a 
distributed privacy-preserving approach for data-driven learning 
and inference-based applications is needed for efficiency and to 
alleviate privacy concerns.

In recent years, federated learning (FL) has emerged as a 
distributed privacy-preserving solution to addressing this press-
ing need. The term federated learning was first introduced in 
2016 by McMahan et al. [1]. As shown in Fig. 1, in FL, training 
of machine learning models for data-driven applications is an act 
of collaboration between distributed clients without centralizing 
the client data. The distributed and collaborative nature of FL is 
a natural fit to the network edge where each IoT device at the 
edge is an individual client. Moreover, since the raw data collect-
ed at each IoT device are not transmitted to others, FL provides 
an effective mechanism to protect user privacy, particularly in the 
IoT domain where IoT sensors could directly capture data about 
users that contain privacy-sensitive personal information.

In this article, we briefly explain the advantages that FL brings 
to the IoT domain and discuss some of the most important 
IoT applications enabled by these advantages. We then focus 
on discussing some of the outstanding challenges across sys-

tems, networking, and security, and practical issues in real-world 
deployments and development tools that act as the key barriers 
of enabling FL for the IoT domain and the opportunities in tack-
ling these challenges. To distinguish our work from existing efforts 
such as [2–5], we focus on new challenges as well as articulating 
known challenges from new perspectives that have not been 
discussed before. We hope that this article inspires new research 
that turns the envisioned Internet of Federated Things into reality.

Why Federated LearnIng For Iot?
The distributed, collaborative, and privacy-preserving character-
istics of FL bring a number of key advantages for IoT applica-
tions (Fig. 2) as follows.

Preserving the Privacy of User Data: In an ideal FL scenario, 
each IoT device in the system would learn nothing more than 
the information needed to play its role. The raw data never 
leaves the devices during the federated training process, and 
only the updates of the model are sent to the central server, 
which minimizes the risk of personal data leakage.

Improving Model Performance: Due to device constraints, 
a single IoT device may not have sufficient data to learn a 
high-quality model by itself. Under the FL framework, all the IoT 
devices can collaboratively train a high-quality model such that 
each participant could benefit from learning data collected by 
others beyond its own data but without probing others’ private 
information. Moreover, as the FL could update the local model 
periodically, the edge device could always update its model in 
a time-varying manner. Thus, FL is an effective mechanism to 
enhance the model performance that each individual device 
cannot achieve by itself.

Flexible Scalability: The distributed nature of FL is able to 
leverage the constrained computation resources located at mul-
tiple IoT devices across different geographical locations in a par-
allel manner. As edge device hardware capability is increasing, 
the data size of each individual becomes huge, and centralizing 
all data to the server either wastes the computing resource at 
the edge or brings pressure on the wireless communication 
network, which becomes an obstacle to network scalability. By 
attracting more devices to join the framework, FL enhances the 
scalability of IoT networks without adding an extra burden on a 
centralized server due to its distributed learning nature. In addi-
tion, within the FL framework, there is no need for the expan-
sive transmission of raw IoT-collected data, which also increases 
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the scalability with regard to communication costs, especially 
for the low bandwidth IoT networks.

appLIcatIons
Benefiting from the advantages mentioned above, FL has 
enabled many important IoT applications. In this section, we 
briefl y discuss some of the most important ones (Fig. 3).

Industry 4.0
The rapid development in the Industrial Internet of Things (IIoT) 
brings several advances in information technology applications 
for the manufacturing fi eld. The concept of Industry 4.0, also 
known as the fourth industrial revolution, has been proposed 
based on the emergence and signifi cance of the interconnec-
tivity of IIoT and access to real-time data. With unprecedented 
connectivity, Industry 4.0 will bring greater insight, control, and 
data visibility for the supply chain in many industries. Currently, 
some mature implementations of Industry 4.0 include optical 
character recognition (OCR) for labels, smart and automatic 
incoming quality control (IQC), and smart process quality con-
trol (PQC). However, there are still some real-world problems 
challenging the deployment of Industry 4.0. First, the amount 
of data generated from a single factory may not be sufficient 
enough for training a reliable model comprehensively. Second, 
the data collected by IIoT devices is highly related to the com-
mercial value, which makes privacy preservation important. For 
example, eavesdroppers may infer the capacity for manufactur-
ing from the electricity usage of IIoT users. The FL framework is 
an inspired solution to address the above challenges.

heaLthcare
As IoT devices become more pervasive in individuals’ daily lives, 
the privacy of the collected data becomes signifi cant. An exam-
ple to illustrate privacy concerns is IoT e-health. Nowadays, 
smart wearable devices are used to monitor the health status of 
patients, such as heartbeat, blood pressure, and glucose level. 
Compared to other types of data, personal healthcare data is 
most sensitive to users’ privacy and highly restricted by govern-
ment laws and regulations for any kind of data sharing. There-
fore, techniques such as FL are required for investigators and 
researchers to develop state-of-the-art machine learning (ML) 
models over a fractured and highly regulated data landscape. 
The ability to train ML models at scale across multiple medical 
institutions without pooling data is critical to solve the problem 
of patient privacy and data protection. Successful implemen-
tation of FL in healthcare could hold significant potential for 
enabling precision medicine at a large scale, helping match the 
right treatment to the right patient at the right time.

sMart hoMe
Smart home systems enabled by consumer IoT devices have 
achieved great popularity in the last few years as they improve 
comfort and quality of life for residents. Wireless smart IoT 
home devices, such as smart bulbs, smart doorbells, and smart 
cameras, are capable of communicating with each other and 
are controlled remotely by smartphones and microcontrollers. 
The implementations of Wake-Up-Word speech recognition 
and automatic speech recognition (ASR) on IoT devices bring 
great convenience to everyday living, and people now tend to 
rely on smart IoT gateways with intelligent virtual assistants to 
control their home hands-free. FL has thus become a critical 
technology that is able to improve on-device speaker verifi ca-
tion while reducing the risk of raw data leakage.

sMart cIty
IoT-enabled smart cities are bringing signifi cant advancements 
by making city operations effi  cient while improving quality of 
life for citizens. Various IoT devices enable city managers to 
control physical objects in real time and provide intelligent 
information to citizens in terms of the traffi  c system, transporta-

tion, public safety, healthcare, smart parking, smart agriculture, 
and so on. Due to the data privacy concerns, smart infrastruc-
tures are moving to compute resources close to where data 
reside, which makes FL suitable for deployment. For example, 
an FL-based smart grid system enables collaborative learning of 
power consumption patterns without leaking individual power 
traces and contributes to the establishment of an interconnect-
ed and intelligent energy exchange network in the city.

autonoMous drIvIng
Along with the advancement of vehicular IoT, autonomous driv-
ing technology is making its way into everyday cars. Areliable 
self-driving system needs frequent real-time communication in 
a multi-access communication environment. Also, the spatial 
and temporal changes of the vehicular environment require an 
intelligent approach that can evolve with the change of envi-
ronment. For the traditional centralized-over-cloud method, the 
driving system needs to transmit a large amount of raw data 
to the server, which would cause potential privacy leakage. 
The communication overhead triggered by the large-size data 
transmission and limited network bandwidth may also lead the 
driving system being unable to respond to the real-time spatial 
changes precisely. Adopting FL in vehicular edge computing for 
autonomous driving has thus become a promising direction to 
mitigate the above challenges. With FL, each vehicle only needs 
to transmit a limited size of data to the cloud and can adapt to 
real-time local changes more sensitively.

Figure 1. Federated learning for the Internet of Things.

Figure 2. Advantages of federated learning for IoT.
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Metaverse and vIrtuaL reaLIty

The metaverse is a hypothetical next generation of the Internet, 
providing fully connected, immersive, and engaging online 3D 
virtual experiences through conventional personal comput-
ing, as well as virtual and augmented reality devices. In the 
metaverse, users own their avatars and can interact with virtual 
objects and other participants. One of the fundamental building 
blocks of the metaverse is digital twins duplicated in a virtual 
environment that reflect real-time physical world status. The 
connection between the virtual and physical worlds is tied by 
the data collected from IoT devices. Federated learning is a 
promising solution to enable collaboration between edge and 
server for better global performance, and also boost the securi-
ty and privacy of the metaverse. For example, the eye tracking 
or motion tracking data collected by the wearables of millions 
of users can be trained in local devices and aggregated via an 
FL server. Hence, users can enjoy services in the metaverse 
without leaking their privacy.

chaLLenges and opportunItIes
To realize the full potential of FL in the applications mentioned 
above, we have identified seven challenges (Fig. 4) that act 
as the key barriers to enabling FL on potentially billions of IoT 
devices. These challenges come from:
• The limited resources of IoT devices
• Limited network bandwidth available at the edge
• Intermittent connectivity and availability commonly found in 

real-world settings
• The diversity of IoT devices across their available resources
• The temporal dynamics after deployments
• How to protect against adversarial attacks and aggregate cli-

ent information securely
• The lack of standardization and system development tools in 

the community
In the following, we describe these challenges followed by 

the opportunities that have high promise to address them.

LIMIted on-devIce resources
The deployment of FL on the network edge is severely impeded 
by the limited resources of IoT devices. Existing ML models, 
especially deep neural networks, are known to be computa-
tion-intensive, which presents strict requirements on hardware 
and may result in low training efficiency on edge devices. 
Thus, developing customized and specialized hardware for ML 
applications on the edge is a promising direction to accelerate 
inference and training tasks while using much less energy com-
pared to general-purpose processors. Edge devices have limited 
resources in terms of not only computation but also memory 
for storage and data access. Recent neural network architec-
tures require accessing a vast amount of memory locations for 
storing not only model weights and parameters but also the 
intermediate results produced by the computations. Therefore, 
a significant challenge for processing neural network models on 
a resource-constrained device is reducing the memory accesses 

and keeping the data on chip to avoid costly reads and writes 
to the external memory modules. Finally, in contrast to serv-
ers with CPUs and GPUs that can use a substantial amount of 
power, edge devices with embedded processors have a limited 
energy budget, which further imposes restrictions on the hard-
ware performance. Despite the fact that current edge devices 
are increasingly powerful, training some deep learning models 
on device is still time-consuming and inefficient.

To make models more applicable to the edge environment, 
researchers mainly focus on two research directions: design 
lightweight and hardware-friendly models/algorithms, and com-
press existing models to obtain thinner and smaller models, 
which are more computation- and energy-efficient. As an exam-
ple, FedMask [6] is proposed as a joint computation- and com-
munication-efficient FL framework. By applying FedMask, each 
device can learn a heterogeneous and structured sparse binary 
mask; based on the mask, it is able to generate a sparse model 
with reduced computation cost, memory footprint, and energy 
consumption. However, this approach is hardware-agnostic; to 
further reduce the resource demands of federated training, we 
envision that the approach of hardware and algorithm co-de-
sign, which sparsifies the model by taking the IoT hardware 
architecture into consideration during federated training, is a 
promising future direction.

LIMIted netWork bandWIdth
The communication bottleneck is considered one of the major 
challenges in an FL-based IoT environment. Currently, most IoT 
devices communicate using wireless networks whose band-
width is much smaller than wired network bandwidth in data 
centers. For example, under a smart home scenario, the sum 
of the overall networking bandwidth is constant for the whole 
IoT system, no matter how many devices are connected. As 
more devices join the system, the communication problem 
arises when clients possess different resource allocations. The 
limited network bandwidth not only makes the communica-
tion between clients and the server inefficient, but also triggers 
the presence of straggler clients, which fail to share their local 
updates with the server during the communication round. They 
both serve as bottlenecks for the performance of FL deploy-
ment in the large-scale IoT scenario.

To reduce the bandwidth demand during federated train-
ing, methods such as gradient compression have been heavily 
explored. However, these methods compromise the training 
quality to gain training efficiency. Mercury [7] proposed a sam-
pling-based framework that enables efficient on-device distribut-
ed training without compromising the training quality as a new 
inspiration for solving this challenge. In addition, Chen et al.’s 
work [8] formulates the bandwidth resource allocation and user 
selection problem during training FL models as an optimization 
problem whose goal is to minimize training loss while meeting 
delay and energy consumption requirements. Liu et al. also pro-
posed a client-edge-cloud hierarchical aggregation framework 
as a communication-resource-efficient method to operate FL 
in edge computing [9]. Each client is able to offload its data 
samples and learning tasks from its device to the edge in prox-
imity (e.g., edge gateway at home) for fast computation in the 
client-edge-cloud paradigm, which allows multiple edge servers 
to perform partial model aggregation. These works proposed 
promising and orthogonal techniques to reduce the bandwidth 
demand in the context of IoT. We envision that those techniques 
can be combined together in the scenario where IoT devices are 
confronted with extremely limited network bandwidth.

InterMIttent connectIvIty and avaILabILIty
Apart from the previous challenge of bandwidth limitations, the 
intermittent connectivity of the IoT devices signifies an unstable 
network connection that drops the device out of the system in 
the middle of the training round. Especially in large-scale IoT 
systems, the dropout problem followed by the intermittent con-

Figure 3. Applications of federated learning for IoT.
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nectivity and availability of various devices will become a serious 
obstacle for the FL framework to efficiently manage and schedule 
clients. Currently, most FL studies are based on synchronous 
update at the server, which implies that the server will not start 
the model aggregation until it receives the information sent from 
the slowest client. However, in real-world settings, due to the 
unbalanced communication abilities and training data distribu-
tion, the local training speed varies from device to device, and 
some clients will even be temporarily disconnected during the 
training phase, which makes synchronous update nearly impos-
sible. Also, not all of them will be simultaneously available for FL 
updating. In asynchronous FL scenarios, a client could join the 
active learning group even in the middle of the training process, 
which endangers the convergence of the federated training.

To address this challenge, some researchers proposed an 
asynchronous aggregation scheme with the implementation 
of coding theory to resist the stragglers in the FL system. In 
[10], an asynchronous aggregation protocol known as FedBuff 
has been proposed to mitigate stragglers and enable secure 
aggregation jointly. Specifically, the individual updates are not 
incorporated by the server as soon they arrive. Instead, the serv-
er will keep receiving local updates in a secure buffer of size 
K, which is a tunable parameter, and then update the global 
model when the buffer is full. However, in real-world settings, 
IoT devices are by nature heterogeneous with diverse comput-
ing speeds. IoT devices with higher computing speed would be 
able to send in their local updates faster than IoT devices with 
slower computing speed, which inevitably leads to training bias. 
We envision that an asynchronous approach that can take the 
heterogeneity of IoT devices into account could be a better and 
more promising solution.

systeM heterogeneIty
Within cross-device settings, clients under the FL framework 
have diverse system metrics in terms of both hardware and soft-
ware. Various devices with different hardware architectures or 
even different device vendors are used to perform the learning 
tasks in different operating systems and different software appli-
cation programming interfaces (APIs). Clients may choose dif-
ferent deep learning frameworks such as TensorFlow, PyTorch, 
and Caffe to train the local models, resulting in different model 
formats for aggregation. All the diversities have not only posed 
a significant challenge to system design, but also exacerbat-
ed the asynchronous communication problem as mentioned 
above. Moreover, in IoT settings, the data collected by differ-
ent devices can be very different in terms of the feature and 
dimensions, and various types of devices can also have different 
temporal and spatial preferences for their data collection, which 
may create a discrepancy in the local data structure among all 
the participants under the FL framework. For example, a surveil-
lance camera will record videos in real-time (247 hours), while 
the data generated by a doorbell is intermittent. However, the 
central server could not examine the impact of the data hetero-
geneity until the training is done.

An FL framework for IoT should enable graceful adaptation 
of the data and compute load across different devices based 
on their resource availability. To address this challenge, we 
envision that the training quality and speed will be improved 
if we can determine the heterogeneity and make adjustments 
accordingly before the training starts. Diao et al. [11] proposed 
a heterogeneous FL framework that can produce a single global 
inference model from training heterogeneous local models on 
the clients. It is the first challenge of the underlying assumption 
of existing work that local models have to share the same archi-
tecture as the global model, and inspires a solution to address 
the system heterogeneity among IoT devices.

teMporaL dynaMIcs and contInuaL LearnIng
IoT sensing devices will, by their very nature, continuously 
collect new data, which will be used to update the model for 

lifelong or continual learning. With the objective of continu-
ally providing services accommodating newly collected data, 
continued model update training poses a new challenge for 
resource-limited IoT devices. Specifically, as most IoT devices 
are memory-limited, their memory resources are not sufficient 
enough to handle both model inference and training. Further-
more, the lack of sufficient memory to keep past collected data 
may exacerbate catastrophic forgetting, which is one of the 
most critical problems in continual learning.

To address this challenge, we envision that the lightweight ML 
engine is needed to reduce the memory consumption for on-de-
vice training. As an example, FedGKT [12] is a potential method 
to reduce the training memory footprint for efficient on-device 
learning. With FedGKT, IoT devices could transfer knowledge 
from many compact convolutional neural network (CNN) mod-
els to a large CNN at a cloud server, which reformulates FL as 
a group knowledge transfer training model for large-size model 
training on resource-constrained edge devices. To avoid cata-
strophic forgetting, we envision the use of clustering approaches 
that identify and store a few core data samples from each time 
interval. Moreover, leveraging IoT “hubs” that can store non-sen-
sitive/public datasets to inject memory in the training system is 
another promising solution. Furthermore, approaches that can 
detect temporal distribution shifts at each IoT node to determine 
when to update the model would also be needed.

trustWorthIness
In practical deployment, IoT devices are attractive targets for 
adversaries seeking to launch attacks such as phishing, identity 
theft, and distributed denial of service (DDoS). With the expan-
sion of IoT networks, the potential traffic volume of IoT-based 
DDoS attacks is reaching unprecedented levels, as witnessed 
during the Mirai botnet attack leveraging infected webcams 
and home routers. Attacks through the Internet have raised 
awareness of the need for IoT risk assessment and security, for 
example, in fields such as healthcare. Even though these attacks 
could easily be defended against by installing security patches, 
many IoT devices lack the requisite computation resources 
to do so. Moreover, within a cross-device system setting, it is 
difficult to identify whether a coming participant is malicious 
or not before it joins the system. Therefore, it is crucial for the 
IoT system to detect malicious or broken IoT devices that will 
ruin the model training with limited resources. To address this 

Figure 4. Challenges of federated learning for IoT.
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challenge, one of the promising directions is 
to implement a lightweight security protocol 
in the IoT system for the detection of broken 
and malicious devices. With its distributed 
nature, FL can offer an alternative approach 
for IoT cybersecurity by protecting the system 
from malicious attacks as close as possible to 
the IoT devices. DIoT [13] is the first system 
to employ an FL approach to anomaly-detec-
tion-based intrusion detection in gateways to 
IoT devices without centralizing the on-device 
data, where it demonstrates the efficacy of 
FL in detecting a wider range of attack types 
occurring at multiple devices.

Although FL shows its efficacy in cyberse-
curity for the IoT system, the privacy leakage 
from on-device sensitive data still matters as 
the participants share the model gradients or 
weight parameters with the server during the training process, 
which are derived from the participants’ private training data as 
a statistical representation of the data on which it was trained. 
The attacker could initiate a model inversion attack on the FL 
server first to achieve the individual model of each participant, 
and then recover the personal training data by inverting these 
personal models. One of the representative works on the above 
attack is the inverting gradients attack [14], which proves that 
personal data reconstruction from gradient information is possi-
ble in FL setups. Therefore, a critical consideration in FL design 
is to ensure that the server, as a blackbox for aggregation, does 
not learn the locally trained model of each user during model 
aggregation. Currently, the state-of-the-art secure aggregation 
protocols in FL essentially rely on two main principles: the 
pairwise random-seed agreement between users in order to 
generate masks that hide users’ models while having an addi-
tive structure that allows their cancellation when added at the 
server; and the secret sharing of the random-seeds so as to 
enable the reconstruction and cancellation of masks belonging 
to dropped users. The main drawback of such approaches is 
that the number of mask reconstructions at the server sub-
stantially grows as more users are dropped, causing a major 
computational bottleneck. Especially for low-end IoT devices, 
the additional operator for the secure aggregation becomes an 
excessive burden to limited on-device computational resources. 
To address this challenge, one promising direction is to imple-
ment lightweight and secure aggregation protocols that could 
provide the same level of privacy and dropout resiliency guar-
antees while substantially reducing the aggregation complexity, 
which meets the constraint in the IoT setting.

standardIzatIon and systeM deveLopMent tooLs
There are many concerns that researchers need to take into 
account when designing a FL system on IoT networks. Issues such 
as different communication APIs, data flow models, network con-
figurations, and device properties have to be considered. As an 
emerging field, FL for IoT has not been standardized and appro-
priately implemented. Therefore, the research and development 
for standardization could help expedite the widespread deploy-
ment of FL systems on IoT networks and create an open environ-
ment for content sharing. Additionally, in light of the complexity 
involved in FL, researchers and enterprises need to further build 
on existing FL developing and benchmarking tools such as Ten-
sorFlow Federated, PySyft, and FedML to accommodate the sce-
narios of IoT applications. From the application-level perspective, 
user-friendly integrated simulation environments are needed to 
help design and evaluate the entire FL system on a large scale of 
IoT networks and its feasibility without implementing the model 
in real-world settings. From the system design perspective, ideally, 
we are looking for tools that can help developers accomplish 
system-level tasks such as load balancing, resource management, 
task scheduling, and data migration easily.

One work of note along this direction 
is FedIoT [15], which provides a mature sys-
tem-level framework that a developer can use 
to deploy their FL applications on CPU- or 
GPU-enabled IoT devices, such as Raspberry 
Pi and NVIDIA Jetson Nano. To make FL more 
ubiquitous on IoT devices, we believe that 
researchers should pay attention to extend-
ing the current training frameworks to edge 
FL setting with awareness of the challenges 
mentioned above. It is worth mentioning that 
current edge computing solutions such as Ten-
sorFlow Lite, MNN, and TVM are focused on 
improving the performance and efficiency of 
edge inference instead of training, much less 
taking FL setting into consideration, which is an 
under-explored area that would bring signifi-
cant value to the FL and IoT communities.

concLudIng reMarks
The distributed, collaborative, and privacy-preserving nature 
of federated learning makes it well suited for the IoT domain 
across a wide range of applications. In this article, we highlight 
the key advantages and elaborate on some important appli-
cations of federated learning for IoT. We also identify seven 
challenges that act as the key barriers to enabling FL for IoT fol-
lowed by discussing opportunities to address these challenges. 
We hope this article acts as a catalyst to inspire new research at 
the intersection of federated learning and IoT.
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