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 Low-Power Wide-Area Networks (LPWANs) has emerged as a promising mechanism to connect billions 
of low-cost Internet of Things (IoT) devices for wide-area data collection. Long Range (LoRa) [1] is a 
commercialized and widely deployed wireless technology that facilitates the establishment of LPWANs. 
As illustrated in Figure 1, a LoRaWAN consists of end nodes, gateways, a network server, and an 

application server. The collected sensory data (e.g., temperature, humidity) transmitted from the distributed 
end nodes are relayed by several gateways to the network server. 
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of the four chirp symbols are distinct 
enough. Then, we take 0x40 chirp symbol 
as a reference to compute the dual-channel 
spectrogram differences with others. 

The results are shown in Figure 2. The 
spectrograms of amplitude and phase are on 
the top and bottom, separately. For a chirp 
symbol, the spectrum energy peaks derived 
by continuous short chirp segments form a 
linearly increasing energy peak distribution 
in its amplitude spectrogram. The initial 
frequency of the energy peak distribution 
is determined by the initial frequency of the 
chirp symbol, which corresponds to the data 
bits it represents. As shown at the top of Fig- 
ure 2, although the encoded initial frequencies 
among the four chirps are close, we can clearly 
observe the energy peak distributions from 
the amplitude spectrogram differences. This 
indicates that energy peak distribution is a 
useful feature dimension. Additionally, as 
shown in Figure 2b and Figure 2c, we can 
see peaks (e.g., bright areas) and valleys 
(e.g., dark areas) appear alternatively in 

both amplitude (e.g., circle) and phase (e.g., 
dashed rectangle) spectrograms. Specifically, 
the patterns observed by amplitude and 
phase are correlated, but different chirp 
symbols exhibit diverse patterns. Hence, 
the staggered pattern is another feature 
dimension of the dual-channel spectrogram 
to distinguish different chirp symbols.

When SNR is getting low, however, the 
dual-channel spectrogram will be polluted 
by noise. To illustrate this, we collect a 
chirp symbol to calculate its amplitude 
spectrogram under different SNR levels.  
As shown in Figure 3, when SNR is 35 dB,  
we can see the spectrum energy peaks 
of all short chirp segments. When SNR 
drops to -10 dB, Figure 3 shows only 
several short chirp segments’ energy peaks 
(e.g., white circles) that can be explicitly 
observed compared to surrounding noise 
energy. Facing the seriously polluted dual-
channel spectrogram, a DNN can succeed 
in recognizing chirp symbols due to the 
noise-resilient patterns obtained from 

The root cause of the limitations shared across 
the status quo approaches described above is 
that they are all designed based on dechirp, 
which decodes a chirp symbol by only relying 
on its energy in the spectrum. Such a design 
choice, though simple, is coarse-grained: it 
ignores fine-grained information embedded 
inside the chirps, which can be helpful in 
chirp symbol decoding.

Overview of the Proposed Approach.  
The limitation of dechirp motivates us to 
rethink the design of the LoRa demodulation 
method. To this end, we present NELoRa, a 
neural-enhanced demodulation method that 
achieves ultra-low SNR LoRa communica- 
tion with a single gateway. The key idea of 
NELoRa is to use Deep Neural Networks  
(DNN) to extract the fine-grained informa- 
tion embedded inside the chirps for decoding.  
Compared to the single-dimension energy 
information used in dechirp, the extracted 
fine-grained information contains robust 
and consistent multi-dimension patterns 
across the chirps’ time, frequency, phase, 
and energy information. By doing this, 
NELoRa breaks the SNR threshold of 
dechirp and obtains extra SNR gains by 
lowering the SNR threshold. As a result,  
NELoRa can enlarge the LoRa communica- 
tion range and reduce the energy consump- 
tion at a single gateway.

CREATING THE DUAL-CHANNEL 
SPECTROGRAM
Given a chirp symbol, we first divide it into  
a sequence of short chirp segments with 
equal length. Then we compute the spectrum 
of each short chirp segment separately 
as dechirp does to generate an amplitude 
spectrogram. In addition, we extract the 
phase of each short chirp segment's spectrum, 
which leads to a dual-channel spectrogram. 
To demonstrate the feature space of our 
dual-channel spectrogram, we collect four 
chirp symbols representing four different 
but very close data bits (e.g., 0x40, 0x41, 
0x43, 0x45) at a high SNR level. The dual-
channel spectrogram creates the desired 
feature space only if the spectrograms 

FIGURE 1. Illustration of LoRaWAN architecture.
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FIGURE 2. Dual-channel spectrogram.
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To enable such long-distance communication,  
the physical layer of LoRa employs Chirp 
Spread Spectrum (CSS) modulation at the end 
nodes and dechirp at the gateways. By modu-
lating data via CSS, LoRa allows sensor nodes 
to send data at low data rates to gateways sev-
eral or even tens of miles away. Unfortunately, 
recent studies [2, 3] show that the communica-
tion range of LoRa is far from the expectation 

in complex real-world environments (e.g., 
urban areas, campuses). The blockage attenua-
tion could severely degrade the Signal-to-Noise 
Ratio (SNR) of LoRa packets, causing decod-
ing failures even at a sub-kilometer distance. 
Consequently, a LoRa node has to adapt its 
configuration with more energy consumption 
to compensate for the SNR degradation,  
reducing its battery life drastically.

Status Quo and their Limitations. Status 
quo approaches [4-7] obtain extra SNR 
gains by enhancing the observed SNR over 
a weak LoRa link. Such extra SNR gains are 
obtained by leveraging information from 
multiple LoRa nodes or gateways. Although 
these approaches have achieved impressive 
SNR gains, such gains are costly if the LoRa 
nodes and gateways are not densely deployed. 
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into ends. It contains multiple blocks of 
CNN and one LSTM to fully exploit the 
spatial and temporal features of the input, 
followed by two dense layers to output a 
well-matched mask. Moreover, a four-layer 
CNN-based decoder is designed to fully 
capture the spatial energy peak distribution 
and temporal staggered pattern in the 
masked spectrogram.

Data Augmentation. We improve the 
generalization of our DNN model by 
training it with millions of syntheses LoRa 
chirp symbols, which cover different SNR 
levels with diverse random noise patterns. 
Specifically, we collect each type of chirp 
symbol at high SNR using an indoor testbed. 
To achieve fine-grained SNR control, we add 
various Gaussian white noises with controlled 
amplitude on the collected I and Q traces  
[9-11] to generate new chirp symbols.

DNN Model Compression. We adopt 
the structured pruning [12] to compress 
the original model for efficient inference. 
Specifically, we calculated the L1-norm of 
weights in each filter of CNN and dense 
layer and preserved those with the largest 
L1-norm. Besides, we also replace the LSTM 
layer with the GRU layer, which is a more 
computation-efficient version of RNN, while 
achieving similar performance when the 
input sequence is not too long. 

SYSTEM IMPLEMENTATION
We have implemented NELoRa and evaluated 
its performance with commercial LoRa nodes.  
Figure 6 illustrates the system prototype 
of NELoRa. Specifically, we use the USRP 
N210 software-defined radio (SDR) platform  
for capturing over-the-air LoRa signals, 
operating on a UBX daughter board at the 
470MHz bands. The captured signal samples 

are then delivered to a back-end host for 
pre-processing and demodulation. Note 
that demodulation methods of NELoRa 
are hardware-independent, so they can 
be implemented on any other commercial 
LoRa gateways as long as the signal samples 
can be obtained. On the transmitter side, we 
use SX1278 client radio-based commodity 
LoRa nodes for transmitting LoRa packets.

PERFORMANCE EVALUATION
To examine the performance in the outdoor 
environment, we deployed our testbed on 
a university campus covering various land 
cover types (e.g., trees, buildings, roads, 
and pond) as illustrated in Figure 7(a). 
Specifically, we deployed the LoRa nodes 
at six different locations. Each LoRa node 
transmits 15 packets, each of which contains 
188 chirp symbols. Besides the pre-trained 
DNN decoder, we use the newly collected 
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FIGURE 4. Overall architecture of NELoRa.

FIGURE 5. Architecture of the dual-DNN model.

both amplitude and phase spectrograms. 
Specifically, the energy peak distribution 
exhibits a linear pattern, which can still 
be observed with several explicit energy 
peaks in Figure 3. Moreover, the staggered 
pattern exists in both amplitude and phase 
spectrograms. Since the amplitude and 
phase of a short chirp segment’s spectrum 
are affected by the noise independently, 
the staggered pattern has the potential to 
tolerate specific noise. A well-designed DNN 
is good at learning these patterns. Although 
random noises may be much stronger than 
chirp symbols, it is hard to simultaneously 
form similar patterns in multi-dimensional 
feature space to mislead the DNN. Hence, 
we feed the dual-channel spectrogram of a 
chirp symbol to our DNN.

NELoRa OVERVIEW
Figure 5 illustrates the overall architecture 
of NELoRa. NELoRa consists of three stages 
to achieve reliable symbol generation and 
neural-enhanced demodulation. In the 
Packet Identification stage, a LoRa packet 
is first detected from raw signal samples via 
the Chirp Enhance and Preamble Detection 
modules. The detected packet is then 
imported into the DNN Input Generation 
stage. The Offset Recovery module exploits 
the redundant chirp symbols in packet 
preamble to compensate offsets in frequency 
and time domains to generate the time-
aligned and offset-free chirp symbols 
in packet payload. Each extracted chirp 
symbol is then transformed by the Symbol 
Transform module into a dual-channel 
spectrogram. The final stage is DNN-based 
Demodulation. Given the dual-channel 
spectrogram, the Mask-enabled Filter 
module alleviates the channel noise to 
obtain a masked spectrogram, which is 
then decoded by the Spectrogram-based 
Decoder module to generate the packet.

Packet Identification. The default packet 
detection method utilizes the preamble of 
a LoRa packet, which consists of multiple 
continuous base up-chirps. To tolerate a 
lower SNR threshold than the one used in 
dechirp, instead of using the energy peak 
of a window chirp, we sum up multiple 
continuous window chirps to form an 
enhanced window chirp, in which the 
window chirps are added up coherently, but 
the random noise is not. We apply dechirp 

on the enhanced window chirp to obtain an 
accumulated energy peak, surpassing the 
randomly increased noise energy. In theory, 
when we sum up eight window chirps 
coherently, the resulting SNR gains will be 
9 dB. If the energy peak of the enhanced 
window chirp is higher than the average 
noise energy, a LoRa packet is detected. 
Due to the existence of carrier frequency 
offset (CFO) and sampling frequency offsets 
(SFO), which introduce phase shifts onto 
the window chirps that accumulate over 
time, different window chirps may have 
different initial phases. To take advantage 
of coherently overlapping, we use a greedy 

search method to find the clock drift, which 
can accurately estimate the phase offset.

Neural-enhanced Demodulation. As 
shown in Figure 5, our dual-DNN model 
includes two modules, the noise filter and 
the spectrogram-based decoder for noise 
reduction and chirp symbol decoding, 
respectively. The first module aims to 
preserve the primary spectrogram features 
of a chirp symbol by masking the raw dual-
channel spectrogram. In a conceptual sense, 
the noise filter is more like an end-to-end 
shortcut connection in the ResNet block [8] 
by transforming the shortcut from layers 
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FIGURE 6. NELoRa gateway and node prototype.
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FIGURE 3. Features at different SNR levels.

FIGURE 7. Outdoor deployment and performance.
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symbols in the campus environment to 
fine-tune our DNN model to achieve higher 
performance. We use the standard dechirp as 
the baseline. As shown in Figure 7(b), in gen-
eral, SER is increased as the distance between 
the gateway and the LoRa node increases. 
Although location 2 is near the gateway, it 
has a high SER due to low SNR caused by 
the building blockage. Compared with the 
baseline, the original NELoRa decreases 
SER by 5.51% to 31.9%, and the re-trained 
NELoRa further reduces the SER by 7.72% 
to 46.9%. We estimate the battery life of the 
operating LoRa node at each location. Figure 
7(c) shows the battery life can be extended by 
1.32 to 5.73 years with the original NELoRa. 
The maximum battery life gain can reach 
8.06 years by using the re-trained NELoRa 
at location 2. The SER of location 2, 5, and 6 
reach 100% using the dechirp. The gateway 
cannot demodulate any data from those loca-
tions even if the LoRa nodes drain out their 
battery. With NELoRa, the SER is lowered, 
and the battery life is increased significantly.

CONCLUSION AND  
FUTURE DIRECTIONS
Neural-enhanced LoRa demodulation is a 
promising way to break the SNR threshold 
of the standard dechirp approach. In this 
work, we propose NELoRa based on such 
neural-enhanced demodulation design, and 
demonstrate that the obtained SNR gains 
enable longer communication distance 
and battery lifetime in LoRa. For a detailed 
evaluation of NELoRa, please refer to the 
original paper [13]. To improve the perfor-
mance of NELoRa, a DNN model optimiza-
tion is needed when the length and types of 
chirp symbols are getting larger. Moreover, 
an online DNN model adaption scheme  
is needed to cope with the environment  
dynamics in real-world deployment. We 
leave these as our future works. n
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