
FedMask: Joint Computation and Communication-Efficient
Personalized Federated Learning via Heterogeneous Masking

Ang Li1, Jingwei Sun1, Xiao Zeng2, Mi Zhang2, Hai Li1, Yiran Chen1
1Department of Electrical and Computer Engineering, Duke University

2Department of Electrical and Computer Engineering, Michigan State University
1{ang.li630, jingwei.sun, hai.li, yiran.chen}@duke.edu, 2{zengxia6, mizhang}@msu.edu

ABSTRACT
Recent advancements in deep neural networks (DNN) enabled vari-
ous mobile deep learning applications. However, it is technically
challenging to locally train a DNN model due to limited data on
devices like mobile phones. Federated learning (FL) is a distributed
machine learning paradigm which allows for model training on de-
centralized data residing on devices without breaching data privacy.
Hence, FL becomes a natural choice for deploying on-device deep
learning applications. However, the data residing across devices
is intrinsically statistically heterogeneous (i.e., non-IID data distri-
bution) and mobile devices usually have limited communication
bandwidth to transfer local updates. Such statistical heterogeneity
and communication bandwidth limit are two major bottlenecks
that hinder applying FL in practice. In addition, considering mobile
devices usually have limited computational resources, improving
computation efficiency of training and running DNNs is critical
to developing on-device deep learning applications. In this paper,
we present FedMask – a communication and computation efficient
FL framework. By applying FedMask, each device can learn a per-
sonalized and structured sparse DNN, which can run efficiently on
devices. To achieve this, each device learns a sparse binary mask
(i.e., 1 bit per network parameter) while keeping the parameters of
each local model unchanged; only these binary masks will be com-
municated between the server and the devices. Instead of learning
a shared global model in classic FL, each device obtains a person-
alized and structured sparse model that is composed by applying
the learned binary mask to the fixed parameters of the local model.
Our experiments show that compared with status quo approaches,
FedMask improves the inference accuracy by 28.47% and reduces
the communication cost and the computation cost by 34.48× and
2.44×. FedMask also achieves 1.56× inference speedup and reduces
the energy consumption by 1.78×.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Computing methodologies→Machine learning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’21, November 15–17, 2021, Coimbra, Portugal
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9097-2/21/11. . . $15.00
https://doi.org/10.1145/3485730.3485929

KEYWORDS
Efficient federated learning systems, Data heterogeneity, Personal-
ization, On-device AI

ACM Reference Format:
Ang Li1, Jingwei Sun1, Xiao Zeng2, Mi Zhang2, Hai Li1, Yiran Chen1. 2021.
FedMask: Joint Computation and Communication-Efficient Personalized
Federated Learning viaHeterogeneousMasking. In The 19th ACMConference
on Embedded Networked Sensor Systems (SenSys ’21), November 15–17, 2021,
Coimbra, Portugal. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3485730.3485929

1 INTRODUCTION
Recent breakthrough in deep neural network (DNN) research [32]
has empowered many mobile deep learning applications, such as
image recognition [58], video analytics [46], object detection [39],
sign language translation [14], etc. Developing these mobile appli-
cations requires a large amount of data for training DNNs. However,
mobile devices often hold only limited data, which is not sufficient
to locally train DNNs and achieve a desirable inference accuracy.
One traditional solution is that mobile devices offload the data to a
server and then a centralized training is performed on that server.
Unfortunately, such centralized training method raises serious pri-
vacy concerns due to data offloading.

Federated learning (FL) [42] is an emerging distributed machine
learning paradigm that is able to effectively address the above pri-
vacy issue. FL enables a number of devices to train a shared model in
a federated fashion without transferring their local data. A central
server coordinates the FL process, where each participating device
communicates only the model parameters with the central server
while keeping local data private. However, the data generated by
mobile devices is often non-IID (identically and independently dis-
tributed) across these devices. For example, the input words to a
virtual keyboard [20] on a mobile phone are often user and con-
text dependent. Hence, these text data is highly heterogeneous
across the devices. In addition, the communication and compu-
tational resources are either very limited or very expensive for
mobile devices. In summary, statistical heterogeneity (i.e., non-IID),
communication bandwidth, and computation cost are three critical
bottlenecks [29, 34] in the practical applications of FL.
Status Quo and their Limitations. Since the introduction of FL,
many studies attempt to mitigate the statistical heterogeneity via
personalization including local fine-tuning [4, 13, 28, 30, 45, 54],
multi-task learning [49], and contextualization [40]. However, most
of these approaches require two separate steps: 1) training a global
model in the federated fashion; and 2) fine-tuning the global model
to generate a personalized model for each device using its local

https://doi.org/10.1145/3485730.3485929
https://doi.org/10.1145/3485730.3485929
https://doi.org/10.1145/3485730.3485929

SenSys ’21, November 15–17, 2021, Coimbra, Portugal A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, Y. Chen

Mobile Devices
FedMask Framework

Communication
Efficiency

Mobile
AI SystemPersonalized

and
Computation-

Efficient
Model

Computation
Efficiency

Personalization

Figure 1: The high-level view of FedMask framework.

data. Such a two-step method inevitably incurs extra training efforts
and overheads. In addition, some works aim to reduce communi-
cation cost, and the core idea is to compress the data communi-
cated between the server and the devices. Common practices can
be divided into three main categories: (1) quantization methods
[2, 6, 10, 23, 29, 47, 56, 57] compress the communication by reduc-
ing the number of bits of each element in the transferred data; (2)
sparsificationmethods [1, 12, 26] transmit only a subset of elements
in the communicated data; and (3) hybrid methods [5, 27, 38, 50]
combine quantization and sparsification.

However, very few efforts have been made to address the statis-
tical heterogeneity and communication efficiency simultaneously.
LG-FedAvg [37] leverages both local representation learning and
global FL to learn personalized model for each participating device.
Similar to aforementioned personalization methods, LG-FedAvg
also requires two steps to achieve personalization. Specifically, LG-
FedAvg partitions the model parameters into two groups, i.e., local
parameters and global parameters. In the first step, each participat-
ing device optimizes and share the whole model with the central
server like FedAvg [42]. In the second step, each device still updates
the whole model but only the global parameters will be communi-
cated with the central server, and hence the communication cost can
be reduced. In doing so, each device can learn a personalized model
due to its personalized local parameters. However, LG-FedAvg only
improves communication efficiency in the second step and the
heuristic partition of the model may lead to sub-optimal perfor-
mance. In addition, LG-FedAvg is evaluated under an unrealistic FL
setting, where each device holds sufficient training data (i.e., 200
images/class of MNIST and CIFAR-10). Such a condition implies
that a device has already been able to obtain a good performance
by training a model locally, which contradicts the intention of FL.
For example, the classification accuracy of the model that is locally
trained by each device can be as high as 97.17% on MNIST, but
the performance of the model that is trained using FedAvg [42]
only increases by 1.49% compared to the local model. HeteroFL [11]
adaptively selects and assign a submodel to each device given the
same base model. Each device only needs to train and communicate
its submodel, and thus the both communication and computation
cost can be reduced. However, the submodel is determined based
on the computation capability of each device rather than the local
data, leading to less flexible submodel allocations. Most importantly,
none of the existing FL methods is designed with constraints of
computation cost in training and inference. However, computation

Table 1: Comparison between FedMask and existing FL
frameworks.

Method
Computation
Efficiency

Communication
Efficiency Personalization

FedAvg [42] X X X
Top-𝑘 [1] X ✓ X
Per-FedAvg [13] X X ✓
LG-FedAvg [37] X ✓ ✓

FedMask " " "

cost is a critical challenge for mobile devices due to their limited
onboard resources.
Overview of the Proposed Approach.Motivated by the limita-
tions of existing works, in this work, we propose FedMask, a unified
FL framework that simultaneously (1) minimizes the communica-
tion cost; (2) reduces the computation cost for both training and
inference; and (3) learns a personalized model for each participating
device to mitigate statistical heterogeneity within a single step. As
illustrated in Figure 1, FedMask automatically learns a personal-
ized and sparse DNN model for each device. Such a model can be
deployed for efficient mobile deep learning applications.

To achieve the above three objectives, the key principle behind
FedMask is to exploit the redundancy in both communication and
computation during FL via the learned heterogeneous binary masks.
As Equation 1 shows, the total cost of FL training is the sum of
computation cost and communication cost as follows.

Total Cost=Communication+Computation (gradient+mask) (1)

In particular, the computation cost includes the back-propagation
via calculating the gradients and learning the heterogeneous binary
mask. Although learning the mask incurs extra computation over-
head, each device can learn a compact local model by leveraging
the learned mask. Performing back-propagation on the compact
model reduces the computation cost compared to the operations on
the original local model. Since the overhead of learning the mask
via pruning is negligible compared to that of performing back-
propagation, the computation cost is thus significantly reduced.
Moreover, since transmitting the binary mask is significantly more
efficient than transmitting the local model, the communication
cost is also reduced. As a result, the total cost of FL training is
significantly reduced.

At the core of FedMask, each device learns a heterogeneous and
structured sparse binary mask. In particular, before initializing local
model training, each device first determines a heterogeneous struc-
ture of the binary mask using a pruning method based on the local
data, and then optimizes the binary mask with a structured sparsity
regularization. Such binary mask is then element-wisely applied
to the local model weights to generate a sparse model for each
device and the computation cost for both training and inference are
reduced. Since only the binary mask (i.e., 1 bit per element) of each
device is communicated in FedMask, the communication cost can be
significantly reduced compared to transmitting the weights (i.e., 32
bits per element) of each local model. As data distributions across
different devices are non-IID, the learned binary masks are hetero-
geneous across devices. Such heterogeneity embeds personalized
information of the data distribution on each device.

FedMask: Joint Computation and Communication-Efficient Personalized Federated Learning via Heterogeneous Masking SenSys ’21, November 15–17, 2021, Coimbra, Portugal

System Implementation and Evaluation Results. We imple-
mented FedMask and conducted extensive experiments to evaluate
its performance. In particular, we applied FedMask to build three
representative FL applications on mobile phones: image classifi-
cation, human activity recognition, and next-character prediction.
We have compared FedMask against five competitive and status
quo FL methods as our baselines. Our results show that:

• Compared to the baseline methods, FedMask improves in-
ference accuracy by 2.43%-28.47% while reducing communi-
cation cost by 32.25×-34.48× and saving 1.37×-2.44× com-
putation cost during training.
• At runtime, the structured sparse and personalized model
generated by FedMask significantly outperforms those trained
with the baseline methods. FedMask achieves up to 1.56×
speedup in inference latency while reducing as much as
39.87% memory footprint and 1.78× energy consumption.

Summary of Contributions. To the best of our knowledge, Fed-
Mask represents the first framework that jointly improves the com-
munication and computation efficiency of personalized FL in a
unified manner. Table 1 provides a comparison between FedMask
and status quo FL methods. FedMask proposes a series of novel
techniques that effectively address the limitations of status quo
methods. In particular, FedMask differs from Top-𝑘 and Per-FedAvg
as it improves the communication efficiency and achieves personal-
ization simultaneously. Compared to LG-FedAvg, FedMask achieves
personalization in a single step without local fine-tuning. Most
importantly, FedMask is the only FL framework that takes the opti-
mization of computation efficiency into consideration. We believe
our work represents a significant step towards enhancing the effi-
ciency of FL systems.

2 BACKGROUND AND MOTIVATION
We begin with introducing the background of FL and the need
for personalization. We then show the necessity of simultaneously
reducing computation and communication cost in FL as well as
the limitations of the status quo approaches, which are the key
motivation of our work.

2.1 Background on Federated Learning and the
Need for Personalization

Federated learning enables decentralized training without sharing
local data [53]. FedAvg [42] is one of the most widely used FL
methods. As presented in FedAvg, there is a central server and a
number of devices acting as clients. At each communication round,
a subset of the devices are selected. Each selected device performs
training using local data with the same learning rate and number of
local epochs to train a local model. Each local model is updated using
stochastic gradient descent (SGD). The devices then transmit their
local model updates to the central server, where these local model
updates are averaged and the global model is updated accordingly.
Finally, the global model is sent back to each device. In practice,
the distribution of the data across the devices is inherently non-IID.
Such statistical heterogeneity makes it difficult to train a shared
global model that can be well generalized for all devices [35, 42].

C
om

m
un

ic
at

io
n

Ti
m

e
(h

ou
rs

)

0

15

30

45

60

FedAvg LG-FedAvg

14.39
19.11

45.95

59.67

VGG 16 Inception v4

Figure 2: Comparison of communication cost between
FedAvg and LG-FedAvg.

N
um

be
r

of
 L

oc
al

 E
po

ch
s

10

5

1

Training Cost

0% 25% 50% 75% 100%

86%

54%

37%

14%

46%

63%

Computation Cost Communication Cost

Figure 3: Training cost with different numbers of local
training epochs.

Hence, personalization becomes necessary to handle the challenges
posed by statistical heterogeneity.

2.2 Communication Constraint
Communication cost is a key bottleneck for FL. LG-FedAVg [37] is a
state-of-the-art FL method that attempts to reduce communication
cost and achieve personalization simultaneously. We conduct exper-
iments to investigate how significantly the communication cost is
reduced by LG-FedAvg compared with FedAvg. In this experiment,
we apply FedAvg for training on CIFAR-10 for 2,000 epochs with 5
local epochs and adopt the VGG16 [48] and Inception-v4 [52] as the
default model configurations. We assume the available bandwidth
is 10 MB/s for each device. As Figure 2 shows, it takes 59.67 hours
and 19.11 hours in terms of communication cost when applying
FedAvg to train the VGG16 and Inception-v4, respectively. Unfortu-
nately, such a high communication cost is unaffordable for mobile
devices. Applying LG-FedAvg can reduce the communication cost
to 45.95 hours and 14.39 hours accordingly, indicating 1.30× and
1.33× communication cost reductions. However, such an improve-
ment of communication efficiency is not significant enough because
the communication cost is still too high to be affordable for mobile
devices. Therefore, we aim to push the state-of-the-art forward, i.e.,
to reduce communication cost by an order-of-magnitude compared
to LG-FedAvg.

SenSys ’21, November 15–17, 2021, Coimbra, Portugal A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, Y. Chen

2.3 Computation Constraint
Besides communication cost, computation cost is another critical
challenge for FL. As presented in FedAvg [42], the number of local
epochs is a crucial hyperparameter for convergence. Specifically,
performing more local epochs requires more local computation
efforts but reduces communication cost. However, a larger number
of local epochs may lead to divergence because each local model
may be updated towards the optima of its local objective which is
opposed to the global objective when performing more local epochs.
We conduct experiments to investigate the bottleneck of FL training
by dividing the total training cost into communication cost and
computation cost. In our experiment, we keep the same setting as
the experiment settings in §2.2 but use various local epochs of 1, 5
and 10. In addition, we only adopt VGG16 as the default model con-
figuration for training. As Figure 3 shows, performing more local
epochs results in higher local computation cost but less communi-
cation cost. For example, when performing 10 local epochs on each
device, the computation cost becomes the bottleneck of FL training,
i.e., computation cost accounts for 63% of the total training cost. If
each device performs less local epochs, the communication cost will
become the bottleneck of FL training. For example, communication
cost comprises 86% of the total training cost when performing one
local epoch on each device. However, the optimal number of local
epochs is task-dependent and we need to tune this parameter based
on the specific learning task. Therefore, it is necessary to reduce
both communication and computation costs to improve the training
efficiency. FedMask is designed to achieve this purpose.

3 FEDMASK DESIGN

3.1 Overview
Figure 4 depicts an overview of the proposed FedMask framework.

At the initialization stage, the central server randomly initializes
a model and then distributes it to the participating devices. To sup-
port learning personalized models under statistically heterogeneous
settings, each device learns a heterogeneous binary mask via the
proposed one-shot pruning method (1).

In each communication round, a set of devices is randomly se-
lected to participate in FL training. Optimizing the masks while
keeping the model parameters unchanged has been proved to be
an effective alternative of model training [60]. Therefore, instead
of optimizing local model parameters, in FedMask, each device
optimizes the binary mask with a structured sparsity regularization
while freezing the parameters of local model (2 -a). As such, only
the optimized binary masks are transmitted from the devices to
the central server (2 -b). Compared to FedAvg where local model
parameter updates (32 bits per element) are communicated, trans-
mitting binarymasks can save about 97% of the communication cost,
which is a significant improvement on communication efficiency.

The central server performs the aggregation on the received
binary masks. The aggregation strategy is specifically designed
such that only the elements that are overlapped across the binary
masks of the devices are aggregated while keeping non-overlapping
elements unchanged (3 -a). In doing so, the personalization of the
binary masks is preserved and the updated binary masks will be
sent back to each device (3 -b).

initialized
model

data

Device 1

data
Device 2

…

data
Device N

𝑚
! "#!

𝑚
! "

𝑚$
"#!

𝑚$
"

𝑚 %
"#
!

𝑚 %
"

data
X1, Y1

ʘ

data
X2, Y2

ʘ

data
X3, Y3

ʘ

Central Server
Mask Aggregation

frozen parameters of
local model

binary mask personalized model with
structured sparsity

…

pruned unit value 1 mask unit value 0 mask unit

ʘ elementwise multiply X non-IID data Y ground-truth label

One-Shot
Pruning

Local Mask
Optimization

Heterogeneous
Mask Aggregation

Central
Server

①

①

①

②-a

②-a

②-a
②
-b

②-b

②
-b④

③-a

③
-b

③-b

③
-b

④

④

Figure 4: Overview of FedMask framework.

The above process (2 - 3) repeats until reaching a predefined
number of communication rounds.

Finally, the binarymaskwill be elementwise applied to the frozen
parameters to generate a personalized and structured sparse model
(4). Since performing the feedforward and back-propagation com-
putation over the structured sparse model is much more efficient
compared to the original dense model, the computation efficiency
for both training and inference is significantly improved as well.

3.2 Design Challenges
The design of FedMask has three key challenges.
Challenge#1: How to jointly improve communication and
computation efficiency? In FedMask, the key to jointly improv-
ing communication and computation efficiency is the binary masks.
In classical FL methods, each device optimizes local model weights
using their local data via SGD. In contrast, as illustrated in Figure 4,
FedMask aims to optimize the binary masks other than local model
parameters and only transmits the optimized binary masks to the
central server. Therefore, we need to design a training method to
optimize the binary mask such that the performance of combin-
ing the learned binary mask and the frozen local model is at least
comparable to that of directly optimizing local model parameters.
However, directly applying existing back-propagation algorithms
like SGD is technically infeasible because elements of the mask are
in binary values and 0 values will stop passing corresponding gradi-
ents backward. Hence, we need to design a novel training method
for the binary mask. Furthermore, if we optimize the binary mask
without any constraints, combining the learned binary mask and
the frozen local model may lead to non-structured sparsity, which
is not hardware-friendly to improve computation efficiency [55].
Challenge#2: How to incorporate personalization for each
device? In FedMask, the key to incorporating personalization is

FedMask: Joint Computation and Communication-Efficient Personalized Federated Learning via Heterogeneous Masking SenSys ’21, November 15–17, 2021, Coimbra, Portugal

the construction of heterogeneous binary masks which embed per-
sonalized information of local data distribution into the structure
of each device’s own binary mask. Pruning is a natural option
to obtain data-dependent structure of the binary mask. However,
existing pruning methods are designed for model weights with
floating-point values rather than for masks with binary values. As
such, they cannot be directly applied to binary masks in FedMask.
We need to design a pruning method for generating heterogeneous
binary masks to incorporate personalization for each device.
Challenge#3:How to aggregate heterogeneous binarymasks
on the central serverwhile preserving personalization?Com-
pared to classical FL methods, there are two key differences in the
aggregation on the central server in FedMask: (1) the aggregation
is operated on binary masks instead of model parameters; (2) these
binary masks are heterogeneous rather than the same model ar-
chitecture. Therefore, existing aggregation strategies cannot be
directly applied. Designing an aggregation strategy for heteroge-
neous binary masks while preserving personalization represents
another challenge.

Addressing the above challenges is not trivial. With careless
design, heterogeneous binary masks cannot be effectively learned
to represent personalized information while jointly improving com-
munication and computation efficiency, and the aggregation may
destroy the personalized information embedded in the heteroge-
neous structure of the binary masks.

In the remainder of this section, we first present the preliminaries
on binary mask optimization in §3.3, which lays the foundation for
the proposed techniques in FedMask. We then elaborate the key
techniques we have developed in FedMask in §3.4 (1), §3.5 (2),
§3.6 (3), and §3.7 (4).

3.3 Binary Mask Optimization
The key difference between FedMask and existing FL methods
is that each device learns a heterogeneous binary mask and only
transmit such binary mask to the central server. Learning the binary
mask while freezing the model parameters is the foundation of our
proposed techniques in FedMask. Therefore, we first present the
preliminaries on binary mask optimization in this section.

Figure 5: The process of masking weight.

For simplicity, we take the fully connected layer as an example
to illustrate our proposed binary mask optimization method. Note
that this method can also be easily applied to other types of layers
(e.g., convolutional layers) in DNNs. For ease of notation, the bias
term is ignored. A typical fully connected layer can be defined as
𝑦 =𝑊 · 𝑥 , where 𝑦 ∈ R𝑚 is the output, 𝑥 ∈ R𝑛 is the input, and
𝑊 ∈ R𝑚×𝑛 denotes the weight matrix of the fully connected layer.

Inspired by previous work [60], a mask based fully connected layer
can be composed by applying a binary mask𝑚 ∈ {0, 1}𝑚×𝑛 , which
has the same size as𝑊 , to the fixed weight matrix via element-
wise multiplication as illustrated in Figure 5. The mask based fully
connected layer can be formulated by Equation 2:

𝑦 = (𝑊 ⊙𝑚) · 𝑥, (2)
where ⊙ indicates the elementwise multiplication. However, it is
technically infeasible to apply existing optimization algorithms (e.g.,
SGD) to𝑚 due to its binary value. Therefore, we introduce a real-
valued mask𝑚𝑟 ∈ R𝑚×𝑛 to design the binary mask optimization
algorithm. In the feedforward step,𝑚𝑟 is binarized to𝑚 using a
threshold function, which is defined as Equation 3.

𝑚𝑖 𝑗 =

{
1, 𝑚𝑟

𝑖 𝑗
≥ 𝜏

0, 𝑚𝑟
𝑖 𝑗

< 𝜏
, (3)

where𝑚𝑖 𝑗 represents the element located in 𝑖th row and 𝑗 th column
of𝑚. In the back-propagation step, the gradients of𝑚 are calculated
using Equation 4.

𝜕𝐿

𝜕𝑚
=

(
𝜕𝐿

𝜕𝑦
· 𝑥𝑇

)
⊙𝑊, (4)

Because the threshold function is non-differentiable, the existing
method [60] directly applies the gradients of𝑚𝑟 to that of binary
mask𝑚 as shown in Equation 5.

𝜕𝐿

𝜕𝑚𝑟
=
𝜕𝐿

𝜕𝑚
, (5)

Even though this strategy can realize the optimization of𝑚𝑟 and
𝑚, it may cause a huge gradient scale variance which will impair
the optimization of𝑚𝑟 [9]. To reduce this gradient variance, we
incorporate a sigmoid function denoted as 𝜎 (·), to approximate the
binarization from𝑚𝑟 to𝑚 during local training by Equation 6.

𝑚𝑖 𝑗 = 𝜎

(
𝑚𝑟
𝑖 𝑗

)
. (6)

By introducing the differentiable sigmoid function instead of the
hard threshold function, the gradients of𝑚 can be back-propagated
to𝑚𝑟 as shown in Equation 7:

𝜕𝐿

𝜕𝑚𝑟
= Ψ ⊙ 𝜕𝐿

𝜕𝑚
, (7)

where Ψ represents the gradient matrix of the sigmoid function
and its values are explicitly calculated by Equation 8:

Ψ𝑖 𝑗 =𝑚𝑖 𝑗 · (1 −𝑚𝑖 𝑗). (8)
When transmitting 𝑚 to the central server and performing the
feedforward operation, the result from Equation 6 will be binarized
by applying a threshold function similar to Equation 3, and we set
the threshold as 0.5.

3.4 One-Shot Pruning for Mask Initialization
The first step of FedMask is to learn a heterogeneous binary mask
from each device’s local data at the initialization stage. To this end,
inspired by existing weight pruning methods [18, 24, 36], we design
a one-shot pruning method to learn the heterogeneous structure
using local data. Weight pruning [18] has been a popular technique
for model compression. By pruning parts of the model parameters,
the significant model parameters are preserved for preserving the

SenSys ’21, November 15–17, 2021, Coimbra, Portugal A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, Y. Chen

performance. There were various methods to determine the signif-
icance of parameters, such as threshold [18], kernel sparsity and
entropy [36], filter importance [24], etc. However, existing methods
are designed for real-valued parameters, and thus they cannot be
directly applied to prune the binary mask in FedMask.

Since we have introduced the real-valued mask in the binary
mask optimization algorithm (§3.3), one naïve solution is to directly
apply existing weight pruning methods to the real-valued mask.
However, based on Equation 4 and Equation 7, the gradients of
real-valued masks are directly scaled by the values of fixed weight.
Therefore, using only the magnitude of real-valued masks is not a
fair criterion for pruning. Based on this observation, we design the
one-shot pruning method based on the combination of real-valued
masks and the fixed weights, i.e.,𝑊 ⊙𝑚𝑟 .

As described in §3.1, each device preserves the dense structure
of the top layers in the binary mask and only prunes the last sev-
eral layers which compose the classifier part. Instead of using the
absolute value after optimization, we use the absolute changing
value of𝑊 ⊙𝑚𝑟 to prune masks after optimization. We define the
pruning rate as 𝑝𝑟 , and the pruning procedure consists of two steps:
(1) devices update their real-valued masks for one epoch; (2) by
sorting the values of elements in𝑊𝑖 𝑗 ·𝑚𝑟

𝑖 𝑗
, the largest 𝑝𝑟 portion

of elements will be preserved, and the rest elements will be set
to zero and frozen. Local training is then performed based on the
heterogeneous binary mask.

3.5 Local Binary Mask Optimization
After performing the one-shot pruning at the initialization stage,
each device obtains a heterogeneous mask and can start to perform
local mask optimization in each round of FL. In particular, in each
round of FL, each device iteratively optimizes the binary mask using
local data while keeping local model parameters frozen, such that
the combination of the learned binary mask and fixed local model
parameters results in a model with desirable performance.

To improve computation efficiency on device in a hardware-
friendly way, we employ the structured sparsity regularization
during mask optimization to learn binary masks with structured
sparsity. We aim to achieve channel-wise and filter-wise sparsity
for convolutional layers, row-wise and column-wise sparsity for
fully connected layers. Suppose a network with 𝐿𝑐𝑜𝑛𝑣 convolu-
tional layers and 𝐿𝑓 𝑐 fully connected layers, the structured sparsity
regularization for the mask of this network is formulated as:

𝑅𝑔 (𝑚) = 𝑅𝑐𝑜𝑛𝑣 (𝑚) + 𝑅𝑓 𝑐 (𝑚),

𝑅𝑐𝑜𝑛𝑣 (𝑚) =
𝐿𝑐𝑜𝑛𝑣∑
𝑙=1
(
𝑁𝑙∑
𝑛𝑙=1
∥𝑚 (𝑙)𝑛𝑙 ,:,:,:∥𝑔 +

𝐶𝑙∑
𝑐𝑙=1
∥𝑚 (𝑙):,𝑐𝑙 ,:,:∥𝑔),

𝑅𝑓 𝑐 (𝑚) =
𝐿𝑓 𝑐∑
𝑙=1
(
𝑅𝑜𝑤𝑙∑
𝑟𝑜𝑤𝑙=1

∥𝑚 (𝑙)𝑟𝑜𝑤𝑙 ,:∥𝑔 +
𝐶𝑜𝑙𝑙∑
𝑐𝑜𝑙𝑙=1

∥𝑚 (𝑙):,𝑐𝑜𝑙𝑙 ∥𝑔),

(9)

where ∥.∥𝑔 is the group Lasso [55], ∥𝑚 (𝑔) ∥𝑔 =

√
|𝑚 (𝑔) |∑
𝑖=1
(𝑚 (𝑔)

𝑖
)2,

|𝑚 (𝑔) | is the number of parameters in 𝑚 (𝑔) . After applying this

structured sparsity regularization, the training loss for mask opti-
mization is formulated as:

𝐿(𝑚) = 𝐿𝐷 (𝑚) + 𝜆𝑅𝑅𝑔 (𝑚) (10)

where 𝐿𝐷 (𝑚) is the loss on data and 𝜆𝑅 is the coefficient of struc-
tured sparsity regularization.

To demonstrate the effectiveness of our proposed method, we
conduct experiments to compare the performance between the
model learned by applying our mask based method and the one
trained via directly optimizing the model parameters. In this ex-
periment, the models are trained locally without considering the
federated fashion. In particular, for each method, we train a 2-
layer convolutional network (CNN), a 3-layer multilayer percep-
tron (MLP), and a 1-layer long short-term memory (LSTM) using
MNIST. The structured sparsity regularization coefficient 𝜆𝑅 is set
as 2𝑒 − 4 for each network. The test accuracy is reported in Table
2. Although there is only tiny performance drop on the CNN and
MLP when applying our proposed method, the performance of the
LSTM decreases significantly.

Table 2: Accuracy comparison of the training method:
optimizing model parameters vs. optimizing binary masks.

Method CNN MLP LSTM

optimizing model parameters 97.15% 96.59% 96.35%
optimizing binary masks 96.85% 96.07% 89.23%

To investigate the reason of performance drop on the LSTM, we
look into the formulation of the mask based LSTM. LSTM [22] is
explicitly designed to address the long-term dependency problem
caused by traditional recurrent neural networks (RNNs). As same
as other RNNs, LSTM has a chain-like structure. However, besides
hidden signal ℎ𝑡 , the cell state 𝑐𝑡 is also involved in the information
flow through the chain. In addition, different from the simple RNNs
having a single neural network layer, LSTM has four units:𝑊𝑖 ,
𝑊𝑓 ,𝑊𝑔 ,𝑊𝑜 . These four units are interconnected in a specific way
described as Equation 11.

𝑖𝑡 = 𝜎 (𝑊𝑖 [𝑥𝑡 , ℎ𝑡−1])
𝑓𝑡 = 𝜎

(
𝑊𝑓 [𝑥𝑡 , ℎ𝑡−1]

)
𝑔𝑡 = 𝑡𝑎𝑛ℎ

(
𝑊𝑔 [𝑥𝑡 , ℎ𝑡−1]

)
𝑜𝑡 = 𝜎 (𝑊𝑜 [𝑥𝑡 , ℎ𝑡−1])
𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑔𝑡
ℎ𝑡 = 𝑜𝑡 𝑡𝑎𝑛ℎ (𝑐𝑡)

(11)

Based on the above formulation of LSTM, the mask based LSTM
is composed by applying binary masks to all the four units, which
is defined as Equation 12.

FedMask: Joint Computation and Communication-Efficient Personalized Federated Learning via Heterogeneous Masking SenSys ’21, November 15–17, 2021, Coimbra, Portugal

Figure 6: Expressiveness decay accumulated through the
computation flow in LSTM.

𝑖𝑡 = 𝜎 ((𝑊𝑖 ⊙𝑚𝑖) [𝑥𝑡 , ℎ𝑡−1])
𝑓𝑡 = 𝜎

((
𝑊𝑓 ⊙𝑚𝑓

)
[𝑥𝑡 , ℎ𝑡−1]

)
𝑔𝑡 = 𝑡𝑎𝑛ℎ

((
𝑊𝑔 ⊙𝑚𝑔

)
[𝑥𝑡 , ℎ𝑡−1]

)
𝑜𝑡 = 𝜎 ((𝑊𝑜 ⊙𝑚𝑜) [𝑥𝑡 , ℎ𝑡−1])
𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑔𝑡
ℎ𝑡 = 𝑜𝑡 𝑡𝑎𝑛ℎ (𝑐𝑡)

(12)

where 𝑚𝑖 , 𝑚𝑓 , 𝑚𝑔 and 𝑚𝑜 represent the corresponding binary
masks of the four units in LSTM accordingly. Even though the
performances drop of the mask based CNN and MLP is neglectable,
the expressiveness of mask based DNN models is limited compared
to ones than trained by directly optimizing model parameters. How-
ever, this expressiveness reduction will be even worse in LSTM,
because it will be accumulated through the nested mask structure
as presented in Equation 12. Such an accumulated expressiveness
reduction results in the significant performance drop of LSTM. To
further illustrate the accumulated expressiveness reduction, we
define the expressive ability of a real-valued unit that is directly
optimized as 𝜇, and the expressiveness decay of a masked unit as 𝜖
and 𝜖 < 1. Then, during one feedforward process, the expressive-
ness of the mask based LSTM will be decayed to (1 − 𝜖)3𝜇3, where
the expressiveness decay is accumulated to 1 − (1 − 𝜖)3 when the
information flow passes through ℎ𝑡−1 to ℎ𝑡 as shown in Figure 6.

To reduce the expressiveness decay in LSTM, we can remove the
binary mask from either of𝑊𝑜 ,𝑊𝑔 , and𝑊𝑖 . In doing so, the expres-
siveness decay can be reduced to 1 − (1 − 𝜖)2 with only about 25%
additional communication cost. It is not useful to remove the binary
mask of𝑊𝑓 , because this cannot help to reduce the expressiveness
decay. Such an observation is demonstrated by empirical results in
Table 3. Based on this key observation, we design a partial mask
for LSTM where the mask based optimization is applied to𝑊𝑓 ,𝑊𝑔 ,
and𝑊𝑖 , but directly optimizing the real-value𝑊𝑓 .

Table 3: Accuracy comparison between different masking
strategy on LSTM (dataset: MNIST).

Strategy Accuracy (%)

LSTM 96.35
LSTM+Mask 89.23
LSTM+Mask+𝑊𝑓 real 91.13
LSTM+Mask+𝑊𝑝 real 94.53
LSTM+Mask+𝑊𝑜 real 95.25
LSTM+Mask+𝑊𝑖 real 94.85

Figure 7: Mask aggregation process.

After the local mask optimization, devices transmit the learned
binary masks to the central server, where the aggregation is per-
formed on these binary masks.

3.6 Aggregate Heterogeneous Binary Masks
Most FL methods perform the aggregation using the averaging
strategy from FedAvg [42]. However, the aggregation is performed
on binary masks rather than real-valued local updates in FedMask.
Moreover, binary masks are heterogeneous across devices, which
means not all the elements are overlapped across binary masks.
Thus, we cannot simply apply the averaging strategy to perform
the aggregation in FedMask.

When designing the aggregation strategy, our goal is to max-
imally retain the personalized information embedded in hetero-
geneous binary masks. To achieve this goal, we propose a mask
aggregation scheme where each element in binary masks is aggre-
gated independently. As Figure 7 shows, the central server only
performs the averaging aggregation on elements that appear in two
or more binary masks. Then, the central server updates these ele-
ments in corresponding binary masks using the aggregated value.
For the elements that are not shared among binary masks, the cen-
tral server keeps them unchanged without performing aggregation.
Finally, the updated binary masks with preserved heterogeneous
structures will be sent back to devices accordingly. Figure 8 shows
an example of the personalization-preserving mask aggregation.
In this example, only the first channel of Device 𝑖 (in yellow) and
Device 𝑗 (in blue) are intersected, and hence the mask of these two
channels are averaged by the proposed aggregation scheme (in
green). Because the third channel of Device 𝑗 is pruned, there is
no intersection of the third channel between Device 𝑖 (in yellow)
and Device 𝑗 (in white). Therefore, the mask of the third channel of
Device 𝑖 will not be changed.

3.7 Final Personalized Model Generation
As the final step, as illustrated in Figure 9, once the training of the
heterogeneous binary masks is finished, the heterogeneous binary
mask of each device is elementwise applied to the frozen local model
to generate the personalized model. In addition to addressing the
statistical heterogeneity, the heterogeneous binary mask results in
a more sparse local model such that both the communication and
computation cost can be further reduced.

SenSys ’21, November 15–17, 2021, Coimbra, Portugal A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, Y. Chen

… … …

Device i
Channel 1 Channel 2 Channel 3

1 1 1

0 1 1

0 1 0

0 0 0

0 0 0

0 0 0

1 1 0

0 0 1

1 1 1

… … …

Device j
Channel 1 Channel 2 Channel 3

1 1 0

1 0 1

0 1 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

Central Server
Personalization-Preserving

Mask Aggregation

1 1 0

0 0 1

0 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

before aggregation

after aggregation

transform a channel into
the mask representation

… pruned channel
mask

representation

1 1 0

0 0 1

1 1 1

1 1 0

0 0 1

0 1 0

Figure 8: Illustration of the personalization-preserving
mask aggregation on the central server. The yellow and
blue matrices represent the unpruned masks, the green
ones stand for the updated masks which are intersected

between devices.

ʘ

11

1 1

0

1 0

01

1 1

0

0 1

00

1 1

1

1 1

frozen
local model

heterogeneous
binary mask

personalized
model

device i device j device k

elementwise
multiply

ʘ ʘ

Figure 9: Illustration of achieving personalization via
heterogeneous binary masks.

Putting All the Pieces Together: we summarize the complete
FedMask framework in Algorithm 1.

4 EVALUATION
4.1 Applications, Datasets, and Models
To demonstrate the generality of FedMask across applications, we
apply FedMask to build three representative mobile AI applications
that benefit significantly from FL. The information of the datasets
that are applied to build these applications is summarized in Table 4.
We follow the non-IID configurations in [33] to build the non-IID
datasets in FL.
Application#1: Image Classification (IC). Image classification
is a popular computer vision application to classify images into
categories. With the increasing computation capabilities on device,
image classification has become attractive to be deployed on mobile
devices. In this work, we use VGG16[48] as the base model for train-
ing. We use EMNIST [8] and CIFAR10 [31] datasets to develop two

Algorithm 1: FedMask.
Data: (𝐷1, . . . , 𝐷𝑁) where 𝐷𝑘 is the local data on 𝑘th device
Server Executes:

1 initialize the global model𝑊
2 initialize the global mask𝑚0

3 𝑆 ← {𝐶1, . . . ,𝐶𝑁 }
4 for 𝐶𝑘 ∈ 𝑆 in parallel do
5 download𝑊 from the central server
6 𝑚𝑘 ← ClientPruning(𝐶𝑘 ,𝑚0) /* 1 in Figure 4 */

7 for each round 𝑇 = 1, 2, . . . do
8 𝑘 ← max(𝑁 × 𝐾, 1) /* 𝑁 available devices,

random sampling rate 𝐾 */

9 𝑆𝑡 ← {𝐶1, . . . ,𝐶𝑘 } /* the selected 𝑘

participating devices indexed by 𝑘 */

10 for 𝐶𝑘 ∈ 𝑆𝑡 in parallel do
11 𝑚𝑇+1

𝑘
← ClientUpdate(𝐶𝑘 ,𝑚𝑇 ⊙𝑚𝑘) /* 2 -a and

3 -b in Figure 4 */

12 𝑚𝑇+1 ← (aggregate {𝑚𝑇+1
𝑘
}) /* using the proposed

personalization-preserving aggregation
(3 -a in Figure 4) */

ClientUpdate (𝐶𝑘 ,𝑚𝑇
𝑘
):

13 𝑚𝑟 ← (initialize a real-valued mask using𝑚𝑇
𝑘
)

14 B ← (split local data 𝐷𝑡𝑟𝑎𝑖𝑛
𝑘

into batches);
15 for each local epoch 𝑖 from 1 to 𝐸 do
16 for batch 𝑏 ∈ B do
17 𝑚𝑟 ←𝑚𝑟 − 𝜂∇𝑚𝑟 𝐹𝑘 (𝑊 ⊙ 𝜎 (𝑚𝑟);𝑏) /* 𝜂 is the

learning rate, 𝐹𝑘 (·) is the loss
function */

18 𝑚𝑇+1
𝑘
← 𝜎 (𝑚𝑟) /* binarize 𝑚𝑟 with threshold 0.5

*/
19 return𝑚𝑇+1

𝑘
to server /* 2 -b in Figure 4 */

ClientPruning (𝐶𝑘 ,𝑚):
20 𝑚𝑟 ← (initialize a real-valued mask using𝑚)
21 B ← (split local data 𝐷𝑡𝑟𝑎𝑖𝑛

𝑘
into batches);

22 for batch 𝑏 ∈ B do
23 𝑚𝑟 ←𝑚𝑟 − 𝜂∇𝑚𝑟 𝐹𝑘 (𝑊 ⊙ 𝜎 (𝑚𝑟);𝑏) /* 𝜂 is the

learning rate, 𝐹𝑘 (·) is the loss function */

24 𝑚𝑟 ← (prune𝑚𝑟 by preserving the largest 𝑝𝑟 portion of
elements in |𝑊𝑖 𝑗 ·𝑚𝑟

𝑖 𝑗
|)

25 𝑚𝑘 ← 𝜎 (𝑚𝑟) /* binarize 𝑚𝑟 with threshold 0.5 */

26 return𝑚𝑘 to server

image classification applications, i.e., IC-CIFAR10 and IC-EMNIST.
EMNIST is a handwriting image classification dataset grouped by
the writers, and hence we can naturally distribute one writer’s
images to one device. In this application, we sample 2414 writers’
data and distribute them to devices. For CIFAR10, each device holds
2-class data and this two classes can be varied across devices. In
addition, the data volume of each class is unbalanced on a device.
The test data also follows the same distribution as the training data
on each device.

FedMask: Joint Computation and Communication-Efficient Personalized Federated Learning via Heterogeneous Masking SenSys ’21, November 15–17, 2021, Coimbra, Portugal

Table 4: Statistical information of datasets.

Dataset Number of
devices

Average
samples per

device
Classes Non-IID

EMNIST [8] 2414 232.8 64 ✓
CIFAR10 [31] 400 25 10 ✓
HAR [3] 30 364.3 6 ✓
Shakespeare [42] 1129 3743.2 80 ✓

Application#2: Human Activity Recognition (HAR). Human
activity recognition has become an attractive feature for smart-
phones using data collected from different types of on-board sen-
sors, such as accelerometer, gyroscope, etc. This application is devel-
oped for recognizing various activities performed by a user based
on the sensor data. In this work, we use HAR [3] dataset to build
this application. HAR collects smartphone accelerometer and gy-
roscope data from 30 individuals, including six labeled activities:
walking, walking-upstairs, walking-downstairs, sitting, standing,
and lying-down. We naturally distribute each individual’s data
to one smartphone. We employ a 3-layer fully connected neural
network to recognize human activities.
Application#3: Next-Character Prediction (NCP). Next-chara-
cter prediction is a very practical application on smartphones, e.g.,
text auto-completion in the virtual keyboard. This application aims
to predict what character comes next given then current input. We
apply Shakespeare [42] dataset to develop this application. This
dataset is built on The Complete Works of William Shakespeare by
separately extracting different roles’ dialogues. In this dataset, the
dialogues are distributed to devices according to the speaking role.
We build an RNN constructed by an 8-D encoder, including two
LSTM layers and three fully connected layers, as the base model
for this application.

4.2 System Implementation
We implemented three FL applications on NVIDIA Jetson TX2 and
Raspberry Pi 4. The central server is equipped with an Intel Xeon
E5-2630@2.6GHz and 128G RAM. We used Monsoon power mon-
itor [44] to measure the power consumption at runtime. For the
baselines and FedMask, we adopt a FL protocol which randomly
feeds 20 data shards that are partitioned as described in Table 4 to
each smartphone in each communication round, i.e., 20 participat-
ing devices per communication round. Each participating device
performs 5 local training epochs for one communication round. For
FedMask, we apply the proposed one-shot mask pruning method to
the last 8 layers of VGG16 and the last 2 layers of the base models
for HAR and NCP. In addition, we set the pruning rate 𝑝𝑟 as 0.2,
which means only 20% of mask elements are preserved in those
pruned layers.

4.3 Experimental Setup

Baselines. To comprehensively evaluate the performance of Fed-
Mask, we compare FedMask against six baselines:
• Standalone trains a model using local data only on each
device without collaborations between devices. Note that
there will be no communication cost for Standalone method.

To make fair comparisons, we provide the same total train-
ing time for Standalone method and FedMask, i.e., the total
number of local training epochs in Standalone method will
be greater than that of FedMask.
• FedAvg [42] is the most classical FL method and has been
applied to commercial products [7]. Devices communicate
updated local parameters to the central server and download
the aggregated global model for continuous local training.
• Top-k [1] is a sparsification method to compress the com-
municated gradients by selecting the largest 𝑘 elements of
the gradients. Here we set 𝑘 as 10%.
• BNN-FedAvg applies FedAvg to train a Binary Neural Net-
work (BNN) [25], which is an inherently sparse model with
binary weights. We use the same configurations of BNN as
presented in [25]. Similar with FedMask, the parameters com-
municated between devices and the server in BNN-FedAvg
are also binary. However, the optimization is actually per-
formed on real-value parameters during local training on
each device. Therefore, it is necessary to map the real-value
parameters to the binary ones before transmit these parame-
ters to the server and convert them back after receiving the
updated binary parameters from the server.
• Per-FedAvg [13] incorporates MAML [15], which is a pop-
ular meta-learning method, into FedAvg for personalization.
• LG-FedAvg [37] is the state-of-the-art FL method that en-
ables personalization and improves communication efficiency
but not computation efficiency.

In addition, for each application, we adopt the same base model
configuration for each baseline method as FedMask. We also apply
the same training settings and data configurations as FedMask to
baseline methods, the results are reported after the same number
of training epochs except for Standalone.
Evaluation Metrics.We evaluate both training and runtime per-
formance of FedMask using two sets of metrics:

• Metrics for Training Performance: (1) inference accuracy:
we evaluate the inference accuracy on each device’s test data,
and report the average accuracy over all devices for evalua-
tions; (2) communication cost: we measure the time cost of
communication including both uploading and downloading
during training, and normalize it as the ratio to the commu-
nication time of FedAvg as reported communication cost; (3)
computation cost: we measure the time cost for computation
performed on devices of 2000 training epochs, and normalize
it as the ratio to the computation time of FedAvg. We report
the normalized computation time as the computation cost.
• Metrics for Runtime Performance: (1)memory footprint:
we measure the memory footprint of different applications
on device, and calculate the memory footprint reduction; (2)
inference time: we measure the average time cost of perform-
ing one inference and report the inference time reduction
percentage; (3) energy consumption: we measure the average
energy consumption per inference and calculate the energy
consumption saving percentage.

SenSys ’21, November 15–17, 2021, Coimbra, Portugal A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, Y. Chen

20 30 40 50 60 70 80 90

0.0

0.2

0.4

0.6

0.8

1.0

 FedAvg Per-FedAvg Top-k LG-FedAvg

 BNN-FedAvg FedMask Standalone

N
o
rm

al
iz

ed
 C

o
m

m
u
n
ic

at
io

n
 T

im
e

Inference Accuracy(%)
50 55 60 65 70 75 80 85 90

0.0

0.2

0.4

0.6

0.8

1.0

(c) HAR

(b) IC-EMNIST

N
o
rm

al
iz

ed
 C

o
m

m
u
n
ic

at
io

n
 T

im
e

Inference Accuracy(%)

(a) IC-CIFAR10

88 90 92 94 96 98 100

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

al
iz

ed
 C

o
m

m
u
n
ic

at
io

n
 T

im
e

Inference Accuracy(%)
20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

(d) NCP

N
o
rm

al
iz

ed
 C

o
m

m
u
n
ic

at
io

n
 T

im
e

Inference Accuracy(%)

Figure 10: Comparison between FedMask and baselines in
inference accuracy-communication cost space.

4.4 Training Performance
Inference Accuracy vs. Communication Cost: We compares
FedMaskwith the baselines in terms of the accuracy-communication
tradeoff. The results in Figure 10 demonstrate that FedMask is able
to achieve a large gain in inference accuracy with a significant
reduction on communication cost.

First, compared to LG-FedAvg, FedMask is able to improve in-
ference accuracy and communication efficiency simultaneously. In
particular, FedMask improves inference accuracy by 5.97%, 1.97%,
0.43%, and 1.49% on IC-CIFAR10, IC-EMNIST, HAR, and NCP, re-
spectively. Besides, it also reduces 25.64×, 24.39×, 25.64×, 25× com-
munication cost in these applications, respectively.

Second, FedMask is able to dramatically reduce communication
cost compared to Per-FedAvg that is specifically designed for per-
sonalization. In particular, FedMask reduces 32.25×, 31.25×, 34.48×,
32.25× communication cost on IC-CIFAR10, IC-EMNIST, HAR, and
NCP, respectively. More surprisingly, FedMask also achieves a sub-
stantial improvement in inference accuracy. FedMask increases
inference accuracy by 3.17%, 0.96%, 0.12%, and 1.09%, respectively.

Third, compared to Top-k which is proposed for reducing com-
munication cost, FedMask obtains a larger saving in communication
cost. Specifically, FedMask offers 3.33×, 3.35×, 3.33×, 3.36× savings
in communication cost on IC-CIFAR10, IC-EMNIST, HAR, and NCP,
respectively. More important, FedMask increases inference accu-
racy by 28.47%, 8.17%, 2.43%, and 8.09%, respectively.

Forth, compared to BNN-FedAvg which also transmits binary
parameters between devices and the server, FedMask does not sig-
nificantly outperform BNN-FedAvg on communication efficiency.
However, FedMask considerably increases inference accuracy by
61.23%, 36.66%, 10.2%, and 33.47% compared to BNN-FedAvg, re-
spectively.

0.00

0.25

0.50

0.75

1.00

1.23x

3.02x
2.53x

N
o
rm

al
iz

ed
 C

o
m

p
u
ta

ti
o
n
 T

im
e

IC-CIFAR10

2.42x

0.00

0.25

0.50

0.75

1.00

N
o
rm

al
iz

ed
 C

o
m

p
u
ta

ti
o
n
 T

im
e

HAR

 Baseline FedMask

0.00

0.25

0.50

0.75

1.00

N
o
rm

al
iz

ed
 C

o
m

p
u
ta

ti
o
n
 T

im
e

IC-EMNIST
0.00

0.25

0.50

0.75

1.00

N
o
rm

al
iz

ed
 C

o
m

p
u
ta

ti
o
n
 T

im
e

NCP

Figure 11: Comparison between FedMask and baselines in
computation cost space.

IC-EMNSIT IC-CIFAR10 NCP
40

50

60

70

80

90

In
fe

re
n
ce

 A
cc

u
ra

cy
 (

%
)

 20 nodes

 40 nodes

 80 nodes

Figure 12: The impact of the number of participating
devices on FedMask performance.

As FedAvg is a general FL method, which is designed without
any specific optimizations for communication and personalization,
it is not surprise that FedMask significantly outperforms FedAvg
in terms of both inference accuracy and communication cost. In
addition, although Standalone does not pay for any communication
cost, FedMask shows substantially better performance compared to
Standalone due to exploiting all the local data rather than training
the model using only limited training samples on each device.
High Computation Efficiency: Figure 11 illustrates the compar-
ison of computation cost between FedMask and the baselines. Note
that all the baselines consume the same computation cost when
the same base model and training strategy is applied. As Figure 11
shows, due to the structured sparsity, FedMask is more computation
efficient in all the applications compared to the baselines. Specifi-
cally, FedMask can save 2.42×, 2.53×, 3.02×, and 1.23× computation
cost on IC-CIFAR10, IC-EMNIST, HAR, and NCP, respectively.

4.5 FL Hyper-Parameter Evaluation
Number of Participating Devices:We evaluate the impact of the
number of participating devices in each communication round on
the FedMask performance. We conduct experiments on IC-EMNIST,
IC-CIFAR10, NCP, and vary the number of participating devices
with {20, 40, 80}. As Figure 12 illustrates, the inference accuracy
slightly increases with a larger number of participating devices in
each communication round. For example, the inference accuracy on
IC-CIFAR10 increases by 1.67% when the number of participating

FedMask: Joint Computation and Communication-Efficient Personalized Federated Learning via Heterogeneous Masking SenSys ’21, November 15–17, 2021, Coimbra, Portugal

balance 0.75 0.5 0.25
77

78

79

80

81

82

83

84

85
In

fe
re

n
ce

 A
cc

u
ra

cy
 (

%
)

Balance Rate

 5 samples/class

 10 samples/class

 20 samples/class

Figure 13: The impact of data volume and balance rate on
FedMask performance (IC-CIFAR10).

devices increases from 20 to 80. However, such a larger number
of participating devices consumes 4× communication cost, which
diminishes the benefit of the slight accuracy improvement.
Data Volume and Unbalance Rate: The volume of Data on de-
vices is a critical parameter that significantly impacts the perfor-
mance of FL methods. In practice, there exist some challenging sce-
narios where the data volume is extremely limited. Besides limited
data, it is also common that data on a device shows unbalance across
different classes. The limited and unbalanced data raise challenges
for FL methods to train personalized models achieving equally high
performance on different classes. To evaluate the impact of data
volume and the degree of unbalance on FedMask performance,
we conduct experiments on IC-CIFAR10. In this experiment, each
device holds 2-class data, and we define balance rate as the ratio
between the data volume of one class and the counterpart of the
other class. Therefore, the lower value of balance rate indicates the
higher degree of unbalance. We vary the volume of data with {5, 10,
20} and the balance rate with {1, 0.75, 0.5, 0.25}. Note that the data is
balanced when setting the balance rate as 1. As Figure 13 illustrates,
given the same volume of data, the inference accuracy has a slight
drop when the balance rate becomes smaller. For example, with
setting the data volume as 20 samples/class, the inference accuracy
decreases from 82.33% to 81.37% when varying the balance rate
from 0.75 to 0.5. In addition, given the same balance rate, the infer-
ence accuracy slightly degrades with a decreasing volume of data.
For example, with setting the balance rate as 0.75, the inference
accuracy decreases by only 0.72% when changing the data volume
from 10 samples/class to 5 samples/class. The results demonstrate
that FedMask can also effectively handle very challenging settings.

4.6 Runtime Performance
Reduction of Memory footprint: One key feature of FedMask is
applying the binary mask to frozen weights to compose the struc-
tured sparse and personalized model for deployment. To quantify
the benefit of sparsity on reducing memory footprint, we compare
the model size between the model learned by FedMask and the ones

Table 5: Memory footprint reduction of FedMask.

Application
FedMask
Model Size

(MB)

Baseline
Model Size

(MB)

BNN-FedAvg
Model Size

(MB)

IC-CIFAR10 365.30 537.21 16.78
IC-EMNIST 364.72 538.09 16.82
HAR 2.69 4.41 0.14
NCP 0.92 1.53 0.05
All Included 733.63 1081.24 33.79

IC-CIFAR10 IC-EMNIST HAR NCP
0

20

400

600

800

1000

1200

1400

3.29x

4.17x

3.42x

4.30x

1.38x

1.47x

1.53x

In
fe

re
n
ce

 T
im

e
(m

s)

 Baselines

 FedMask

 BNN-FedAvg

1.56x

Figure 14: Comparison between FedMask and the baselines
on inference time.

trained using the baselines. Note that the models learned using the
baselines are dense neural networks and share the same model size.

Table 5 lists comparison of the memory footprint across all the
applications. It is obvious that BNN-FedAvg achieves the largest
memory reduction, because it only consumes 1/32 memory us-
age compared to the other baseline methods, i.e., 1 bit for one
parameter in BNN-FedAvg but 32 bits for one parameter in the
other methods. Unfortunately, as presented in Figure 10, the ac-
curacy of BNN-FedAvg is too low to be applicable for real-world
applications. Compared to the other baselines, FedMask is able to
significantly reduce the memory footprint. For example, FedMask
can save 173.37MB on memory footprint in IC-MNIST, which is
equivalent to 32.2% of the memory footprint by the baseline model.
In addition, considering to deploy all the application applications
concurrently on smartphones, FedMask achieves 347.61MB mem-
ory footprint reduction in total, showing the strong applicability of
FedMask in practice.
Inference Speedup: The structured sparsity of the model learned
using FedMask also introduces a significant speedup on inference.
To quantify this benefit, we compare the average inference latency
between the model learned using FedMask and the ones trained
by the baselines. As Figure 14 illustrates, compared with the base-
lines, FedMask is able to achieve 1.56×, 1.53×, 1.47×, and 1.38×
inference speedup on IC-CIFAR10, IC-EMNIST, HAR, and NCP re-
spectively. Even though BNN-FedAvg shows a better improvement
on inference efficiency, but it is useless in practice due to its very
bad performance in terms of accuracy.

SenSys ’21, November 15–17, 2021, Coimbra, Portugal A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, Y. Chen

IC-CIFAR10 IC-EMNIST HAR NCP
0.00

0.02

0.04

0.4

0.8

1.2

1.6

2.0

2.4

3.58x
3.72x

5.83x5.98x

1.52x

1.78x
1.65x

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

J)

 Baselines

 FedMask

 BNN-FedAvg

1.58x

Figure 15: Comparison between FedMask and the baselines
on energy consumption.

Reduction on Energy Consumption: Besides reducing memory
footprint and inference latency, FedMask also saves more energy
compared to the baselines. In this experiment, we compare the av-
erage energy consumption per inference across all the applications
between FedMask and the baselines. As Figure 15 shows, FedMask
is able to save 1.58×, 1.52×, 1.78×, and 1.65× energy consumption
on IC-CIFAR10, IC-EMNIST, HAR, and NCP respectively. Again,
BNN-FedAvg saves more energy consumption compared to Fed-
Mask, but the unsatisfactory performance in accuracy results in its
uselessness for real-world applications.

5 DISCUSSION
Defending Against Privacy Leakage. Privacy preservation is
the critical property offered by FL. Unfortunately, recent studies
have demonstrated that FL is vulnerable to various inference at-
tack, e.g., property inference attack [43] and model inversion at-
tack [16, 17, 61], due to sharing model updates or gradients. Recent
study [51] identify the essential cause of privacy leakage in FL –
data representations of each device’s local data are embedded in
communicated local model updates and such data representations
can be inferred to perform model inversion attacks. In FedMask,
only local binary masks are communicated between devices and
the central server, i.e., partial information of the local data has been
hidden. Therefore, FedMask may be potentially helpful for defend-
ing against the privacy leakage in FL, and we plan to investigate
the impact of FedMask on such defenses in the future work.
One Base Model for All. When a device needs to handle various
AI-related tasks, one common practice is to train and deploy an
individual model for each task. However, this will occupy a large
amount of storage space especially for deep neural networks, e.g.,
VGG19 requires 558.4 MB to store [19], leading to dramatically
decrease of available storage on device. However, we may be able
to leverage the mask-based learning mechanism in FedMask to
handle various tasks with only a single base model. In particular,
base on the same base model, we can learn a specific mask for each
task. We may need to slightly adjust the output layer of the base
model upon the requirements of learning tasks, but most layers
of the base model can be shared across tasks. Similar to FedMask,
we can obtain task-specific model by elementwise applying the
corresponding mask to the base model. In doing so, we only need
to store the shared base model and multiple binary masks, but the
storage cost of binary masks are significantly lower than storing

deep neural networks. We will explore this promising direction as
our future work.

6 RELATEDWORK
Communication-Efficient Distributed Deep Learning. Com-
munication cost is one the major bottlenecks of distributed deep
learning [42, 59]. Many works focus on improving the communica-
tion efficiency by reducing the volume of transmitted data (i.e., gra-
dient or weights). These prior arts can be divided into three classes:
(1) quantization methods [2, 6, 10, 23, 29, 47, 56, 57] compress com-
munication by reducing the number of bits of each element in the
transferred data; (2) sparsification methods [1, 12, 26] transmit only
a subset of elements in the communicated data; (3) hybrid methods
[5, 27, 38, 50] combine quantization with sparsification. Our work
also aims to reduce communication cost and our approach outper-
forms the state-of-the-art methods. Moreover, unlike existing data
compression methods, our proposed approach only communicates
binary masks (i.e., 1 bit per parameter) learned by devices.
Personalization for FL. Due to statistical heterogeneity (i.e., non-
IID data distribution across clients), it is necessary to adapt the
global model to achieve personalization [21]. Most existing works
achieve personalization in two separate steps that are associated
with extra overhead: 1) a global model is learned in a federated
fashion, and 2) the global model is fine-tuned for each client using
the local data. There are three primary categories of methods for
adapting global model to personalized models: local fine-tuning [13,
28, 30, 54], multi-task learning [49], and contextualization [41]. The
local fine-tuning is the dominant approach for personalization,
where each client tunes a global model using its own local data
with several gradient descent steps. In contrast, FedMask achieves
personalization using the heterogeneous binary mask in a single
step without the requirements of local fine-tuning.

7 CONCLUSION
In this paper, we present the design, implementation and evaluation
of FedMask, a FL framework that significantly improves commu-
nication and computation efficiency simultaneously. By applying
FedMask, each device learns a personalized and sparse DNN model
rather than a shared global model. Instead of directly optimizing
model parameters, each device learns a heterogeneous binary mask
while freezing the parameters of local model. Only these binary
masks are communicated between devices and the central server.
The aggregation strategy is carefully designed to independently
process each element in the binary mask, such that the heterogene-
ity of binary masks can be preserved. We evaluate FedMask using
three representative FL applications. Our results demonstrate that
FedMask significantly outperforms the state-of-the-art methods in
inference accuracy, communication cost, computation cost, memory
footprint, inference latency, and energy consumption. We believe
FedMask represents a significant step towards the realization of
efficient FL into reality.

ACKNOWLEDGEMENT
We sincerely thank the anonymous reviewers and our shepherd for
their valuable feedback. This work was partially supported by NSF-
2112562, NSF-2140247, NSF-1617627, NSF-1814551, NSF-1632051,
and Amazon Research Award.

FedMask: Joint Computation and Communication-Efficient Personalized Federated Learning via Heterogeneous Masking SenSys ’21, November 15–17, 2021, Coimbra, Portugal

REFERENCES
[1] Alham Fikri Aji and Kenneth Heafield. 2017. Sparse Communication for Dis-

tributed Gradient Descent. Proceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, 440–445. https://doi.org/10.18653/v1/D17-
1045

[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017.
QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding.
In Advances in Neural Information Processing Systems. 1709–1720.

[3] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis
Reyes-Ortiz. 2013. A public domain dataset for human activity recognition using
smartphones.. In Esann, Vol. 3. 3.

[4] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and
Sunav Choudhary. 2019. Federated Learning with Personalization Layers.
arXiv:1912.00818 [cs, stat] (Dec. 2019).

[5] Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. 2019. Qsparse-local-
SGD: Distributed SGD with quantization, sparsification and local computations.
In Advances in Neural Information Processing Systems. 14695–14706.

[6] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree
Anandkumar. 2018. signSGD: Compressed Optimisation for Non-Convex Prob-
lems. International Conference on Machine Learning (2018), 560–569.

[7] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
H Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. arXiv preprint arXiv:1902.01046 (2019).

[8] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017.
EMNIST: Extending MNIST to handwritten letters. In 2017 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2921–2926.

[9] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830
(2016).

[10] Tim Dettmers. 2015. 8-bit approximations for parallelism in deep learning. arXiv
preprint arXiv:1511.04561 (2015).

[11] Enmao Diao, Jie Ding, and Vahid Tarokh. 2020. HeteroFL: Computation and
Communication Efficient Federated Learning for Heterogeneous Clients. In In-
ternational Conference on Learning Representations.

[12] Aritra Dutta, El Houcine Bergou, Ahmed M. Abdelmoniem, Chen-Yu Ho,
Atal Narayan Sahu, Marco Canini, and Panos Kalnis. 2020. On the Discrep-
ancy between the Theoretical Analysis and Practical Implementations of Com-
pressed Communication for Distributed Deep Learning. Proceedings of the
AAAI Conference on Artificial Intelligence 34, 04 (April 2020), 3817–3824. https:
//doi.org/10.1609/aaai.v34i04.5793

[13] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. Personalized Fed-
erated Learning: A Meta-Learning Approach. arXiv:2002.07948 [cs, math, stat]
(Feb. 2020).

[14] Biyi Fang, Jillian Co, and Mi Zhang. 2017. Deepasl: Enabling ubiquitous and
non-intrusive word and sentence-level sign language translation. In Proceedings
of the 15th ACM Conference on Embedded Network Sensor Systems. 1–13.

[15] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70 (2017), 1126–1135.

[16] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security.

[17] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. 2020.
Inverting Gradients–How easy is it to break privacy in federated learning?. In
Advances in Neural Information Processing Systems.

[18] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149 (2015).

[19] Jie Hang, Dexiang Zhang, Peng Chen, Jun Zhang, and Bing Wang. 2019. Classifi-
cation of plant leaf diseases based on improved convolutional neural network.
Sensors 19, 19 (2019), 4161.

[20] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

[21] Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang,
Xiaoyang Wang, Praneeth Vepakomma, Abhishek Singh, Hang Qiu, et al. 2020.
FedML: A research library and benchmark for federated machine learning. arXiv
preprint arXiv:2007.13518 (2020).

[22] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[23] Samuel Horvath, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco
Canini, and Peter Richtarik. 2019. Natural compression for distributed deep
learning. arXiv preprint arXiv:1905.10988 (2019).

[24] Zehao Huang and Naiyan Wang. 2018. Data-driven sparse structure selection
for deep neural networks. In Proceedings of the European conference on computer
vision (ECCV). 304–320.

[25] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. 2016. Binarized neural networks. Advances in neural information processing
systems 29 (2016), 4107–4115.

[26] Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and
Raman Arora. 2019. Communication-Efficient Distributed SGD with Sketching.
arXiv:1903.04488 [cs, math, stat] (June 2019).

[27] Jiawei Jiang, Fangcheng Fu, Tong Yang, and Bin Cui. 2018. SketchML: Accel-
erating Distributed Machine Learning with Data Sketches. Proceedings of the
2018 International Conference on Management of Data - SIGMOD ’18, 1269–1284.
https://doi.org/10.1145/3183713.3196894

[28] Yihan Jiang, Jakub Konečný, Keith Rush, and Sreeram Kannan. 2019. Improv-
ing Federated Learning Personalization via Model Agnostic Meta Learning.
arXiv:1909.12488 [cs, stat] (Sept. 2019).

[29] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, et al. 2019. Advances and Open Problems in Federated
Learning. arXiv:1912.04977 [cs, stat] (Dec. 2019).

[30] Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. 2019. Adaptive
Gradient-Based Meta-Learning Methods. In Advances in Neural Information Pro-
cessing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle
Alché-Buc, E. Fox, and R. Garnett (Eds.). 5917–5928.

[31] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2014. The cifar-10 dataset.
online: http://www. cs. toronto. edu/kriz/cifar. html 55 (2014).

[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[33] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and
Hai Li. 2020. LotteryFL: Personalized and Communication-Efficient Federated
Learning with Lottery Ticket Hypothesis on Non-IID Datasets. arXiv preprint
arXiv:2008.03371 (2020).

[34] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2019. Federated
Learning: Challenges, Methods, and Future Directions. arXiv:1908.07873 [cs, stat]
(Aug. 2019).

[35] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2019. Fed-
erated learning: Challenges, methods, and future directions. arXiv preprint
arXiv:1908.07873 (2019).

[36] Yuchao Li, Shaohui Lin, Baochang Zhang, Jianzhuang Liu, David Doermann,
YongjianWu, FeiyueHuang, and Rongrong Ji. 2019. Exploiting kernel sparsity and
entropy for interpretable CNN compression. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2800–2809.

[37] Paul Pu Liang, Terrance Liu, Liu Ziyin, Ruslan Salakhutdinov, and Louis-Philippe
Morency. 2020. Think Locally, Act Globally: Federated Learning with Local and
Global Representations. arXiv:2001.01523 [cs, stat] (Feb. 2020).

[38] Hyeontaek Lim, David G Andersen, and Michael Kaminsky. 2018. 3LC: Light-
weight and Effective Traffic Compression for Distributed Machine Learning.
arXiv preprint arXiv:1802.07389 (2018).

[39] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time
object detection for mobile augmented reality. In The 25th Annual International
Conference on Mobile Computing and Networking. 1–16.

[40] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. 2020.
Three Approaches for Personalization with Applications to Federated Learning.
arXiv:2002.10619 [cs, stat] (Feb. 2020).

[41] Yishay Mansour, Mehryar Mohri, Jae Ro, and Ananda Theertha Suresh. 2020.
Three approaches for personalization with applications to federated learning.
arXiv preprint arXiv:2002.10619 (2020).

[42] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. Artificial Intelligence and Statistics, 1273–1282.

[43] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
2019. Exploiting unintended feature leakage in collaborative learning. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE.

[44] Monsoon Power Monitor. 2013. online]: http://www. msoon. com/LabEquipment.
PowerMonitor/, visited Nov (2013).

[45] Alex Nichol, Joshua Achiam, and John Schulman. 2018. On First-Order Meta-
Learning Algorithms. arXiv:1803.02999 [cs] (Oct. 2018).

[46] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. 2018.
Deepdecision: Amobile deep learning framework for edge video analytics. In IEEE
INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 1421–1429.

[47] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-Bit Stochastic
Gradient Descent and Its Application to Data-Parallel Distributed Training of
Speech DNNs. Fifteenth Annual Conference of the International Speech Communi-
cation Association (2014).

[48] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[49] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. 2017.
Federated Multi-Task Learning. In Advances in Neural Information Processing

https://doi.org/10.18653/v1/D17-1045
https://doi.org/10.18653/v1/D17-1045
https://doi.org/10.1609/aaai.v34i04.5793
https://doi.org/10.1609/aaai.v34i04.5793
https://doi.org/10.1145/3183713.3196894

SenSys ’21, November 15–17, 2021, Coimbra, Portugal A. Li, J. Sun, X. Zeng, M. Zhang, H. Li, Y. Chen

Systems. 4424–4434.
[50] Nikko Strom. 2015. Scalable Distributed DNN Training Using Commodity GPU

Cloud Computing. Sixteenth Annual Conference of the International Speech Com-
munication Association (2015).

[51] Jingwei Sun, Ang Li, Binghui Wang, Huanrui Yang, Hai Li, and Yiran Chen.
2020. Provable Defense against Privacy Leakage in Federated Learning from
Representation Perspective. arXiv:2012.06043 [cs.LG]

[52] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. 2016.
Inception-v4, inception-resnet and the impact of residual connections on learning.
arXiv preprint arXiv:1602.07261 (2016).

[53] Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan,
Blaise Aguera y Arcas, Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr,
Katharine Daly, Deepesh Data, Suhas Diggavi, Hubert Eichner, Advait Gadhikar,
Zachary Garrett, Antonious M. Girgis, Filip Hanzely, Andrew Hard, Chaoyang
He, Samuel Horvath, Zhouyuan Huo, Alex Ingerman, Martin Jaggi, Tara Javidi,
Peter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konecny, Sanmi
Koyejo, Tian Li, Luyang Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter
Richtarik, Karan Singhal, Virginia Smith, Mahdi Soltanolkotabi, Weikang Song,
Ananda Theertha Suresh, Sebastian U. Stich, Ameet Talwalkar, Hongyi Wang,
Blake Woodworth, Shanshan Wu, Felix X. Yu, Honglin Yuan, Manzil Zaheer, Mi
Zhang, Tong Zhang, Chunxiang Zheng, Chen Zhu, and Wennan Zhu. 2021. A
Field Guide to Federated Optimization. arXiv:2107.06917 [cs.LG]

[54] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beau-
fays, and Daniel Ramage. 2019. Federated Evaluation of On-Device Personaliza-
tion. arXiv:1910.10252 [cs, stat] (Oct. 2019).

[55] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. Advances in neural information
processing systems 29 (2016), 2074–2082.

[56] Wei Wen, Cong Xu, Feng Yan, ChunpengWu, YandanWang, Yiran Chen, and Hai
Li. 2017. TernGrad: Ternary Gradients to Reduce Communication in Distributed
Deep Learning. In Advances in neural information processing systems. 1509–1519.

[57] Yue Yu, Jiaxiang Wu, and Junzhou Huang. 2019. Exploring Fast and
Communication-Efficient Algorithms in Large-Scale Distributed Networks. The
22nd International Conference on Artificial Intelligence and Statistics (2019), 674–
683.

[58] Xiao Zeng, Kai Cao, and Mi Zhang. 2017. MobileDeepPill: A small-footprint mo-
bile deep learning system for recognizing unconstrained pill images. In Proceed-
ings of the 15th Annual International Conference on Mobile Systems, Applications,
and Services. 56–67.

[59] Mi Zhang, Faen Zhang, Nicholas D Lane, Yuanchao Shu, Xiao Zeng, Biyi Fang,
Shen Yan, and Hui Xu. 2020. Deep Learning in the Era of Edge Computing:
Challenges and Opportunities. Fog Computing: Theory and Practice (2020), 67–78.

[60] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. 2019. Deconstruct-
ing Lottery Tickets: Zeros, Signs, and the Supermask. In Advances in Neural
Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d\textquotesingle Alché-Buc, E. Fox, and R. Garnett (Eds.). 3597–3607.

[61] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients. In
Advances in Neural Information Processing Systems.

https://arxiv.org/abs/2012.06043
https://arxiv.org/abs/2107.06917

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background on Federated Learning and the Need for Personalization
	2.2 Communication Constraint
	2.3 Computation Constraint

	3 FedMask Design
	3.1 Overview
	3.2 Design Challenges
	3.3 Binary Mask Optimization
	3.4 One-Shot Pruning for Mask Initialization
	3.5 Local Binary Mask Optimization
	3.6 Aggregate Heterogeneous Binary Masks
	3.7 Final Personalized Model Generation

	4 Evaluation
	4.1 Applications, Datasets, and Models
	4.2 System Implementation
	4.3 Experimental Setup
	4.4 Training Performance
	4.5 FL Hyper-Parameter Evaluation
	4.6 Runtime Performance

	5 Discussion
	6 Related Work
	7 Conclusion
	References

