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ABSTRACT
Wi-Fi imaging has attracted significant interests due to the ubiqui-
tous availability of Wi-Fi devices today. In this paper, we present
Wi-Fi See It All (WiSIA), a versatile Wi-Fi imaging system built
upon commercial off-the-shelf (COTS) Wi-Fi devices, which is able
to simultaneously detect objects and humans, segment their bound-
aries, and identify them within the image plane. To achieve this,
WiSIA utilizes three techniques. First, instead of constructing the
image plane at the receiver side using a high-cost antenna array
and complex parameter estimation, WiSIA pushes the image plane
to the object side with two pairs of transceivers and 2D-IFFT. Sec-
ond, WiSIA extracts the specific physical signature of the signals
reflected from multiple objects to segment their boundaries. Third,
WiSIA incorporates a cGAN (conditional Generative Adversarial
Network) to enhance the boundary of different objects. We have
implemented WiSIA using COTS Wi-Fi devices and evaluated it
using a rich set of experiments. Our results demonstrate the efficacy
of WiSIA. It outperforms the state-of-the-art vision-based method
in dark and occlusion scenarios, demonstrating its superiority in
such challenge scenarios.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Networks → Mobile networks.
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1 INTRODUCTION
Although light is the most commonly used media for creating im-
ages, the concept of imaging itself is applicable to any kind of
coherent light (i.e., electromagnetic wave) [14]. In recent years, Wi-
Fi imaging – the use of Wi-Fi signals to create images of objects and
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Figure 1: (a) The RGB image of a person holding a laptop. (b)
Wi-Fi image recovered from the wave front of Wi-Fi signals.
(c) WiSIA segmentation masks: black and pink color repre-
sent the human body and the laptop, respectively. (d) Mask
R-CNN segmentation masks: the laptop is not correctly seg-
mented as its color is similar to the background.

humans – has attracted significant interests [8, 14, 15, 20, 26, 38, 39]
due to the ubiquity of Wi-Fi signals today. In this paper, we move
beyond the general Wi-Fi imaging and explore the possibility of
using Wi-Fi signals radiated from commercial off-the-shelf (COTS)
Wi-Fi devices to achieve versatile Wi-Fi imaging which is able to
detect objects and humans, segment their boundaries, and identify
them within the image plane.

In comparison to visible light, Wi-Fi signals have two unique ad-
vantages that benefit imaging. First, different from RGB pixel-wise
representation of visible light imaging, Wi-Fi imaging provides a
distinctive dimension for object segmentation. Specifically, state-of-
the-art Wi-Fi techniques (e.g., 802.11n and later version) leverage
Orthogonal Frequency Division Multiplexing (OFDM) to modulate
data [21]. In OFDM, the band of a channel is divided into multi-
ple orthogonal sub-carriers. The Channel State Information (CSI)
extracted from these sub-carriers contains the changes of both am-
plitude and phase. This indicates how signals traverse from trans-
mitter’s antenna to the receiver’s antenna through the line-of-sight
(LOS) path and several non-line-of-sight (NLOS) paths reflected,
scattered or refracted by surrounding objects [40, 44, 45, 47]. The
amplitude and phase of the pixel-wise wave front are sensitive to
the location [46], texture [49] and reflected area [42] of each object
and can be used to distinguish the boundaries. Second,Wi-Fi signals
are not visible so that they can be recorded in a dark environment.
Wi-Fi signals are able to penetrate obstacles which visible light
can not (e.g., wall, cloth, bag, luggage) [15, 18, 38]. Visible light
imaging also suffers from quality degradation under poor lighting
conditions and blockage of obstacles.

As an example, Figure 1(a) shows a RGB image in which a man is
holding a laptop while Figure 1(b) shows the corresponding Wi-Fi
image of the same scene constructed by our wave front recovery
method (§4). As shown, in the RGB image, the boundary of the
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laptop is vague. This is because its color is relatively similar with
the background. In such a case, as shown in Figure 1(d), the vision-
based image segmentation method (e.g., Mask R-CNN [13]) cannot
correctly segment the laptop. In contrast, in the Wi-Fi image, the
boundary of the yellow area in the middle is much more obvious
since the attenuation and locations are different between the reflec-
tion areas of the laptop and the human body. Taking this input, we
can further enhance its visibility and generate a fine-grained image
(§6) shown in Figure 1(c) where black and pink colors represent the
human body and the laptop.

Such versatile Wi-Fi imaging has the potential to enable a wide
range of applications. For example, for security checking in public
areas (e.g., theater, cinema, airport, stadium), it can detect, localize,
and identify the carried metallic objects [38] which, however, can-
not be detected and recognized by RGB camera due to occlusion
(e.g., hidden under clothes) [13]. In a further example, autonomous
driving would also benefit from such versatile Wi-Fi imaging under
complicated road situations in which the RGB representation of
objects and background are hard to distinguish.
Design Challenges: the design of such a versatile Wi-Fi imaging
system involves the following challenges.

• High-cost Imaging. In a camera imaging system, the light re-
flected or scattered by surrounding objects is projected on an
image plane through the optical lens of a camera. This then ren-
ders each pixel of the image. In a Wi-Fi imaging system, however,
a receiver antenna records the superposed wave fronts of Wi-Fi
signals traversing along different paths so that it cannot directly
obtain the amplitude and phase of the pixel-wise wave front on
the image plane. Some works [14, 15, 20] need a high-cost an-
tenna array and complex algorithm to render the image plane.

• Binary Object Tagging. In practice, several different kinds of
objects exist simultaneously in many cases. For example, a person
may bring a smartphone, wallet and drink bottles when entering a
stadium. We need to distinguish all these items using one system.
Due to the underutilized feature space of Wi-Fi signals, most of
existing works target binary object tagging, namely they assume
all of objects in a scene belong to the same category.

• Coarse-grained Segmentation. Due to the constraint of Wi-
Fi channel bandwidth, the pixel resolution of Wi-Fi imaging
is coarse-grained. For example, the Wi-Fi image shown in Fig-
ure 1(b) is far blurred than the RGB image shown in Figure 1(a).
With the low quality Wi-Fi imaging, some works [26, 38] fail to
support fine-grained object segmentation.

In this paper, we proposeWi-Fi See It All (WiSIA), a generative
adversarial network-augmented versatile Wi-Fi imaging system.
WiSIA offers efficient countermeasures to solve the challenges men-
tioned above. First, by utilizing the principle of ray tracing and the
relative motion between Wi-Fi antennas and the objects, WiSIA
leverages a pair of Wi-Fi transceivers to model the image plane
on the object side instead of the antenna side with computation-
efficient 2D IFFT. Second, WiSIA exploits the diverse polarization
properties of the signals reflected by different objects to enlarge the
feature space to segment the boundaries of humans and objects de-
tected in the image plane. Third, WiSIA incorporates a conditional
Generative Adversarial Networ) model to refine the boundaries.

We have implemented WiSIA using COTS Wi-Fi devices and
have conducted experiments to evaluate its performance across var-
ious scenarios (e.g., clothing, environments, locations, poor light,
occlusion and multi-objects). Our results show the high efficiency
and accuracy of WiSIA, achieving 90% accuracy for the object pro-
filing and tagging classification. It outperforms the state-of-the-art
vision-based method [13] in dark and occlusion scenarios, demon-
strating its superiority in such challenge scenarios.

In summary, our contributions are as follows:

• To the best of our knowledge, WiSIA is the first versatile Wi-Fi
imaging system that is able to simultaneously detect objects and
humans, segment their boundaries, and identify them within the
image plane.

• To design WiSIA, We have developed novel techniques related to
ray tracing, wave polarization and deep learning to enable real-
time Wi-Fi imaging, multi-object detection and identification,
and fine-grained segmentation enhancement.

• We implemented a prototype ofWiSIA using COTSWi-Fi devices,
and evaluated its performance in various scenarios. The experi-
mental results demonstrate the efficacy of WiSIA in comparison
with vision-based approaches [13].

The rest of the paper is organized as follows. §2 describes the
related work. §3 provides an overview of WiSIA. The details of the
design of §2 are presented in §4, §5, and §6. §7 describes the im-
plementation and our evaluation results. We discuss the limitation
and open issues in §8. We conclude our work in §9.

2 RELATED WORK
In this section, we categorize the existing literature into general-
purpose Wi-Fi imaging, and application-specific Wi-Fi imaging. We
summarize the recent works within each category, and compare
the most related ones to ours in Table 1.
General-PurposeWi-Fi Imaging. To evaluate the feasibility and
sensibility of computational imaging, Wision [15] first emulates
the Synthetic Aperture Radar (SAR) [33] for the imaging radar
system. This requires a (8, 8) stationary antenna arraywithmultiple
different vantage view points. It then adopts the beamforming to
extract the depth information by detecting the maximum intensity
for the same direction. Due to the limited wavelength (approx. 6
cm) of Wi-Fi signals and antenna array length, Wision can only
detect the target without the detailed information (e.g., shape, type).
With a similar idea built upon SAR, Karanam et al. [8, 20] associate
the Wi-Fi power measurement (Received Signal Strength Indicator,
RSSI) with each voxel in the Markov Random Field model of the
discrete imaging space. Thus rendering the 3D binary imaging
using loopy belief propagation [48]. It does not require a high-cost
massive antenna array, however it demands antenna scanning to
formulate a virtual antenna array equivalent to 150 × 150. Beyond
the existence of targets, it profiles the shape of the single-type
object more accurately. To enhance the contrast of Wi-Fi imaging
for holography [14], Holl et al. [14] extract the wave front using
antenna scanning for data collection. It also employs dark-field
propagation to suppress the multi-path reflection. This verifies
the feasibility of holography for a single metallic cross-shaped
phantom object with COTS Wi-Fi. It presents the 3D hologram of
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Table 1: A comparison of state-of-the-art works on Wi-Fi Imaging.

Reference COTS Device #(Tx,Rx) Anta Real-time Multi-Object Segmentation Contrast Enhancement
Wision [15] ✗ (1,8×8) ✓ ✗ ✗

C. Karanam [20] ✓ (1,150×150)b ✗ ✗ ✗

P. Holl [14] ✓ (1,50×40)c ✗ ✗ Dark-field Propagation
C. Wang [38] ✓ (2,2) ✓ ✗ ✗

P. Proffitt [26] ✗ (180, 180)d ✗ ✗ ✗

WiPose [18] ✓ (1,9) ✗ ✗ DNN with Forward Kinetics [1]
F. Wang [39] ✓ (3,3) ✓ ✗ DNN with U-net [30]
RF_Avatar [51] ✗ (4,16) ✓ ✗ DNN with Attention [37]

WiSIA ✓ (1,6) ✓ ✓ cGAN for Image Translation
aEquivalent static antenna array for antenna scanning. bThe RX drone measures the RSSI every 2 cm for the 3m×3m area.
cAchieve a resolution of 4.0 cm × 7.2 cm for the 2m×3m area.
dThe receive beam sweeps from +90◦ to −90◦ for one transmit beam angle between +90◦ and −90◦.

the floor map in simulation. In comparison withWiSIA, the antenna
scanning and antenna array significantly increase the deployment
cost in practice.

To detect “suspicious” objects in bags via Wi-Fi imaging, Wang
et al. [38] utilize recorded CSI measurements from COTS Wi-Fi
and employ machine learning based techniques (k-NN and SVM)
for material detection (e.g., metal and liquid). Similarly, Proffitt
et al. [26] propose to steer the antenna automatically and further
incorporate the Mask R-CNN [13] for object detection. In contrast,
instead of only object detection,WiSIA targets themore challenging
object segmentation tasks which classify the types of the detected
objects deriving their contours as segmentation masks.
Application-SpecificWi-Fi Imaging. To segment objects viaWi-
Fi imaging, effective contrast enhancement methods are required.
Human-centering segmentation attracts much interest as a single-
type object, such as pose estimation [2, 18, 50, 52] and profiling
recovery [39, 51]. Most of these rely on deep learning techniques
for skeleton and mesh recovery. RF-Pose [50] and RF-Pose3D [52]
leverage the teacher-student network for cross-modality learning
achieving 14 key joint estimation in 2-D and 3-D scenarios. To
accurately profile the joint motion of a person,WiPose [18] expands
the Body-coordinate Velocity Profile (BVP) [54] to 3D space and
incorporates the forward kinematic module [1] into a Deep Neural
Network (DNN) for in-situ pose estimation.Wang et al. [39] develop
another DNN (e.g., U-Net) with specially designed loss functions
for body segmentation and joint estimation. RF-Avatar [51] further
leverages the attention-based [37] DNN to recover 3D meshes of
the human body. Different from them, beyond the human, our
system aims for a versatile Wi-Fi imaging system which can enable
multi-objects detection, segmentation and identification.

In contrast to prior works, we focus on the task of Wi-Fi based
image segmentation. The goal is to not only to capture objects and
humans but also to localize their boundaries within the image plane.
Moreover, WiSIA is the only versatile one that simultaneously
achieves low-cost (e.g. COTS device, no antenna array) and real-
time Wi-Fi imaging, multi-object segmentation and fine-grained
contrast enhancement which are the must to design a practical
system in many applications.

3 WISIA OVERVIEW
WiSIA is designed to achieve the following goals: 1) achieve computation-
efficient Wi-Fi imaging with COTS devices; 2) support detection
and segmentation of multiple types of objects in the same scene;
3) enable fine-grained segmentation masks. Figure 2 illustrates an
overview of the system architecture of WiSIA. WiSIA utilizes two
pairs of transceivers with two receivers (e.g., three antennas point-
ing to three orthogonal directions) sharing the same transmitter
antenna to record Wi-Fi CSI. This imitates light and camera imag-
ing systems. The output of WiSIA is the segmentation masks and
identities of the objects in the scene. In the middle segment of the
figure, WiSIA consists of a cascade of three core components: wave
front construction module, pixel-wise illumination module, and seg-
mentation refinement module. We briefly describe the challenges
and countermeasures of each module as follows.
Wave Front Construction. Resembling a light and camera imag-
ing system, WiSIA should enable the encoding of pixel-wise spatial
information from the Wi-Fi radiation bouncing from humans and
objects, namely the wave front [14]. Wi-Fi radiation, however, re-
tains the intensity and direction information inherently in CSI
measurements while eliminating their pixel-wise spatial distribu-
tion by superposing at theWi-Fi receiver [15]. The multi-path effect
further aggravates its entanglements since radiation scattered from
surrounding objects can distort direct reflected ones. It is challeng-
ing to reconstruct the wave front of the image plane efficiently
by avoiding the cumbersome computation of Lagrange multiplier
estimation while alleviating the multi-path effect of surroundings.

Given the raw CSI measurements collected from the Wi-Fi de-
vices, WiSIA extracts the dominant Wi-Fi radiation which traverses
the direct reflected path of the surrounding objects. It then con-
structs the wave front by tracing Wi-Fi radiation from different
directions back to an image plane at the object side. This is achieved
by associating continuous temporal snapshots of channels captured
by multiple Wi-Fi sub-carriers to the pixel-wise wave front of Wi-Fi
radiation using 2D IFFT. Compared with SAR-based approaches in
Table 1,WiSIA only needs 1×6 antenna pairs and can be operational
in real-time.
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Figure 2: An overview of the system architecture of WiSIA.

Pixel-wise Illumination. Once the wave front is constructed, it
is challenging to make each pixel sufficiently distinct for object
tagging when multiple kinds of objects simultaneously exist. WiSIA
designs physical signatures that encode the properties of intensity
and polarization ofWi-Fi radiation to “illuminate” each pixel.WiSIA
also incorporates a content-aware scheme borrowed from the com-
puter graphics literature [5] to improve the contrast of physical
signatures in the wave front. This enhances the reliability of the
weakly reflected Wi-Fi radiation.
Segmentation Refinement. The constructed image plane only
achieves the coarse-grained multi-object segmentation with low
spatial resolution due to the narrow bandwidth of Wi-Fi. Enhancing
the object boundaries of Wi-Fi imaging is critical. WiSIA incorpo-
rates the cGAN into the process improving the spatial resolution
with the limited vantage views of Wi-Fi receivers. This refines the
constructed wave front with pixel-wise physical signature. With
cGAN, WiSIA induces the segmentation mask generator to fool the
adversarial discriminator while keeping close to the ground truth
image with designed loss function. This generates high-quality
segmentation masks as the system output.

4 WAVE FRONT CONSTRUCTION
In this section, we present our design for constructing the wave
front (e.g., amplitude and phase) of each pixel on an image plane
which is put at the object side. This module consists of two tasks.
First, we extract the dominant Wi-Fi radiation that is directly re-
flected by the surrounding objects from the raw CSI measurements.
Then, we utilize the ray tracing and 2D IFFT to calculate the wave
front for each pixel on the image plane. For both tasks, we require
a slight relative motion between the antennas of Wi-Fi transceivers
and the objects in the scene. There are no special requirements for
the moving trajectory and velocity. Hence, we can easily implement
the relative motion in practice. For example, the antennas of Wi-Fi
transceivers can be fixed on a sliding-table which is continuously
moving front and back when the objects are static. Moreover, the
chest fluctuation of human breath, body sway and regular walking
can be also counted when the antennas are static.

4.1 Dominant Wi-Fi Radiation Extraction
Upon receiving the rawCSImeasurements, the first step is to extract
the dominant Wi-Fi radiation bouncing off the surrounding objects.
Besides the dominant Wi-Fi radiation we are interested in, the raw

CSI measurements contain the signals traversing from the LOS
path along the transmitter antenna to receiver antennas and burst
noise brought by low-cost COTS devices [28, 29]. Given the relative
motion between Wi-Fi transceivers and the objects, the observed
frequency of the dominant Wi-Fi radiation will be continuously
changing due to the Doppler Effect. As a result, the CSI power (i.e.,
conjugate multiplication of CSI) of the dominant Wi-Fi radiation
is changing as well. Regarding the frequency of the CSI energy
changing, in comparison with the dominant Wi-Fi radiation, burst
noises bring generally higher frequency while the LOS signals incur
generally lower frequency. Thus we can suppress the interference
signals by adopting a band-pass filter. Specifically, we apply a band-
pass Butter-worth filter to the CSI power series of all subcarriers and
keep the CSI phase components are not distorted. We empirically
set its cutting off frequency as 0.5 Hz and 80 Hz [28] respectively,
delivering the dominant sanitized Wi-Fi radiations.

4.2 Wave Front Construction via Radiation
Tracing

With the extracted information of the dominant Wi-Fi radiation,
resembling the pixel-wise photograph of the light field, WiSIA con-
structs the wave front of the image plane by tracingWi-Fi radiations
superposed at the receiver back to the image plane, retrieving the
intensity and phase information for each pixel.

Existing solutions can be generally categorized into two ap-
proaches. In the first approach, a massive antenna array [6, 15]
or an antenna scanning method [14, 26] is adopted to observe
objects from multiple vantage views. It then recovers the spatial
diversity using 2D Fourier transform, which is either high-cost or
cumbersome in deployment. In the second approach, a numerical
fitting method is proposed with limited antennas, rendering it as
an optimization problem which is similar with the non-convex
2D Non-Uniform Discrete Fourier transform [36, 49] or a method
of Lagrange multipliers [18, 54]. However, the under-constrained
question suffers from the local minimum and high computation
complexity. To avoid the shortcomings of these two approaches,
WiSIA instead leverages the multi-dimensional information of CSI
𝐻 (𝑡, 𝑓 ) across the continuous packets 𝑡 and multiple sub-carriers 𝑓
endowed by OFDM modulation.

As shown in Figure 3(a), we take a scene where a person is stand-
ing on the ground as an example to illustrate the coordinate system
and the relationship amongWi-Fi transceivers, the image plane and
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Figure 3: (a) Constructing the wave front by tracingWi-Fi radiations back to virtual antennas at each pixel on the image plane.
(b-e) The coarse-grained wave front observed by three different pairs of transceiver antennas.

the person. We define the 3D coordinate with receiver antennas as
the origin (0, 0, 0), in which the transceiver plane (x-z plane) is ver-
tical to the ground. The image plane is parallel with the transceiver
plane.𝑀 × 𝑁 pixels are uniformly distributed with the spacing in-
terval Δ𝑑 along the x-axis and z-axis, respectively. The person body
consists of many small areas (called reflector) which have different
depth along the y-axis and reflect signals from transmitter’s antenna
to receiver’s antennas. For a reflector of the person denoted as 𝑟𝑚,𝑛 ,
its coordinate vector is ®𝑠 (𝑟𝑚,𝑛) = (𝑚Δ𝑑, 𝑑 (𝑚,𝑛), 𝑛Δ𝑑) correspond-
ing to the direction of azimuth angle Ψ𝑚 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑚Δ𝑑/𝑑 (𝑚,𝑛)),
elevation angle 𝜃𝑛 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑛Δ𝑑/

√
𝑑 (𝑚,𝑛)2 + (𝑚Δ𝑑)2) and the

depth 𝑑 (𝑚,𝑛). Then, we correlate the reflector 𝑟𝑚,𝑛 with the pixel
whose coordinate is (𝑚,𝑛) on the image plane. Thus the wave front
of each pixel corresponds to the wave front of the reflector. In this
way, we can keep the property of the reflector as much as possible
to increase the pixel discrimination for imaging generation.

To recover the wave front of each pixel, we trace Wi-Fi radiation
from the receiver back to each corresponding reflector on the body
of the target person. For the reflector 𝑟𝑚,𝑛 , we set a virtual antenna
which is equivalent to a new transmitter with intensity and phase
information of the corresponding pixel in the wave front indicated
as ℎ𝑚,𝑛 . By doing this, we can compute the phase shift of Wi-Fi
signals induced by the propagation path from the reflector to the
receiver’s antennas whose distance is |®𝑠 (𝑟𝑚,𝑛) |. Then we can derive
the amplitude and phase information of the corresponding wave
front that received by the receiver’s antennas (0, 0, 0) after signal
propagation, denoted as ℎ𝑅𝑥𝑚,𝑛 . From the basic physics principle, the
ℎ𝑅𝑥𝑚,𝑛 can be formulated as a complex expression related to |®𝑠 (𝑟𝑚,𝑛) |.

®𝑠 (𝑟𝑚,𝑛) = (𝑑 (𝑚,𝑛) · 𝑡𝑎𝑛(Ψ𝑚), 𝑑 (𝑚,𝑛), 𝑑 (𝑚,𝑛) · 𝑡𝑎𝑛(𝜃𝑛)
𝑐𝑜𝑠 (Ψ𝑚) ) (1)

ℎ𝑅𝑥𝑚,𝑛 = 𝛼ℎ𝑚,𝑛𝑒𝑥𝑝 (− 𝑗
2𝜋 |®𝑠 (𝑟𝑚,𝑛) |

𝜆
) (2)

Where 𝛼 and 𝜆 indicate the amplitude attenuation factor and the
wavelength of the Wi-Fi radiations, respectively.

Our goal is to recover the wave fronts H𝑀,𝑁 ≜ [ℎ𝑚,𝑛]𝑀,𝑁 of all
pixels ∀𝑚 ∈ [1, 𝑀] and ∀𝑛 ∈ [1, 𝑁 ] on the image plane by tracing
Wi-Fi radiations. To represent the phase shift for the wave front of
each pixel (𝑚,𝑛) induced by the wave propagation, we first define

the basis function 𝐵𝑚,𝑛 related to each reflector 𝑟𝑚,𝑛 through the
®𝑠 (𝑟𝑚,𝑛) using Equation (1) as follows:

𝐵𝑚,𝑛 = 𝑒𝑥𝑝 (− 𝑗2𝜋 |®𝑠 (𝑟𝑚,𝑛) |/𝜆) (3)

Then, we correlate the dominant CSI measurement 𝐻 (𝑡, 𝑓 ), at
packet 𝑡 and subcarrier frequency 𝑓 for a receiver antenna with the
corresponding basis function as Equation (4). Specifically, we have
the following summation in terms of 𝐻 (𝑡, 𝑓 ) due to the superposi-
tion of Wi-Fi radiations from the reflectors that corresponding to
the pixels on the image plane:

𝐻 (𝑡, 𝑓 ) =
𝑀∑

𝑚=1

𝑁∑
𝑛=1

ℎ𝑚,𝑛𝐵𝑚,𝑛 (4)

Note that here we assume the amplitude attenuation 𝛼 of Equation 1
is approximately consistent for every pixel in the image plane and
can be unified in 𝐻 (𝑡, 𝑓 ).

Now, dominant Wi-Fi radiation 𝐻 (𝑡, 𝑓 ) is known. To recover
ℎ𝑚,𝑛 of every pixel, we find the summation computation of Wi-Fi
radiations in Equation (4) is similar to a 2D Inverse Fast Fourier
Transformation (2D IFFT). Thus we utilize the relative motion along
the y-axis between the transceiver and the objects to transform
it into the 2D IFFT problem. Mathematically, given the velocity
of the relative motion along the y-axis is 𝑣𝑦 , the displacement
can be denoted as ®𝑑𝑠 (𝑚,𝑛) = (0, 𝑣𝑦Δ𝑡, 0) for the targeting reflec-
tor 𝑟𝑚,𝑛 with the coordinate vector (𝑚Δ𝑑,𝑑 (𝑚,𝑛), 𝑛Δ𝑑). Note that
each pixel has corresponding initial distance |®𝑠 (𝑟𝑚,𝑛) |𝑡0 along the
direction ®𝑠 (𝑟𝑚,𝑛)/| |®𝑠 (𝑟𝑚,𝑛) | |. For different pixels, the depth 𝑑 (𝑚,𝑛)
in ®𝑠 (𝑟𝑚,𝑛) is a variable parameter. Thus we can transform the basic
function 𝐵𝑚,𝑛 to represent the phase shift which is changing with
time as follows:

𝐵𝑚,𝑛 = 𝑒𝑥𝑝 (− 𝑗2𝜋 ( |®𝑠 (𝑟𝑚,𝑛) |𝑡0 + ®𝑑𝑠 ·
®𝑠 (𝑟𝑚,𝑛)

| |®𝑠 (𝑟𝑚,𝑛) | |
)/𝜆) (5)

= 𝑒𝑥𝑝 (− 𝑗2𝜋 |®𝑠 (𝑟𝑚,𝑛) |𝑡0/𝜆) · 𝑒𝑥𝑝 (− 𝑗2𝜋𝑣𝑦𝑐𝑜𝑠𝜃𝑐𝑜𝑠Ψ𝑡/𝜆)

Note that we only consider the variance of 𝑡 while replacing 𝜆 in the
second term using 𝜆𝑐 at the central frequency 𝑓𝑐 [6, 7]. Therefore,
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Equation (4) can be transformed as follows:

𝐻 (𝑡, 𝑓 ) =
𝑀∑

𝑚=1

𝑁∑
𝑛=1

ℎ𝑚,𝑛𝑒𝑥𝑝 (− 𝑗2𝜋 (𝑓 ·
|®𝑠 (𝑟𝑚,𝑛) |𝑡0

𝑐
+ 𝑡 ·

𝑣𝑦𝑐𝑜𝑠𝜃𝑐𝑜𝑠Ψ

𝜆𝑐
))

(6)

Specifically, Equation (7) shows a standard 2-D FFT given a two-
dimensional input signal 𝑓 (𝑚,𝑛) and output signal 𝐹 (𝑎, 𝑏). In our
problem, the packet 𝑡 and the frequency of subcarrie 𝑓 corre-
spond to variable 𝑎 and 𝑏. By substituting𝑚 and 𝑛 for variables
𝑀 |®𝑠 (𝑟𝑚,𝑛) |𝑡0/𝑐 and 𝑁𝑣𝑦𝑐𝑜𝑠𝜃𝑐𝑜𝑠Ψ/𝜆𝑐 , namely the depth and angle
of each reflector, we utilize the 2D IFFT to recover the wave front
H𝑀,𝑁 by associating each reflector 𝑟𝑚,𝑛 with known 𝐻 (𝑡, 𝑓 ) across
packets and subcarriers.

𝐹 (𝑎, 𝑏) =
𝑀∑

𝑚=0

𝑁∑
𝑛=0

𝑓 (𝑚,𝑛)𝑒𝑥𝑝 (− 𝑗2𝜋 (𝑎 · 𝑚
𝑀

+ 𝑏 · 𝑛
𝑁
)) (7)

To illustrate the recovered wave fronts with 2D IFFT, we repre-
sent the power distribution for reconstructed results in Figure 3(b-e),
each of which is plotted using the data from two mirror antennas
of the symmetric receivers as shown in our prototype implementa-
tion in §5.2. And it can only capture the coarse-grained contour of
human and existence of the volleyball, making it impossible to be
interpreted in comparison with RGB images.

5 PIXEL-WISE ILLUMINATION
Upon getting the wave front of each pixel in the image plane, rather
than only taking the signal intensity to render each pixel, we need
to extract representative features so that multiple objects can be nat-
urally distinguished and tagged. WiSIA utilizes signal polarization
as a physical signature to illuminate each pixel in the image plane
for object tagging. In a conceptual sense, the meaning of the polar-
ization based physical signature to WiSIA imaging is that of the
brightness to a RGB photograph. We first introduce the background
on polarization of electromagnetic waves (§5.1). Then dedicated
approaches are designed to extract the physical signature for each
pixel and verify its feasibility to distinguish multiple objects in a
scene (§5.2). To bootstrap the pixel-wise resolution for physical
signature profiling, we borrow the content-aware scheme from the
computer graphics to enhance the profiling contrast, making it
more distinguishable (§5.3).

5.1 Background on Polarization
Resembling light, Wi-Fi radiations propagate as the electromag-
netic wave while the electric field oscillates perpendicularly to the
direction of propagation. For an unpolarized wave, its electric field
vectors vibrate in all planes perpendicular to the direction of prop-
agation. Moreover, the unpolarized wave can be converted to a
polarized wave if the electric field vectors are restricted to a sin-
gle plane by filtration of the beam with specialized materials [25].
The polarized wave can be decomposed with two orthogonal lin-
ear polarization as p- and s-polarization, in which the p-polarized
wave has an electric field polarized parallel to the plane of incidence,
while s-polarized light is perpendicular to this plane. Different polar-
ized waves can be produced while bouncing off various surfaces of

Incident Surface

Plane of Incident

Incident Surface

unpolarized

S polarized polarized

S polarized
Plane of Incident

Figure 4: Theoretical analysis on physical signature: differ-
ently polarized waves determined by the material and tex-
ture of the reflected surface.

materials and textures, such as scattering off a smooth non-metallic
surface, a smooth metallic surface, and a rough surface [34, 49].

Figure 4 shows two examples of the polarization change when
the signal is reflected by different objects. In the top figure, the
incident wave is pure s-polarized. When the wave is reflected by
the screen glass of a smartphone, the reflected wave is polarized as
well, but the polarization direction contains both s- and p- parts.
In the other example shown in the bottom figure, the s-polarized
incident wave becomes an unpolarized wave after the reflection of
the steel material of a knife. Hence, according to the polarization
property of the reflected wave, we can distinguish different objects
appearing in the same scene.

Mathematically, in Figure 4, the incident wave is s-polarized and
can be depicted as ®𝐸 (𝑖𝑛)

𝑠 (𝑡) = 𝐴𝑒 𝑗𝜔𝑡𝑒
(𝑖𝑛)
𝑠 , where 𝑒 (𝑖𝑛)𝑠 is the unit

s-polarization vector along the incident direction. The reflected
wave can be further denoted as ®𝐸 (𝑟𝑒 𝑓 ) (𝑡) = 𝐴𝑒 𝑗𝜔𝑡 (𝑟𝑠𝑠𝑒 (𝑟𝑒 𝑓 )𝑠 +
𝑟𝑠𝑝𝑒

(𝑟𝑒 𝑓 )
𝑝 ), where 𝑒 (𝑟𝑒 𝑓 )𝑠 and 𝑒 (𝑟𝑒 𝑓 )𝑝 are the unit s-polarization and

p-polarization vectors along the reflection direction. Specifically,
for a polarized wave, its polarization can be completely converted to
the cross direction after reflection with different materials. WiSIA
aims to measure the specific parameters 𝑟𝑠𝑠 and 𝑟𝑠𝑝 , delivering a
physical signature influenced by the material, texture, geometric
and areas of reflectors’ surfaces.

5.2 Physical Signature Profiling
To associate each pixel with the corresponding object, we design
a synthetic physical signature based on the polarization and sig-
nal power properties of the Wi-Fi radiations bouncing off different
surfaces of objects. The underlying principle is that objects with var-
ious materials, textures, and reflected areas to the transceiver plane
can induce distinguishable variances in polarization and magnitude,
respectively.

To obtain the polarization of the reflected waves, our receiver
consists of three mutually perpendicular linearly-polarized anten-
nas which are utilized to monitor the Wi-Fi radiations transmitted
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(a) The impact of material and texture (b) The impact of reflected areas

Figure 5: Experimental observations: distinguishable 3D
point cloud in the feature space for (a). the metallic and ply-
wood plate of the same size. (b). daily items of the same ma-
terial and textures with various reflected areas.

by a vertically polarized antenna. Two receivers are symmetrically
put at the opposite side of the transmitter, as shown in Figure 7
to increase the detectable reflection area of the objects. Then we
collect 100𝑚𝑠 packets continuously and derive the wave fronts
on the image plane with the CSI measurements from each pair of
symmetric antennas of the two receivers. Since we have three pairs
of symmetric antennas towards different directions, we can recover
three different wave fronts of the same image plane that indicate the
polarization property at different directions, which form a similar
feature space in comparison to the RGB channels of photographs.

To verify the feasibility of material recognition using polariza-
tion, we compute the mean of pixel-related weighted amplitudes
for each of the three wave fronts of the image plane, delivering a 3D
feature point scattered in the feature space. We further render the
3D point cloud by calculating multiple 3D feature points for each
testing object (e.g. a metallic plate and a plywood plate of the same
size 2′ × 2′ × .0625′′) with continuous temporal segments, shown
in Figure 5(a). On the one hand, feature points for each object are
clustered and stay consistent across continuous segments. On the
other hand, we can distinguish the two clusters of feature points
readily, rendering the impact of different material and texture on
the polarization of the wave front.

The second physical property is the magnitude of Wi-Fi radi-
ations. Since it is demonstrated the power distribution of spec-
trograms changes as reflection areas vary across different objects.
Given the same area on the image plane, the accumulated power of
the corresponding wave fronts increases as the reflections areas of
the object are increasing. It can also be applied in the power distri-
bution of the recovered wave fronts of the image plane. To evaluate
the impact of the reflected area, we conduct the preliminary using
three objects composed of the same material (mainly aluminum)
and textures, including Macbook Pro (13.75′′× 9.48′′× .61′′), Mac
mini (7.7′′ × 7.7′′ × 1.4′′) and iPhone 8 (5.48′′ × 2.65′′ × 0.29′′).
Illustrated in Figure 5(b), the 3D point cloud shows each cluster of
items stays consistent while keeps away from each other, making
it reliable as a physical signature for object tagging. Nevertheless,
an overlapping area between the clusters of Mac Mini and Mac-
Book appears in the feature space. This is mainly attributed to the
coarse-grained resolution of the wave front and can be resolved by
our cGAN model that refines the boundary of object segmentation
masks (§6).

G：X    Y F：Y    X

G：X    Y F：Y X

F(y) yG(F(y))

G(x) F(G(x))

DY LcGAN (G, DY, X, Y)Lpixel (G)

x

Lcycle (F) 

LcGAN (F, DX, X, Y) DX Lpixel (F)
Lcycle (G) 

Figure 6: The cGAN to refine the segmentation masks by
enhancing the pixel-wise contrast of the constructed wave
front, including the loss propagation (Dashed line) for do-
mains of 𝑋 → 𝐺 (𝑋 ) → 𝐹 (𝐺 (𝑋 )) (Black) and 𝑌 → 𝐹 (𝑌 ) →
𝐺 (𝐹 (𝑌 )) (Red).

5.3 Profiling Enhancement and Optimization
To improve the resolution and sensing sensibility of the wave fronts
in the image plane, it is required to enhance the profiling contrast
of the physical signature. Referring to the idea of content-aware
scheme in computer graphics [5], the profiling contrast of the wave
front can be increased directly by computing the derivative of the
wave front, rendering distinguishable boundaries of various targets
readily. We resort to the differential operation for computation
efficiency. Specifically, a 2D Sobel operator 𝐺 [19] is applied to the
recovered wave front of the image plane. Thus the final feature map
F𝑀,𝑁 can be derived concerning the wave front H𝑀,𝑁 as follows:

𝜕2H𝑀,𝑁

𝜕𝑀 𝜕𝑁
≈ F𝑀,𝑁 = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝐺,H𝑀,𝑁 ) (8)

To further enhance the profiling contrast, we employ a Gaussian
filter [26] to focus on the central area of the image plane by filtering
out the power noise at the marginal area.

6 SEGMENTATION REFINEMENT
In this section, by taking the wave front scratches of the image
plane and the segmentation masks of different objects extracted
from RGB images as input, we utilize a cGAN model to learn a
model that can generate the fine-grained masks for each object
in a scene. Basically, it can be formulated as an image translation
problem by computing the mapping function from the data domain
𝑋 of wave front scratches to the domain of 𝑌 segmentation masks.
Illustrated in Figure 6, we design two pairs of adversarial network
with respective generator and discriminator, one is the 𝐺 : 𝑋 → 𝑌

and𝐷𝑌 and the other is 𝐹 : 𝑌 → 𝑋 and𝐷𝑋 . Further, we design three
loss functions for these two mapping function learning, including
the 𝐿𝑐𝐺𝐴𝑁 , 𝐿𝑝𝑖𝑥𝑒𝑙 and 𝐿𝑐𝑦𝑐𝑙𝑒 which are introduced in detail later.

6.1 Adversarial Learning on Wave Front
Upon receiving the derivative of the illuminated wave front in the
image plane as the feature map 𝐹𝑀,𝑁 , we can further refine the
scratch of the wave front and feed it into a generative adversarial
model which can generate much finer-grained segmentation masks.
Generally, it can be broadly described as the image-to-image trans-
lation, converting an image from one representation of a given do-
main, X [16, 55], to another, Y. For example, mapping from sketches
to photographs [31], or from wave front scratches to segmentation
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masks here. Our challenge is to learn a mapping function from the
extracted feature maps, {𝑥𝑖 }𝑇𝑖=1 ≜ {𝐹𝑀,𝑁 }𝑇

𝑖=1, in the wave front
domain to ground truth segmentation masks extracted from RGB
images, {𝑦𝑖 }𝑇𝑖=1 ≜ {𝑃𝑀,𝑁 }𝑇

𝑖=1, for 𝑇 continuous samples. Suppos-
ing the data distribution 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎 (𝑓 ) ∈ 𝑋 , 𝑦 ∼ 𝑃𝑑𝑎𝑡𝑎 (𝑦) ∈ 𝑌 ,
a mapping function 𝐺 : 𝑋 → 𝑌 is required for the translation
from the wave front scratches to ground truth segmentation masks.
And we build our model on the cGAN [10] since the adversarial
loss induced by the discriminator model can bootstrap the learning
ability of the generator model for the internal representations of
data iteratively, making the generated images more realistic.

Illustrated in Figure 6, upon receiving the derived wave front
scratch, we feed it into the generator model, which is composed
of the encoder-decoder model. For the mapping from wave front
scratches to ground truth segmentation masks 𝐺 : 𝑋 → 𝑌 and its
discriminator 𝐷𝑌 , we introduce the adversarial loss as follows [10]

𝐿𝑐𝐺𝐴𝑁 (𝐺, 𝐷𝑌 , 𝑋,𝑌 ) =E𝑦∼𝑝𝑑𝑎𝑡𝑎 (𝑦) [𝑙𝑜𝑔𝐷𝑌 (𝑦)] (9)
+E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [1 − 𝑙𝑜𝑔𝐷𝑌 (𝐺 (𝑥))]

where 𝐺 tries to fool the 𝐷𝑌 by generating fake segmentation
masks that look similar to ones in domain Y, while 𝐷𝑌 is required
to distinguish the fake images 𝐺 (𝑥) and real 𝑦, leading to the ad-
versarial learning by optimizing𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑌

𝐿𝑐𝐺𝐴𝑁 (𝐺,𝐷𝑌 , 𝑋,𝑌 ).
For the bi-directional adversarial learning from ground truth seg-
mentation masks to wave front scratches, we have the equivalent
optimization problem for 𝐹 : 𝑌 → 𝑋 and its discriminator 𝐷𝑋 as
𝑚𝑖𝑛𝐹𝑚𝑎𝑥𝐷𝑋

𝐿𝑐𝐺𝐴𝑁 (𝐹, 𝐷𝑋 , 𝑋,𝑌 ).

6.2 Network Architecture Design
Nevertheless, we cannot apply the general generator and discrimi-
nator directly. Since it is facing two challenges as follows.
• Coarse-grained resolution of Wi-Fi radiations. Limited by
the narrow bandwidth of CSI measurements and the limited
number of subcarriers, the recovered wave front of the image
plane is coarse-grained in spatial resolution, making it difficult for
recognizing and locating objects with fine-grained segmentation
boundary.

• Cumbersome deployment cost. It is essential for the data-
thirsty deep neural network to collect massive data, especially
paired dataset required for supervised learning, where data pairs
𝑥𝑖 , 𝑦𝑖

𝑇
𝑖=1 are available [9, 31]. Thus the rigid time synchronization

is required for the wave front scratches and ground truth seg-
mentation masks for the paired dataset. However, to accurately
synchronize the Wi-Fi transceiver with the camera is hard to
achieve in real deployment.
To alleviate the impact of the non-synchronization of recovered

wave front scratches and the ground truth segmentation masks,
we explore the significant influence of the unpaired data in coarse-
grained time synchronization. And it demonstrates the translation
performance drops since the unpaired dataset cannot induce an
individual input 𝑥 to match a sole output𝑦 in a meaningful way [55].
Mathematically, it cannot guarantee an efficient bijection between
the scratches and ground truth images and often leads to the known
problem of mode collapse, where all inputs map to the few outputs
and the optimization procedures fails [11]. Thus we borrow the idea
of the cycle-gan [55] and design a cycle-consistency loss to relax

the rigid requirement of time synchronization. Differently, limited
by the coarse-grained resolution of wave front scratches, we adopt
the cross-entropy loss to transform the regression problems for the
whole image into a pixel-wise classification problem. Given the
𝐿𝑐𝑦𝑐𝑙𝑒 (𝐺) and 𝐿𝑐𝑦𝑐𝑙𝑒 (𝐹 ), it can be formulated as follows:

𝐿𝑐𝑦𝑐𝑙𝑒 (𝐺, 𝐹 ) =E𝑦∼𝑝𝑑𝑎𝑡𝑎 (𝑦) [𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐺 (𝐹 (𝑦)), 𝑦)]
+E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [| | (𝐹 (𝐺 (𝑥)) − 𝑥) | |1] (10)

Experimental evaluation demonstrates that it is difficult and
inefficient to learn themapping fromwave front scratches to ground
truth segmentation masks with the enhancement of the 𝐿𝑐𝐺𝐴𝑁 and
𝐿𝑐𝑦𝑐𝑙𝑒 . And the generator should not only fool the discriminator
but also learn from the ground truth, especially at the pixel scale.
Thus we adopt the pixel-to-pixel classification loss to bootstrap the
learning aggressively. Instead of using the 𝐿1 norm for image-scale
regression, we apply the cross-entropy loss in the domain Y at the
pixel scale:

𝐿𝑝𝑖𝑥𝑒𝑙 (𝐺, 𝐹 ) =E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐺 (𝑥), 𝑦)]
+E𝑦∼𝑝𝑑𝑎𝑡𝑎 (𝑦) [| | (𝐹 (𝑦) − 𝑥) | |1] (11)

Our final objective is the combination of losses below:
𝐿(𝐺, 𝐹, 𝐷𝑋 , 𝐷𝑌 ) =𝛾𝐿𝑐𝐺𝐴𝑁 (𝐺, 𝐷𝑌 , 𝑋,𝑌 ) + 𝛾𝐿𝑐𝐺𝐴𝑁 (𝐹, 𝐷𝑋 , 𝑋,𝑌 )

+𝜆𝐿𝑐𝑦𝑐𝑙𝑒 (𝐺, 𝐹 ) + 𝛽𝐿𝑝𝑖𝑥𝑒𝑙 (𝐺, 𝐹 ) (12)

where 𝛾 , 𝜆 and 𝛽 are the weights for each loss, in which 𝜆 can
alleviate the impact of the non-synchronized wave front scratches
and ground truth images while 𝛽 is utilized for encouraging the
generator to be near the ground truth at the pixel scale.

Note that the whole network, shown in Figure [10], is designed
to optimize the problem. And we evaluate the ablations of the full
objective to verify the effectiveness of designed losses (Sec. §7.4):

𝐺∗, 𝐹 ∗ = argmin
𝐺,𝐹

argmax
𝐷𝑋 ,𝐷𝑌

𝐿(𝐺, 𝐹, 𝐷𝑋 , 𝐷𝑌 ) (13)

7 EVALUATION
7.1 Evaluation Methodology
Implementation:We prototype WiSIA using three mini-desktops
equippedwith commercial linear polarized antennas (Ettus Vert2450).
Each mini-desktop has an Intel 5300 wireless NIC, and runs the
Linux 802.11n CSI tool [12] to collect CSI measurements. To al-
leviate interference, we select the channel 165 at 5.825 GHz [53].
The packet rate is set to 1000 packets per second and the available
bandwidth is 20 MHz. Note that we set the three receiving antennas
of the same receiver orthogonal to each other to capture polarized
Wi-Fi radiations [49], shown in Figure 7. We implemented the core
components of WiSIA using MATLAB/PyTorch [24] in the local lap-
top, and ran the evaluation tasks on the remote server. To achieve
the image segmentation in real-time, we set the sampling rate for
generating segmentation masks at 20 frames per second. The size
of the reflected area is denoted as (height × width) for common
objects. And we apply the centimeter (cm) as a unit without specific
denotation.
Experimental Setup: Unless stated otherwise, our evaluation
across experiments are conducted in settings as described below.
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Figure 7: Illustration of our experimental setup.

We have evaluated WiSIA in three different scenarios, including
(1) a 25 sq.m classroom, (2) a 15 sq.m office, and (3) a long corridor
spanning 4m in width, shown in Figure 9(a). And our evaluation
consists of three parts with 16 different setups, including image
segmentation of the target person (1) holding 5 various objects
for in-domain and cross-domain testing [54], such as the volley-
ball, vase, laptop, wine bottle, and iPhone, (2) holding objects in
5 different locations, covering both sides of the body and various
distances to the transceivers, (3) under 6 special conditions such as
poor lights, occlusions, and multi-object/person scenarios. For each
setup, we collect 240 images as our dataset. We train our model
once with 200 images and test it using the remaining 40 images.
We further denote the material, texture and reflected area of the
collected daily objects to verify the effectiveness of our feature
extraction module, shown in Table 2.

Note that we evaluate the cross-domain performance of our
system across instances, clothes and environments, in which we
train our model using the dataset from one domain (e.g., the office)
while testing its performance in new domains (e.g., classroom and
corridor) directly. And the cross-domain ability explores the resis-
tance of our system to the dynamics of wireless signals, reducing
the deployment cost (e.g., model retraining and data recollection)
significantly while being deployed in new domains.

For experimental convenience, all imaging objects are moving
to provide a relative motion towards transceivers at the distance
of 70cm (§4.2). For example, the target person is instructed to take
a deep breath and we put multiple objects on the cart which can
be moved relatively towards the transceivers for the multi-object
testing. Note that all experiments are approved by our IRB. We
further truncate the collected Wi-Fi signals using a time window of
50ms at the sampling rate 1000, delivering the rawCSImeasurement
as the dimension of 50×30with 30 subcarriers. Taking as input the
denoised CSI measurements of three antennas, the Wi-Fi radiation
tracing module generates the wave front with the size of 64×48×3
on the image plane, analogous to the RGB image. As a result, we
render the segmentation mask by feeding the wave front into our
segmentation refinement module.
Ground Truth Acquisition: To teach our cGAN for the image
segmentation, we leverage a computer vision architecture [13] for
the ground truth acquisition and comparison study. For simplicity,
one GoPro camera is required to capture photos in-situ steadily,

Table 2: Properties of experimental objects

Object Material Texturea Reflected Area (cm2)
#1 volleyball leather 1 20.70cmb

#2 vase ceramic 5 17×13
#3 laptop plastic 2 38.47×25.4

#4 wine Bottle glass 3 307×9
#5 iPhone aluminium 4 14×7

aThe value drops with a rougher surface.
bThe sphere diameter indicates the reflected area of a volleyball.

illustrated in Figure 7. To improve the performance of our system,
we further annotate the segmentation masks of Mask R-CNN man-
ually. Since Mask R-CNN suffers from center conditions, such as
the interference of the background and poor light conditions.

7.2 System Benchmark
Metrics: To measure the quality of the segmentation mask gener-
ated by WiSIA, we consider the following metrics:
• Szymkiewicz-Simpson similarity 𝑠 = 𝑆𝑐/

√
𝑆𝑖𝑆𝑔 measures the ac-

curacy of object profiling, in which 𝑆𝑖 and 𝑆𝑔 indicate the object
tagging area (e.g. person and object) in the generated and ground
truth images, respectively [22] while 𝑆𝑐 is the area of their inter-
section. The tagging area is calculated pixel-by-pixel, rendering
the similarity value equal to 1 as the perfect matching.

• Tagging accuracy t measures the pixel-wise tagging accuracy
by comparing the pixel-wise classification results. The ratio is
derived as the metric 𝑡 between the number of the matched pixels
in the generated segmentation mask and that of the ground truth,
rendering the perfect tagging accuracy equal to 1.

Performance on Different Objects: First, we evaluate WiSIA
in the general cases, in which the target person carries different
objects standing at the same location. Illustrated in Figure 9, visual-
ized examples demonstrate the feasibility and accuracy of WiSIA
in profiling and tagging at the pixel scale. Specifically, WiSIA can
reconstruct the segmentation mask at a finer-grained spatial res-
olution, such as the left elbow and the right shoulder in the top
row, delivering a comparable result with the state-of-the-art in the
computer vision field. Besides, it can profile and tag the volleyball
and vase accurately as Mask-R-CNN does. Note that Mask R-CNN
cannot recognize the laptop due to its vantage view in the image
while our system does. We can however observe the rough border
of the segmented part in the segmentation mask, especially the
Wi-Fi segmentation mask of our system. And some pixels are even
tagged as other colors due to the noise signals from COTS Wi-Fi
devices. We can further refine it by increasing the pixel intensity of
the wave front or leverage more antennas to provide more vantage
views for WiSIA.

To further demonstrate the feasibility of our system quantita-
tively, we plot the similarity 𝑠 and tagging accuracy 𝑡 in Figure 8(a).
It shows that WiSIA can reach 0.9 in 𝑠 and 𝑡 for those objects for
all 5 tested objects, which is comparable to the state-of-the-art in
computer vision [13] and acoustics imaging [22]. Note that the
performance of WiSIA drops for object#3 with the similarity 𝑠 of
0.90, which indicates the profiling for the laptop is relatively less
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Figure 8: Overall performance of WiSIA for the target person with different objects in various locations.

(a) RGB image (b) Mask R-CNN (c) Wi-Fi mask

Figure 9: Examples of the reconstructed segmentation mask
of the person with various objects across environments.

accurate. The accuracy degradation appears when using Mask R-
CNN method as well. The reason behind this is that the laptop has
a rougher surface, which scatters the Wi-Fi radiations and thus
reduces the spatial resolution. Another reason is the low-quality
ground truth of the laptop affected by its color and limited vantage
view, making it less accurate and robust for training cGAN.
Cross-domain Evaluation: To evaluate the cross-domain ability
of WiSIA, we train the model using the dataset of the experiment
on all objects in the office while testing it in other domains, in-
cluding various instances, clothes, and environments. Table 3 lists
our statistical evaluation results. We can see the performance of
the similarity 𝑠 and the tagging accuracy 𝑡 are above 0.8 for most
setups, comparable with the state-of-the-art technique in computer
vision (Mask R-CNN). Note that WiSIA suffers more across clothes
and environments. Since the dynamic setups introduce noticeable
interference into the narrow-band Wi-Fi signals. Nevertheless, we
can still. It demonstrates the stability of the designed feature and
the consistency of its cross-domain performance, which is unaf-
fected by the variances of different sampling instances, clothes of
the target person or the performing scenarios. Figure 9 however
shows the effectiveness of our system visually in the corridor and
classroom scenarios. we know the performance of Mask R-CNN
can suffer in some situations, like the missing laptop in Figure 1(d)
and 9. Thus WiSIA is also complementary to existing works for the
instance segmentation task in the field of computer vision.

Table 3: Performance metrics for cross-domain evaluation.

Similarity sa #1 #2 #3 #4 #5

Instance 0.9952 0.9997 0.9793 0.9992 0.9952
0.9656 0.9636 0.9145 0.9329 0.9594

Clothes 1 0.9723 0.9915 1 1
0.807 0.7938 0.7713 0.6719 0.8130

Corridor 1 1 0.7877 0.9996 1
0.7847 0.7964 0.6974 0.9308 0.7237

Classroom 1 1 0.7884 0.9992 1
0.8355 0.8505 0.8238 0.9349 0.7760

Tagging t #1 #2 #3 #4 #5

Instance 0.9812 0.9997 0.9866 0.9994 0.9962
0.964 0.968 0.9327 0.9412 0.9659

Clothes 1 0.967 0.9942 1 1
0.7835 0.7983 0.7706 0.7415 0.8491

Corridor 1 1 0.8538 0.9997 1
0.7894 0.8121 0.7605 0.9385 0.7841

Classroom 1 1 0.8501 0.9993 1
0.8359 0.8657 0.8218 0.9421 0.8113

aFor each cell, two rows denote measurements for
Mask R-CNN (upper) and WiSIA (lower), respectively

Performance at Different Locations: To evaluate the effective-
ness of our wave front construction module on the spatial resolu-
tion, we let a person hold the same object with different locations
toward the body and transceivers, for example, on the left, center
and right of the human body as well as at the far (2.1m), middle
(1.4m), near distance (0.7m) to the transceivers. Figure 8(b) shows
that we can estimate the position of the arms and body shape as
well as the location of the wine bottle from the left to the right.
The arm holding the wine bottle can be pinpointed by observing
the density profile steepening and hollowing. Note that profiling
of the wine bottle is not so smooth due to two reasons. First, the
narrow bandwidth of Wi-Fi radiations limits the spatial resolution
from the source signals. Second, it suffers from the property of the
reflector, such as the near-far problem [3], which can be alleviated
with more receiver antennas. Figure 8(c) further shows WiSIA can
profile and tag the human and the wine bottle accurately, delivering
high visual performance. Specifically, the similarity 𝑠 and tagging
accuracy 𝑡 can reach 0.9 and 0.95 for all 5 locations, rendering the
effective range up to 2.1m.
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Figure 10: Visual examples of WiSIA for special cases.

Poor Lighting Evaluation: We also evaluate the performance of
WiSIA under poor lighting conditions, where the vision-based so-
lutions usually have poor performance. Illustrated in the top of
Figure 10(a), the image on the left shows the targeting person hold-
ing a wine bottle, which is very blurry due to the poor lighting. The
center and right images are the recovered image by Mask R-CNN
and WiSIA, respectively. This result indicates Mask R-CNN suffers
from poor lighting, whereas WiSIA is robust to the poor lighting
condition and delivers consistent performance. It demonstrates the
advantages of WiSIA over vision-based approaches in poor lighting
condition. We further evaluate our system against the vision-based
method [13] qualitatively, Table 4 shows both achieve a comparable
similarity for the object profiling against the background. Mask
R-CNN performs a little worse since it sometimes only profiles
the partial body part as the Figure 10(a) shows. To measure the
classification of the object, we compute the tagging t against the
target object. It shows Mask R-CNN cannot recognize the small-size
object for most cases, rendering the tagging t as 0.0078 while our
system works normally with the pixel-wise classification accuracy
of 0.7277.
OcclusionEvaluation: Furthermore, we evaluate the performance
of WiSIA under occlusion, where the vision-based solutions no
longer have any effect. Illustrated in the bottom of Figure 10(a), the
image on the left shows the targeting person holding a keyboard,
which is occluded under the clothes. The center and right images
are the recovered image by Mask R-CNN and WiSIA, respectively.
This result demonstrates Mask R-CNN no longer takes any effects
while WiSIA delivers a consistent performance without suffering.
Table 4 further computes the performance metrics for our system
against the vision-based method, in which our system achieves the
classification accuracy of the tagging t 0.6504 while Mask R-CNN
cannot work at all. Therefore, WiSIA can be utilized to augment
the vision based entrance checking while the malicious people may
occlude illegal objects under their clothes or bags.
Multi-Object Evaluation: Finally, we validate the feasibility of
WiSIA in the scenarios that multiple people and objects simulta-
neously appear. Figure 10(b) demonstrates its ability for image
segmentation of multiple objects in three scenarios including a
person holding two objects, two persons standing side by side and
three objects putting on a sliding table, respectively. For the sce-
nario where no person exists, the table is sliding forth and back to
construct the relative motion. The results show that WiSIA cannot
only successfully generate the segmentation masks of the multiple

Table 4: Performance metrics against the vision based
method.

Setup Similarity s Tagging t*a

Ours Vision [13] Ours Vision [13]
Poor light 0.7763 0.7151 0.7277 0.0078
Occlusion 0.9357 0.9053 0.6504 0
a We compute the tagging t for classifying objects.

Table 5: Time consumption comparison between the whole
process for WiSIA and Lagrange multiplier on a single
NVIDIA Titan V GPU.

Module Wave front Feature cGAN Lagrange
Recovery Design Multiplier

Time(s) 0.0027 0.001 0.001 29.51

objects, but also accurately recognize each kind of object at the pixel
level. While the borders of recovered objects are blurred, which can
be improved by increasing the pixel resolution of wave front.

7.3 Running Time Analysis
To demonstrate the computation efficiency of our system, we mea-
sure the processing time of major components with multiple in-
stances in WiSIA. For 40ms CSI measurements, the total processing
time is less than 3ms in average, rendering a real-time system for
stream processing. We also measured the time consumption of the
numerical fitting method using the Lagrange multiplier [18, 54].
The average total processing time is 29.51s. Note that conditions
for the comparison keep consistent except that we leverage the
Lagrange multiplier to recover a 32 × 24 image plane which is less
than our 64 × 48. And it demonstrates the ineffectiveness of the
numerical fitting in recovering the wave front.

7.4 Ablation Study
To verify the effectiveness of our designed modules, we do the
ablation study against the profiling enhancement in §5.3 and the
cGAN design in §6.2. We first illustrate the 3D feature point cloud in
Figure 11(a) with the enhancement optimization, rendering distinct
physical signatures for all objects in Table 2. While the distinctness
can be reduced by removing the enhancement optimization. For
example, Figure 11(b) shows the physical signature of the wine
bottle can be more scattered in the feature space, making it more
difficult to be classified against the other objects.

We further evaluate our segmentation refinement module in Fig-
ure [10], especially the weights of various loss functions, including
𝛾, 𝜆 and 𝛽 for loss 𝐿𝑐𝐺𝐴𝑁 , 𝐿𝑐𝑦𝑐𝑙𝑒 and 𝐿𝑝𝑖𝑥𝑒𝑙 (Sec. §6.2). As listed in
Table 6, it has a low similarity 𝑠 with the loss 𝛽 of the 𝐿𝑝𝑖𝑥𝑒𝑙 equal
to 0 or 2. The rationale lies that a zero 𝛽 means no utilization of
pixel loss so it cannot make the generated image mask near the
ground truth. While a larger 𝛽 can reduce the impact of the 𝐿𝑐𝑦𝑐𝑙𝑒 ,
inducing the mode collapse problem [11] with unpaired data, where
all inputs map to the few outputs and the optimization procedures
fail. In the experiments for different locations of the target person
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(a) With enhancement optimization (b) Without enhancement optimization

Figure 11: 3D point cloud representing distinct physical sig-
natures for various objects.

Table 6: Performance with various weights of loss functions
given the fixed weight 𝛾 = 2 for the 𝐿𝑐𝐺𝐴𝑁

𝜆 \ 𝛽 0 1 2
0 (0.244, 0.937) (0.749, 0.951) (0, 0.913)
1 (0, 0.917) (0, 0.918) (0.241, 0.935)
2 (0.262, 0.933) (0.859, 0.975) (0.261, 0.931)

aThe data pair for each cell denotes the (s,t) for WiSIA

and object, the mode collapse can remove the ability of the gen-
erator to distinguish various locations of the object, leading to a
terrible profiling performance with a low similarity 𝑠 . We can see
that it achieves the best performance with the 𝜆 of 𝐿𝑐𝑦𝑐𝑙𝑒 and 𝛽 of
𝐿𝑝𝑖𝑥𝑒𝑙 equal to 2 and 1, rendering the necessity of each type of loss
function.

8 DISCUSSION & LIMITATIONS
Although WiSIA demonstrates its feasibility and effectiveness in
image segmentation of multiple objects located in various locations,
it has some limitations and future potentials.
Deployment cost: To extract the wave front without the massive
antenna array, a relative motion is required between the imaging
targets and the transceivers in §4.2, such as making a deep breath
by the person or moving the transceivers’ antennas to simulate a
massive antenna. Although it increases the deployment cost, the
requirements can be easily satisfied in many scenarios such as the
security surveillance [38] and drone based monitoring [49].
Surface properties and effective range: The preliminary demon-
strates that our system can extract features to represent various ma-
terials, textures and reflected areas of objects in Figure 5. Figure 11(a)
also verifies the distinct physical signal across 5 evaluated objects
in Table 2, which is consistent with the existing works [42, 49].
However, we also observe different scatters for each type of ob-
ject. For example, physical signatures of the laptop and the wine
bottle can be more scattered compared with others, rendering the
degraded performance for segmentation in Figure 8(a). It can be
attributed to properties of the plastic and glass, making it not so
distinct with other materials with respect to the polarization as the
metal does [49]. Further, the effective distance to transceivers is up

to 2.1m in the current setting. We expect to enlarge the segmenta-
tion range by using more transceivers and advanced deep learning
techniques [39].
Continuousmovement and generalization: Currently, we only
evaluate our system for targets on the spot and have to re-train our
cGAN model for different setups. On one hand, it can be improved
to deal with the continuous movement of a user walking since
the moving objects can provide more resilience to the background
interference by enhancing the Wi-Fi radiations bouncing off the
target person. To alleviate the dynamic variances introduced by
the motion of various body parts (e.g., the moving arm, torso and
leg), more signal processing and deep learning techniques can be
adopted for noise reduction and high-level feature extraction, such
as the multi-level interference cancellation [4, 22, 49] and RNN-
based network (e.g., LSTM and GRU) to extract the temporal feature
from the sequential data [18, 23, 54]. On the other hand, our system
can be generalized and extended with high-quality wireless signals,
which can provide a larger feature space and spatial resolution. For
example, the 60GHz transmission of IEEE 802.11ad with higher
bandwidth and frequency will improve the spatial resolution of the
recovered 2D wave front by our wave front construction module,
to the 5mm scale [14].
Future trends: The implications of our evaluation are manifold.
It verifies the feasibility of understanding wireless signals from
the view of the light field, toward through-the-wall holography
for the security surveillance and floor tomography. Besides its fun-
damental interest to understand the untraceable wireless signals
resembling the light, it can also bootstrap the pervasive sensing,
ranging from object tracking [4, 36], activity recognition [17, 27, 43],
human identification [32, 35, 41]. We leave designing the 3D imag-
ing segmentation counterpart as our future work.

9 CONCLUSION
In this paper, we presented the design, implementation and evalu-
ation of WiSIA, a generative adversarial network-augmented ver-
satile Wi-Fi imaging system based on COTS Wi-Fi devices. WiSIA
involves a number of novel techniques as follows. First, it can trace
the wave front of Wi-Fi radiation back to the image plane with
efficient 2D IFFT. Second, by fine-grained profiling and pixel-wise
tagging, it encodes the prior knowledge of objects into the image
segmentation and explores the physical signature of Wi-Fi radia-
tions beyond the intensity, which can enhance the spatial resolution
by pixel-wise illumination. Lastly, it employs the cGAN model and
multiple loss functions for the translation from the wave front of
Wi-Fi signals to object segmentation masks. Experimental evalua-
tion based on the COTS Wi-Fi devices demonstrates the feasibility
and effectiveness of WiSIA in image segmentation with high preci-
sion. Inspired by the promising results we have achieved, we plan
to focus on designing the 3D image segmentation system as our
future work.
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