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ABSTRACT
Video cameras have been deployed at scale today. Driven by the
breakthrough in deep learning (DL), organizations that have de-
ployed these cameras start to use DL-based techniques for live
video analytics. Although existing systems aim to optimize live
video analytics from a variety of perspectives, they are agnostic to
the workload dynamics in real-world deployments. In this work, we
present Distream, a distributed live video analytics system based
on the smart camera-edge cluster architecture, that is able to adapt
to the workload dynamics to achieve low-latency, high-throughput,
and scalable live video analytics. The key behind the design of Dis-
tream is to adaptively balance the workloads across smart cameras
and partition the workloads between cameras and the edge cluster.
In doing so, Distream is able to fully utilize the compute resources
at both ends to achieve optimized system performance. We eval-
uated Distream with 500 hours of distributed video streams from
two real-world video datasets with a testbed that consists of 24
cameras and a 4-GPU edge cluster. Our results show that Distream
consistently outperforms the status quo in terms of throughput,
latency, and latency service level objective (SLO) miss rate.
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1 INTRODUCTION
Video cameras are ubiquitous. Today, cameras have been deployed
at scale at places such as traffic intersections, university campuses,
and grocery stores. Driven by the recent breakthrough in deep
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learning (DL) [26], organizations that have deployed these cameras
start to use DL-based techniques for live video analytics [19, 22, 39].
Analyzing live videos streamed from these distributed cameras is
the backbone of a wide range of applications such as traffic control
and security surveillance. As many of these applications require
producing analytics results in real-time, achieving low-latency, high-
throughput, and scalable video stream processing is crucial [36].

Live video analytics systems require high-resolution cameras to
capture high-quality visual data for analytics. As camera number
scales up, these always-on cameras collectively generate hundreds
of gigabytes of data every single second, making it infeasible to
transmit such gigantic volume of data to data centers in the cloud
for real-time processing due to insufficient network bandwidth and
long transmission latency between cameras and the cloud [40].

The key to overcoming this bottleneck is to move compute re-
sources close to where data reside. Status quo live video analytics
systems hence stream camera feeds to local edge clusters for data an-
alytics where much higher network bandwidth is provided [22, 25,
31, 39]. To move compute resources even closer to data sources, ma-
jor video analytics providers (e.g., Avigilon, Hikvision, NVIDIA) are
replacing traditional video cameras with “smart cameras”. Equipped
with onboard DL accelerators, these smart cameras are not only able
to perform basic video processing tasks such as background sub-
traction and motion detection, but also capable of executing compli-
cated compute-intensive DL-based pipelines to detect and recognize
the objects and a variety of their attributes [15, 16, 23, 37]. Since
each smart camera brings extra compute resources to process video
streams generated by itself, this smart camera-edge cluster architec-
ture is the key to enabling live video analytics at scale [9, 19, 23].
Motivation & Limitations of Status Quo. In real-world deploy-
ments, depending on what areas the cameras are covering, the
number of objects of interest (e.g., people, vehicles, bikes) captured
by each camera is different and can vary significantly over time. For
example, for surveillance systems deployed on university campuses,
a camera that covers the building entrance captures much larger
numbers of people before and after classes than any other time;
a camera that points at the emergency exit where people rarely
visit has no objects of interest captured most of the time. As a con-
sequence, the workload of recognizing the captured objects and
their attributes produced at each camera is different and inherently
dynamic over time.

As listed in Table 1, in recent years, live video analytics systems
such as VideoStorm [39], Chameleon [22] and NoScope [25] have
emerged. These systems enable efficient processing of a large num-
ber of camera streams, but are designed to process the streams
within a centralized cluster.

With the emergence of smart cameras, recent systems start to
leverage the compute resources inside smart cameras for distributed
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Objective Architecture Video Analytics
Pipeline Partition

Workload
Adaptive

Cross-Camera
Workload Balancing

VideoStorm [39] Schedule video stream processing workloads Centralized N/A No N/A
with resource-accuracy tradeoff

Chameleon [22] Reduce the overhead of searching for the optimal Centralized N/A No N/A
resource-accuracy configuration

NoScope [25] Accelerate video analytics using resource-accuracy tradeoff Centralized N/A No N/A
FilterForward [9] Identify important frames on smart cameras Camera-Only Fixed No No
VideoEdge [19] Partition the video analytics pipeline across camera Distributed Dynamic No No

and cluster to optimize resource-accuracy tradeoff
Distream Enable workload adaptation for scalable, low-latency and Distributed Dynamic Yes Yes

high-throughput live video analytics without sacrificing accuracy

Table 1: Comparison between Distream and status quo live video analytics systems.

live video analytics. FilterForward [9] proposes a camera-only so-
lution which identifies important video frames and filter out unim-
portant ones directly on smart cameras. VideoEdge [19], on the
other hand, proposes a fully distributed framework that partitions
the video analytics pipeline across cameras and cluster with the
objective to optimize the resource-accuracy tradeoff. While these
systems aim to optimize live video analytics from a variety of per-
spectives, they are agnostic to the workload dynamics in real-world
deployments described above, making them fall short in two situa-
tions: on one hand, failing to utilize the compute resources inside
idle cameras could considerably jeopardize system throughput; on
the other hand, failing to alleviate the workloads from cameras that
are overloaded by bursty workloads could incur significantly high
latency, causing the system not able to meet the latency service level
objective (SLO) imposed by the live video analytics applications.
Overview of the Proposed Approach. In this paper, we present
Distream – a distributed framework based on the smart camera-
edge cluster architecture – that is able to adapt to the workload
dynamics in real-world deployments to achieve low-latency, high-
throughput, and scalable DL-based live video analytics. The under-
pinning principle behind the design of Distream is to adaptively
balance the workloads across smart cameras as well as partition the
workloads between cameras and the edge cluster. In doing so, Dis-
tream is able to fully utilize the compute resources at both ends to
jointly maximize the system throughput and minimize the latency
without sacrificing the video analytics accuracy.

The design of Distream involves three key challenges.
• Challenge#1: Cross-CameraWorkloadBalancing. One key
obstacle to achieving high-throughput low-latency live video
analytics is caused by the imbalanced workloads across cameras.
Therefore, the first challenge lies in designing a scheme that
balances the workloads across cameras. However, the cross-
camera workload correlation, the heterogeneous onboard com-
pute capacities of smart cameras, and the overhead of workload
balancing altogether make designing such a scheme not trivial.

• Challenge#2: Camera-ClusterWorkloadPartitioning. An-
other key obstacle to achieving high-throughput low-latency
live video analytics is caused by the imbalanced workloads
between smart cameras and the edge cluster. To balance the
workloads between cameras and edge cluster, the video analyt-
ics pipeline should be partitioned based on the workload ratio
of the two sides. However, the possible options to partition the

video analytics pipeline are quite limited in number, making
workload partitioning between camera and edge cluster by na-
ture coarse-grained. As a result, the partitioned video analytics
pipeline may not match the workload ratio of the two sides.

• Challenge#3: Adaptation to Workload Dynamics. Given
the dynamics of workloads in real-world deployments, the opti-
mal solutions for cross-camera workload balancing and camera-
cluster workload partitioning vary over time. Being able to adapt
to such workload dynamics is a must for high-performance live
video analytics systems. Designing such an adaptation scheme,
however, is not trivial, as the optimal pipeline partitioning so-
lution for each camera can be different. More importantly, since
the workloads are jointly executed between cameras and edge
cluster, for the whole system to achieve the best performance,
the optimal pipeline partitioning solutions for all the cameras
need to be jointly determined. This is a much more challeng-
ing problem compared to the single-pair workload partitioning
problem tackled in the literature [10, 12].
To address the first challenge, Distream incorporates a cross-

camera workload balancer that takes the cross-camera workload
correlation, heterogeneous compute capacities of smart cameras, as
well as the overhead of workload balancing into account, and formu-
lates the task of cross-camera workload balancing as an optimiza-
tion problem. In particular, the proposed cross-camera workload
balancer incorporates a long-short term memory (LSTM)-based
recurrent neural network which is able to enhance the performance
of cross-camera workload balancing by predicting incoming work-
loads in the near future to avoid migrating workloads to cameras
that are going to experience high workloads.

To address the second challenge, Distream incorporates a sto-
chastic partitioning scheme that partitions the video analytics
pipeline in a stochastic manner. In doing so, it provides much more
partition flexibility and much finer partition granularity. As such,
Distream is able to partition the pipeline to match the workload
ratio of the smart camera and edge server.

To address the third challenge, Distream incorporates a work-
load adaption controller which triggers the cross-camera work-
load balancer when cross-camera workload imbalance is detected.
Moreover, it formulates the task of jointly identifying the optimal
pipeline partitioning solutions for all the cameras as an optimiza-
tion problem with the objective to maximize the overall system
throughput subject to the latency SLO imposed by the live video
analytics applications.
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System Implementation & Summary of Evaluation Results.
We implemented Distream and deployed it on a self-developed
testbed that consists of 24 smart cameras and a 4-GPU edge cluster.
We evaluate Distream with 500 hours of distributed video streams
from two real-world video datasets: one from six traffic cameras
deployed in Jackson Hole, WY [7] for traffic monitoring application,
and the other from 24 surveillance cameras deployed on a uni-
versity campus for security surveillance application. We compare
Distream against three baselines: Centralized, which processes all
the workloads on the edge cluster; Camera-Only, which processes
all the workloads on smart cameras; and VideoEdge [19]. Our re-
sults show that Distream consistently outperforms the baselines
in terms of throughput, latency, and latency SLO miss rate by a
large margin due to its workload adaptation schemes. Moreover,
our scaling experiments show that Distream is able to scale up
system throughput nearly linearly while maintaining a low latency
with negligible overheads. Finally, we show that the workload adap-
tation techniques proposed in Distream could benefit existing live
video analytics systems and enhance their performance as well.
Summary of Contributions. To the best of our knowledge, Dis-
tream represents the first distributed framework that enables workl-
oad-adaptive live video analytics under the smart camera-edge
cluster architecture. It identifies a key performance bottleneck and
contributes novel techniques that address the limitations of existing
systems. We believe our work represents a significant step towards
turning the envisioned large-scale live video analytics into reality.

2 BACKGROUND AND MOTIVATION
2.1 Live Video Analytics Pipeline
Modern live video analytics pipelines typically adopt a cascaded
architecture which consists of a front-end object detector followed
by a back-end task-specific module to perform a variety of analytics
tasks on each of the detected object of interest within a video frame.

There are two types of object detectors that have been commonly
used in existing live video analytics systems [22]. The first type is
the CNN-based object detector (e.g., YOLO [32], SSD [27] and Faster-
RCNN [33]) which extracts and identifies all the objects of interest
in a frame with one single inference. However, such an object
detector has to be constantly extracting features from frames and
performing inference even if there is no object of interest appearing
in video streams. In many scenarios in real-world deployments,
however, the objects of interest may only appear in video streams
for short periods of time. In such case, a significant amount of
compute resources is wasted. The second type of object detector
is to first use a light-weight background subtractor [41] to extract
the regions where objects of interest reside from the frame. It sends
these regions to a classifier to identify the object within each region.
As such, it produces objects of interest only when they appear in the
frame. While Distream is a generic framework which supports both
types of object detectors, in this work, we focus on the background
subtraction-based detector to illustrate our ideas.

The task-specific module in general can be represented as a
directed acyclic graph (DAG). In this work, we use attribute recog-
nition as a concrete example of the task-specific module to illustrate
our ideas. Specifically, each vertex in the DAG represents a DNN
classifier that recognizes a particular attribute of the object; each
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Figure 1: Live video analytics pipeline used in Distream.

directed edge represents a data flow from one classifier to another.
For example, the task-specific DAG in Figure 1 consists of three
branches. Based on the type of the detected object (vehicle, per-
son, or others), the task-specific module selects one of the three
branches, each of which employs a cascaded sequence of classifiers
to further identify the attributes of the object1.

Based on the pipeline illustrated in Figure 1, going through each
classifier within the DAG is regarded as an individual workload2.
Therefore, identifying an object of interest and its attributes within
a video frame produces multiple workloads to be processed by the
live video analytics system.

2.2 Workload Dynamics in Real-world
Deployments

To illustrate the workload dynamics in real-world deployments,
we collected a dataset from 24 surveillance cameras deployed on a
university campus (§5.1). Given the limited space, we pick a repre-
sentative video clip to make our points. Specifically, Figure 2 shows
the workloads generated by four surveillance cameras deployed
at a university building on a weekday between 12pm to 12:30pm.
Among them, CAM1 monitors a square next to the building en-
trance; CAM2 monitors a sideway outside the building; CAM3 and
CAM4 cover two different corridors inside the building.
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Figure 2: Workload dynamics in real-world deployment.

1Although we adopted the design choice of treating each task independently, Distream
is flexible to support multi-task learning where a DNN inference produces multiple
results. It should be noted that not all the tasks can be combined into a single multi-task
DNN model. Thus our DAG formulation is general enough to support all the cases.
2We did not include capturing images and background extraction as workloads mainly
because these steps consumemuch less computation compared to DNN-based inference
and thus can be executed locally fast enough without offloading.
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Figure 3: System architecture of Distream.

As illustrated, depending on the views captured by the cameras,
the workloads of real-world video streams have three key character-
istics. (i) The workloads are different across cameras: for CAM1 that
monitors busy areas, more workloads are generated as pedestrians
pass by more often; for CAM3 that monitors a less busy indoor
corridor, much less workloads are generated sporadically and it has
no workloads most of the time. (ii) The workload generated at each
camera is dynamic over time: this is obvious because the content
captured by each camera is changing over time. (iii) The amount
of workloads generated at each camera can vary significantly: the
workload difference between bursty and non-bursty durations can
be more than 1000×.

2.3 Need for Workload Adaptation
Existing live video analytics systems based on the smart camera-
edge cluster architecture, however, are agnostic to the real-world
workload dynamics illustrated above. To demonstrate how existing
systems fall short under such workload dynamics, we compare the
system performance between Distream that is workload-adaptive
and a workload-agnostic baseline that allocates compute resource
proportional to the compute capacity. We use the same dataset in
§2.2 and a testbed that consists of four smart cameras (2 Jetson-
TX1 and 2 Jetson-TX2) and 1-GPU edge cluster (§4) to conduct our
experiments.

Figure 4 illustrates our comparison results. As shown, Distream
achieves significant improvement in terms of throughput and la-
tency compared to the workload-agnostic scheme. Specifically, the
median and peak throughputs of Distream are 302 IPS and 562
IPS respectively, which is 1.4× and 2.3× improvement over the
workload-agnostic baseline, which only achieves 213 IPS median
and 240 IPS peak throughputs. Distream also achieves 0.23s me-
dian and 3.92s maximum latency, which reduces medium and maxi-
mum latency by 57× and 40.7× compared to the workload-agnostic
scheme which achieves 13.1s median latency and 159.73s maximum
latency.

To understand why the workload-agnostic scheme falls short,
we use one smart camera as an example and plot its workloads gen-
erated over a two mins video clip in Figure 5. Specifically, the black
solid line depicts the generated workloads over time; the red dashed
line depicts the camera’s processing capability (i.e., the maximum
number of workloads it can process per unit time) based on the
workload-agnostic scheme. As shown, under the workload-agnostic
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Figure 4: Comparison of throughput (left) and latency (right) be-
tween workload-agnostic and workload-adaptive (ours) schemes.
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Figure 5: Illustration on where the workload-agnostic scheme falls
short under dynamic workloads in real-world deployments.

scheme, although the workload generated at the smart camera is
dynamic over time, the processing capability of the camera stays the
same and does not adapt to the workload variation. Consequently,
when the generated workload exceeds its processing capability,
the camera experiences under-provisioning (red region) so that it
fails to process the workloads in time; when the workload is be-
low its processing capability, the camera becomes over-provisioning
(green region) and thus wastes its compute resources that could
have been used to process workloads generated from other cam-
eras. These observations altogether highlight the need for workload
adaptation to avoid the occurrence of either under-provisioning or
over-provisioning, which motivates the design of Distream.

3 DISTREAM DESIGN

3.1 Overall Architecture
Figure 3 illustrates the overall architecture of Distream. As shown,
Distream is designed as a distributed framework that spans across
smart cameras and the edge cluster. In the data plane, as soon
as the smart camera captures a video frame, it runs the onboard
background subtractor to extract regions of interest (ROIs) within
the frame and appends them one by one into a local queue ( 1 ).
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Each ROI in the queue is either offloaded to another camera ( 2a )
or partially processed inside the local inference engine according
to its partitioned DAG whose partition point is determined by the
DAG partitioner ( 2b ). The result of the partially-processed DAG is
then transferred to the edge cluster and buffered in a queue ( 3 ),
which will be processed by the inference engine inside the edge
cluster ( 4 ) to complete the remaining unprocessed part of the
DAG. All the inference results from the cameras are gathered at
the edge cluster. In the control plane, the system monitor continu-
ously monitors the workloads at each camera and edge cluster, and
sends the collected workload information to the workload adapta-
tion controller ( i ). Once the workload imbalance across cameras
is detected, the workload adaptation controller triggers the cross-
camera workload balancer ( iia ) to balance the workloads across
cameras ( iiia ). Meanwhile, based on the current workloads at each
camera and edge cluster, the workload adaptation controller adap-
tively identifies the optimal DAG partition point for each camera
that balances the workload between each camera and the edge
cluster. Such optimal DAG partition points are sent to the DAG
partitioner ( iib ) for DAG partitioning, and the corresponding DAG
partition result is sent to the inference engine at each camera ( iiib ).

In the following, we describe the three key components of Dis-
tream: cross-camera workload balancer (§3.2), DAG partitioner (§3.3),
and workload adaptation controller (§3.4) in detail.

3.2 Balancing the Workloads across Smart
Cameras

The first key component of Distream is the cross-camera workload
balancer, which balances the workloads at the level of the extracted
regions of interest (ROIs) across cameras by migrating part of the
workloads from heavily loaded cameras to idle or lightly loaded
ones (Figure 6). To achieve this, the cross-camera workload balancer
needs to accommodate three key considerations:
• Consideration#1: cross-camera workload correlation. As

also being observed by many existing works [21–23], workloads
on nearby cameras may exhibit strong correlations due to mo-
bility of objects of interest: a camera may have high workload
within a short time period if its nearby cameras are experienc-
ing high workloads. The cross-camera workload balancer needs
to take such correlations into account to avoid migrating work-
loads to cameras that are going to experience high workloads.

• Consideration#2: heterogeneous compute capacities. Smart
cameras may have heterogeneous onboard compute capacities
caused by different generations of compute hardware. To pre-
vent any camera from becoming the bottleneck, the cross-camera
workload balancer needs to balance the workloads proportional
to each camera’s compute capacity.

• Consideration#3: workload balancing overheads. In prac-
tice, migrating workloads across cameras incurs overheads. The
cross-camera workload balancer needs to take such overheads
into account such that the overheads do not overshadow the
benefits brought by load balancing.
The cross-camera workload balancer takes these three consid-

erations into account, and formulates the task of cross-camera
workload balancing as an optimization problem.
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Figure 6: Overview of the cross-camera workload balancer.

Formally, let 𝑁 denote the total number of smart cameras, 𝑤𝑖

denote the workload of camera 𝑖 before load balancing, and let∑
𝑗 𝑥 𝑗𝑖 and

∑
𝑗 𝑥𝑖 𝑗 denote the workloads that are moved into and

moved out of camera 𝑖 respectively. Therefore, the workload of
camera 𝑖 after load balancing can be calculated as𝑢𝑖 = (𝑤𝑖+

∑
𝑗 𝑥 𝑗𝑖−∑

𝑗 𝑥𝑖 𝑗 ). And the goal of the cross-camera workload balancer is to
minimize 𝜈 , the workload imbalance index across smart cameras
after workload balancing, which can be calculated as

𝜈 = (𝑢𝑚𝑎𝑥

𝑢
− 1) (1)

where 𝑢𝑚𝑎𝑥 and 𝑢 represent the maximum workload and average
workload of all cameras respectively. By minimizing the work-
load imbalance index, the cross-camera workload balancer is able to
achieve a good balance between workload balancing efficiency and
fairness without incurring thrashing.

To accommodate Consideration#1, we take the cross-camera
workload correlation into account by incorporating a workload
predictor to predict the future workload at each camera (not from
migration) based on their current workloads and the cross-camera
workload correlations. Specifically, we employ long-short term
memory (LSTM)-based recurrent neural network [30] as the work-
load predictor because it shows better long-term forecasting ability
in predicting time series data compared to other methods [29]. The
predicted workload𝑤𝑖 at camera 𝑖 output by the workload predictor
is added to 𝑢𝑖 as an adjustment to obtain a more accurate future
workload estimate as

𝑢𝑖 = 𝑤𝑖 +
∑
𝑗

𝑥 𝑗𝑖 −
∑
𝑗

𝑥𝑖 𝑗 +𝑤𝑖 (2)

To accommodate Consideration#2, we take the heterogeneous
compute capacities of smart cameras into account by multiplying
𝑢𝑖 with a normalization factor 𝑎𝑖 = 𝐶𝑖/𝐶 where 𝐶𝑖 is the compute
capacity of camera 𝑖 and 𝐶 is the average compute capacity of all
the smart cameras. As a result, the workload at each camera after
load balancing gets normalized as 𝑢 ′

𝑖
= 𝑢𝑖 ∗ 𝑎𝑖 and the workload

imbalance index 𝜈 gets normalized as

𝜈 ′ = (𝑢
′
𝑚𝑎𝑥

𝑢 ′
− 1) (3)

To accommodate Consideration#3, a triggering threshold 𝛽 is
added into our optimization objective. The cross-camera workload
balancing is not triggered when 𝜈 ′ is below 𝛽 .



SenSys ’20, November 16–19, 2020, Virtual Event, Japan X. Zeng, B. Fang, H. Shen, M. Zhang

Putting all the pieces together, our cross-camera workload bal-
ancing scheme can be formulated as

min
𝑥𝑖 𝑗 ≥0

max(𝜈 ′ − 𝛽, 0) (4a)

𝑠 .𝑡 . 𝑢𝑖 = 𝑤𝑖 +
∑
𝑗

𝑥 𝑗𝑖 −
∑
𝑗

𝑥𝑖 𝑗 +𝑤𝑖 (4b)

𝑎𝑖 = 𝐶𝑖/𝐶 (4c)
𝑢 ′𝑖 = 𝑢𝑖 ∗ 𝑎𝑖 (4d)

𝜈 ′ = (𝑢
′
𝑚𝑎𝑥

𝑢 ′
− 1) (4e)

Solving the above nonlinear optimization problem is computa-
tionally hard. To enable real-time cross-camera workload balancing,
we utilize a heuristic to efficiently solve the optimization problem.
Specifically, our heuristic starts with all 𝑥𝑖 𝑗 = 0 and increases 𝑥𝑖 𝑗
iteratively. In each iteration, we select cameras that have the largest
and the smallest workloads to form a migration pair. Then we in-
crease the migrated workload 𝑥𝑖 𝑗 by Δ𝑥 (i.e., 𝑥𝑖 𝑗 = 𝑥𝑖 𝑗 +Δ𝑥 ), where
Δ𝑥 = 1%∗𝑢 ′

𝑖
. We repeat such iteration until 𝜈 ′ is below a threshold

or 𝜈 ′ does not improve between two consecutive iterations.
As shown in §5.6, such heuristic is able to solve the optimization

problem in an efficient manner and incurs negligible overheads.

3.3 Partitioning the Workload between Smart
Cameras and Edge Cluster

The second key component of Distream is the DAG partitioner,
which partitions the workloads between smart cameras and edge
cluster at the DAG level. To achieve this, the DAG partitioner needs
to accommodate two key considerations:
• Consideration#1: DAG is conditionally executed. As the
contents of video streams are changing, the execution flow in
DAG is changing correspondingly. Take the DAG in Figure 1 as
an example: if a ‘Vehicle’ is detected, the upper path of the DAG
(i.e., the ‘Color’, ‘Type’ and ‘Make’ classifiers) will be executed; if
a ‘Person’ is detected, themiddle path of the DAG (i.e., ‘Behavior’
and ‘Gender’ classifiers) will be executed. However, to identify
the optimal DAG partition point, the DAG partitioner needs to
consider all the possible partition points from all the possible
execution paths.

• Consideration#2: DAG Partitioning is by nature coarse-
grained. Ideally, to balance the workloads between cameras
and the edge cluster, the DAG partition point should be set based
on the workload ratio of the two sides. However, the possible
partition points in a DAG are the vertices in the DAG, which are
discrete and limited in number. This makes DAG partitioning
by nature coarse-grained. As a result, the DAG partition point
may not match the workload ratio of the two sides.
The DAG partitioner takes these two considerations into account,

and designs a two-step scheme to partition the DAG.

Step#1: Full DAG Profiling. In our first step, we follow the topo-
logical order of the DAG to extract all the possible execution paths
in the DAG. As an example, Figure 7 shows three execution paths
extracted from the DAG in Figure 1. For each extracted execution
path, we then profile the inference cost of each classifier, and label
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%E FPerson
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GOther

Figure 7: Full DAG profiling. The percentage on top of each vertex
is the normalized accumulated inference cost.
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Figure 8: Stochastic DAG partition. Vertexes in blue color are classi-
fiers allocated to run at the camera, and vertexes in brown color are
classifiers allocated to run at the edge cluster.

the normalized accumulated inference cost on top of each classifier.
For example, in Figure 7, the normalized accumulated inference
cost of executing the ‘Vehicle’ path up to classifier B is 35%.

Step#2: Stochastic DAG Partitioning. In our second step, we
propose a stochastic DAG partitioning scheme to partition the
DAG in a fine-grained manner such that the partitioned DAG could
better match the workload ratio of the camera and the edge cluster.
Specifically, for each execution path obtained in Step#1, the goal
of our stochastic DAG partitioning scheme is to find a stochastic
path execution plan such that the expected normalized accumulated
inference cost of executing the path matches the optimal DAG
partition point 𝑝𝑎𝑟 ∈ [0, 1] provided by the workload adaptation
controller (§3.4).

Take the ‘Vehicle’ path in Figure 8 as an illustrative example. For
the profiled ‘Vehicle‘ path, assume we need to achieve 𝑝𝑎𝑟 = 0.7
workload partitioning (i.e., 70% workload allocated to the camera
and 30% workload allocated to the edge cluster) determined by the
workload adaptation controller. Our stochastic DAG partitioning
scheme first identifies two vertexes (vertex B, vertex C) along the
‘Vehicle‘ path such that 𝑝𝑎𝑟 = 0.7 falls between their normalized
accumulated inference cost (Figure 8 (1)). Given the normalized
accumulated inference costs of these two vertexes (𝐶𝑜𝑠𝑡𝐵 = 0.35
for vertex B, 𝐶𝑜𝑠𝑡𝐶 = 0.85 for vertex C), our stochastic DAG parti-
tioning scheme then determines the probabilities for partitioning
the ‘Vehicle‘ path at vertex B (𝑃𝐵 ) and vertex C (𝑃𝐶 ) respectively
as:

𝑃𝐵 = (𝑝𝑎𝑟 −𝐶𝑜𝑠𝑡𝐶 )/(𝐶𝑜𝑠𝑡𝐵 −𝐶𝑜𝑠𝑡𝐶 )
𝑃𝐶 = 1 − 𝑃𝐵

(5)
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In this example, the solutions are 𝑃𝐵 = 0.3 and 𝑃𝐶 = 0.7. There-
fore, the stochastic path execution plan is to partition the path at
vertex B with a probability of 0.3 and to partition the path at vertex
C with a probability of 0.7 (Figure 8 (2)). As such, the expected nor-
malized accumulated inference cost of executing the path matches
the optimal DAG partition point 𝑝𝑎𝑟 (0.3 ∗ 35% + 0.7 ∗ 85% = 0.7).

Compared to the discrete DAG partitioning approach, our sto-
chastic DAG partitioning scheme provides much more partition
flexibility and granularity. With such flexibility and granularity,
Distream is able to better partition the DAG between smart cameras
and edge cluster to match the workload ratio of two sides.

3.4 Workload Adaptation Controller
The third key component of Distream is the workload adaptation
controller, which is the core to achieve our workload adaptation ob-
jective. Theworkload adaptation controller performs two tasks. First,
when the workload imbalance index across smart cameras is greater
than a threshold 𝛽 , the workload adaptation controller triggers the
cross-camera workload balancer to balance the workloads across
the cameras as described in §3.2. Second, the workload adaptation
controller follows a camera-cluster workload partition schedule to
periodically (at interval 𝛾 ) update the optimal DAG partition point
for each camera to balance the workloads between each camera
and edge cluster (Figure 9). Such optimal partition points are sent
to the DAG partitioner for DAG partitioning as described in §3.3.

The DAG partition points serve as knobs to control the DAG
execution across cameras and edge cluster, and thus control the
workload split between them. To identify the optimal DAG partition
points, the workload adaptation controller needs to accommodate
two key considerations:
• Consideration#1: the optimal DAG partition point is dif-
ferent for each camera. The smart cameras have heteroge-
neous compute capacities and the workload at each camera can
be different due to the discretization of cross-camera workload
balancing. This requires the workload adaptation controller to
identify the optimal DAG partition point for each camera.

• Consideration#2: the optimal DAG partition points of all
cameras need to be determined jointly. Because the work-
loads are partitioned between cameras and edge cluster, the
system performance (throughput and latency) is jointly deter-
mined by all cameras and edge cluster. Therefore, the optimal
DAG partition points for all cameras are linked together and
need to be jointly adjusted as well.
The workload adaptation controller takes these two considera-

tions into account, and formulates the task of identifying optimal
DAG partition points as an optimization problem.

Specifically, our optimization problem aims to jointly identify the
optimal DAG partition points for all the cameras with the objective
to maximize the overall system throughput subject to the latency
service level objective (SLO) imposed by the live video analytics
applications. Below, we describe how we model the throughput and
the latency followed by the complete optimization formulation.
Throughput. As a DAG is partitioned into two parts and executed
on a camera and edge cluster respectively, the throughput of the
entire live video analytics system is the sum of the throughput of
cameras and the throughput of the edge cluster.

…… ……
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Figure 9: Overview of camera-cluster workload partition in work-
load adaptation controller. The optimal DAG partition points of all
cameras are jointly determined

.
Formally, let 𝑁 denote the number of cameras in the system, 𝑝𝑎𝑟𝑖

denote the DAG partition point for camera 𝑖 , and 𝑇𝑃𝑐𝑎𝑚𝑖 (𝑝𝑎𝑟𝑖 ) de-
note the throughput of camera 𝑖 given DAG partition point 𝑝𝑎𝑟𝑖 , and
𝑇𝑃𝑒𝑑𝑔𝑒 denote the throughput at the edge cluster which depends
on the all partition points {𝑝𝑎𝑟𝑖 }. 𝑇𝑃𝑐𝑎𝑚𝑖 (𝑝𝑎𝑟𝑖 ) and 𝑇𝑃𝑒𝑑𝑔𝑒 can
be accurately measured by monitoring the number of workloads
processed per time unit at camera 𝑖 and edge cluster respectively.
Therefore, the throughput of 𝑁 cameras 𝑇𝑃𝑐𝑎𝑚𝑠 , the throughput
of the edge cluster𝑇𝑃𝑒𝑑𝑔𝑒 , and the throughput of the entire system
𝑇𝑃𝑠𝑦𝑠𝑡𝑒𝑚 can be computed as:

𝑇𝑃𝑐𝑎𝑚𝑠 =

𝑁∑
𝑖=1

𝑇𝑃𝑐𝑎𝑚𝑖 (𝑝𝑎𝑟𝑖 ) (6a)

𝑇𝑃𝑒𝑑𝑔𝑒 = 𝑇𝑃𝑒𝑑𝑔𝑒 (𝑝𝑎𝑟1, 𝑝𝑎𝑟2, ..., 𝑝𝑎𝑟𝑁 ) (6b)

𝑇𝑃𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑇𝑃𝑐𝑎𝑚𝑠 +𝑇𝑃𝑒𝑑𝑔𝑒 (6c)

Latency. The latency of a live video analytics system is defined as
the time elapsed between receiving a workload and producing the
inference result of the workload. Given that, the latency is the sum
of two parts: 1) the workload queuing time, and 2) the workload
processing time for producing the inference result. Because work-
loads are partitioned across camera and edge, the latency of two
sides is thus computed separately. As such, the latency at camera 𝑖
and at edge cluster are computed as:

𝐿𝑐𝑎𝑚𝑖 =
𝑤𝑖

𝑇𝑃𝑐𝑎𝑚𝑖
+ 1

𝑇𝑃𝑐𝑎𝑚𝑖
(7a)

𝐿𝑒𝑑𝑔𝑒 =
𝑤𝑒𝑑𝑔𝑒

𝑇𝑃𝑒𝑑𝑔𝑒
+ 1

𝑇𝑃𝑒𝑑𝑔𝑒
(7b)

where𝑤𝑖 is the number of pending workloads to be processed at
camera 𝑖 , and 𝑤𝑒𝑑𝑔𝑒 is the number of pending workloads to be
processed at the edge cluster.
Complete Optimization Formulation. Putting all the pieces to-
gether, the complete optimization problem can be formulated as3:

max
𝑝𝑎𝑟𝑖∀𝑖

𝑇𝑃𝑠𝑦𝑠𝑡𝑒𝑚 (8a)

𝑠 .𝑡 . 𝐿𝑐𝑎𝑚𝑖 ≤ 𝐿𝑀𝑎𝑥 ,∀𝑖 (8b)

𝐿𝑒𝑑𝑔𝑒 ≤ 𝐿𝑀𝑎𝑥 (8c)

where 𝐿𝑀𝑎𝑥 is the latency SLO imposed by the specific application.

3Distream operates at DAG node level when partitioning workloads between cameras
and edge cluster. Defining the optimization objective in terms of DAG node is able to
reflect the performance gain in a more straightforward manner.



SenSys ’20, November 16–19, 2020, Virtual Event, Japan X. Zeng, B. Fang, H. Shen, M. Zhang

As shown, since 𝐿𝑐𝑎𝑚𝑖 and 𝐿𝑒𝑑𝑔𝑒 are determined by 𝑇𝑃𝑐𝑎𝑚𝑖 ,𝑤𝑖 ,
𝑇𝑃𝑒𝑑𝑔𝑒 and 𝑤𝑒𝑑𝑔𝑒 , which are determined by 𝑝𝑎𝑟𝑖 , the workloads
received at cameras and the edge cluster are not independent but
negatively correlated with each other. This tradeoff illustrates the
significance of identifying the optimal DAG partition points to bal-
ance workloads between cameras and the edge cluster to maximize
the throughput under the latency SLO.

The optimization problem formulated above is non-convex. In-
stead of exhaustively searching over all possible partition points for
all cameras, we adopt a heuristic to solve the optimization problem
efficiently. Specifically, our heuristic is iterative and each iteration
has two phases. In the first phase, it starts with the objective of
finding the preliminary DAG partition points that maximize the
throughput without considering the latency SLO. In the second
phase, we iteratively target the bottleneck camera with the largest
latency and adjust its preliminary DAG partition point to meet
the latency SLO. In practice, our heuristic is highly effective with
negligible overheads even if the number of cameras scales up (§5.6).

4 SYSTEM IMPLEMENTATION
We implemented Distream using about 2500 lines of Golang code
and 500 lines of python code. In this section, we provide details on
how the key parts of Distream were implemented.
Testbed. We followed the design choice that is widely adopted by
existing live video analytics systems in real-world deployments to
develop our own testbed to evaluate the performance of Distream.
Specifically, our testbed consists of 24 smart cameras and a single
edge cluster. Among the 24 cameras, 18 were prototyped using
Nvidia Jetson TX1 [3] while the other six were prototyped using
Nvidia Jetson TX2 [6]. Both Jetson TX1 and TX2 are designed for
embedded systems with onboard DL workloads4. Jetson TX2 is an
upgraded version of Jetson TX1 with larger compute capacity. For
the edge cluster, we use a desktop server equipped with a cluster of
4 Nvidia Titan X GPUs [1]. We followed the standard configuration
of existing IP video surveillance systems to connect and set up the
network bandwidth between smart cameras and edge cluster [5].
Specifically, all the 24 smart cameras and the edge cluster are wire-
powered and interconnected through a single switch (D-Link DGS-
1510-28X [2]) to form a local network. Each smart camera has a
Fast Ethernet link (10/100 Mbps) to the switch, and the bandwidth
from the switch to the edge cluster is 10Gbps. By default, we set
the camera bandwidth to 10Mbps. We also evaluate the system
performance under 50Mbps.
LSTMWorkload Predictor. We use a two-layer LSTM with 256
neurons in each layer as our workload predictor. Specifically, the
workload predictor takes the arrived workloads of all cameras as
input and predicts the upcoming workloads of each camera in the
next second. We observed that the amount of workloads generated
at each camera is highly relevant to the time period in a day. Thus
we divide a day into six periods as 00:00-04:00, 04:00-8:00, 8:00-12:00,
12:00-16:00, 16:00-20:00 and 20:00-24:00. For each period, we train
a specialized LSTM using workloads observed from that period.
We find that using six specialized LSTMs reduces 10.2% mean
square error compared to using a universal LSTM. Since running

4As AI chipsets evolve, we conjecture that AI hardware with such compute capacity
will be widely deployed inside various edge devices such as smart cameras.

a specialized LSTM is fast on CPU (less than 1ms for one step),
and it only makes predictions each second, our LSTM workload
predictor incurs negligible overheads. Although the predictor could
potentially benefit from periodic re-training given the dynamics of
workloads over time, it is not the focus of this work.
Video Analytics Pipeline. We use OpenCV 3.2.0 to read video
streams and implemented the Gaussian mixture model-based back-
ground subtraction method in [4] to extract regions of interest
(ROIs) with length of history set to 500 and threshold set to 60. It
maintains an estimate of background image and uses subtraction
operation to extract foreground regions, followed by blob detec-
tion operations to extract ROIs. The number of extracted ROIs per
frame varies depending on the nature of the scenes captured by the
cameras, ranging from 0 to 30. For inference engine, we designed an
efficient DNN model based on MobileNetV2 [34] for each classifier,
and we are able to compress over 90% of model weights using
pruning [28] and knowledge distillation [17] without accuracy loss.
Given that each DNNmodel has only about 2MB memory footprint,
the inference engine is able to load all the DNN models into a single
GPU, avoiding model loading or switching time. Similar to [35], we
adopt batched inference [11] to improve video analytics throughput.
We profiled the inference latency with batch size of 1, 8, 16, 32 and
64 respectively and set the batch size to 8 at the camera side and 32
at the edge cluster given its better performance tradeoff.
Scheduling. We implemented a monitor proxy at each camera and
edge cluster to keep track of the runtime information including
workload status, network bandwidth, throughput and latency. The
proxy periodically reports these information to the system monitor
in the edge cluster every 50ms. When performing the cross-camera
workload balancing, the ROI is encapsulated into the migrating
workload because the target camera does not have the video frame
from the source camera.
Communication. Distream uses ZeroMQ [8] for high-speed low-
cost inter-process communication among cameras. For remote com-
munication between cameras and edge cluster, we implemented
a low-cost remote procedure call (RPC) to transfer control data.
Specifically, the cross-camera workload balancing instructions and
DAG partition points are transferred to cameras immediately after
they are generated by the cross-camera workload balancer and the
DAG partitioner respectively. When performing cross-camera work-
load balancing and camera-cluster workload partitioning, we use
batched RPCs for communication between two entities to amortize
the communication overhead. The maximum RPC batch size is 20.

5 EVALUATION
In this section, we evaluate the performance of Distream with the
aim to answer the following questions:
• Q1 (§5.2): Does Distream outperform status quo live video ana-
lytics systems? If so, what are the reasons?

• Q2 (§5.3): How effective is each core technique incorporated in
the design of Distream?

• Q3 (§5.4): How is the performance of Distream affected by the
system hyper-parameters and network bandwidth?

• Q4 (§5.5): Does Distream scale well?
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• Q5 (§5.6): How much overheads does Distream incur?

• Q6 (§5.7): Do the techniques proposed in Distream also benefit
status quo live video analytics systems?

5.1 Experimental Methodology
Applications. We use Traffic Monitoring and Campus Surveil-
lance as two representative applications to evaluate Distream. For
each application, we use a representative real-world multi-camera
dataset to benchmark the performance.
• Application#1: Traffic Monitoring. For this application, we

use publicly available live video streams from six traffic cameras
deployed at different traffic intersections and roads in Jackson
Hole, WY [7]. These six live video streams have dynamic con-
tents, reflecting diverse traffic conditions in the city across space
and time. To obtain a representative dataset, we sampled 200
5-minute video clips across 48 hours of video streams from each
of the six cameras at a frame rate of 15 FPS and 1280 × 720P
frame resolution. The sampled video clips cover diverse traffic
conditions at different time of the day including rush hours,
light traffic time, and night time.

• Application#2: Campus Surveillance. Due to lack of pub-
licly available large-scale datasets, we self-collected a dataset
from 24 surveillance cameras deployed on a university campus.
These cameras cover diverse areas of the campus, including
indoor areas such as dining halls, cafeterias, and hallways as
well as outdoor areas such as university entrances, building
entrances, squares, streets, and traffic intersections. For secu-
rity purposes, some of the surveillance cameras are particularly
covering areas where people rarely visit. Similar to the Traffic
Monitoring application, we sampled 200 5-minute-long video
clips across 48 hours of video streams from each of 24 cameras
at a frame rate of 15 FPS and 1280 × 720P frame resolution to
obtain a representative dataset.

Baselines.We compareDistream against three baselines that cover
all three types of architectures listed in Table 1.
• Centralized. This baseline represents the centralized approach
adopted by a number of existing live video analytics systems
such as VideoStorm [39], Chameleon [22] and NoScope [25]
where video streams are sent to edge cluster for processing.

• Camera-Only. This baseline represents the approach at the
other end of the spectrum where video streams are only pro-
cessed locally on smart cameras (e.g., FilterForward [9]).

• VideoEdge-Lossless (VideoEdge-L). VideoEdge [19] is the
status quo live video analytics system that utilizes compute
resources across cameras and cluster to process video streams
in a distributed manner. Different from Distream, VideoEdge
is workload-agnostic and aims to achieve optimized resource-
accuracy tradeoff, which may trade for resources with loss of
accuracy. Since Distream does not sacrifice accuracy, for a fair
comparison, we implemented VideoEdge with the resource-
accuracy tradeoff disabled, which we refer to as VideoEdge-
Lossless (VideoEdge-L) and use it as our third baseline. As
VideoEdge is workload agnostic and the only prior knowledge
given is the compute cost of each classifier in the DAG as well

as the compute capacity ratio of cameras and cluster, we par-
titioned the DAG and place the partitions according to the
camera-cluster compute ratio to implement VideoEdge-L.

Evaluation Metrics. We use three metrics to evaluate the perfor-
mance of Distream and the baselines.
• Throughput. Live video analytics systems need to process
streaming video frames in a continuous manner, and high-
throughput processing is essential to keeping up with the in-
coming video streams. In our case, workloads are inferences
involved in the DAG. Thus, we use the number of inferences
processed per second (IPS) to measure the throughput.

• Latency. Live video analytics applications require producing
analytics results within a short period of time. We thus use
latency which is defined as the elapsed time from when the
workload is generated to when the inference result of the work-
load is produced as our second metric to measure the system’s
responsiveness. As such, latency can be calculated as the sum
of network latency, workload queuing time, and workload pro-
cessing latency.

• Latency Service Level Objective (SLO) Miss Rate. Lastly,
we measure the latency service level objective (SLO) miss rate,
which quantifies the percent of the workloads that do not meet
the latency requirement set by a live video analytics application.
In this work, we set the latency SLO to 3 seconds, which is a
reasonable requirement for live video analytics systems.

5.2 Overall Performance
We begin with comparing the overall performance of Distream and
baselines on both applications. Since the Traffic Monitoring dataset
involves six video streams, we use six smart cameras (4 TX1 and
2 TX2) with each allocated to one video stream and incorporate
one GPU in the edge cluster. We will scale to 24 smart cameras and
4-GPU edge cluster when evaluating the scaling performance of
Distream in §5.5.
Throughput and Latency. Table 2 and Table 3 list the throughput
and latency of Distream and baselines on the Campus Surveillance
and Traffic Monitoring application respectively. Specifically, we
report the average, 50th (median), 75th, and 99th percentile of
throughput and latency performance gain over Camera-Only.

We have three major observations. First, Distream has achieved
higher throughput than the baselines. Specifically, it achieves 2.9×
and 1.6× average throughput gain on two applications, while the
best baseline (VideoEdge-L) only achieves 2.1× and 1.2×. Second,
Distream achieves higher peak throughput (99th) than the base-
lines. The higher peak throughput indicates that Distream is able to
better utilize the distributed compute resources to survive through
the workload bursts such as the ones illustrated in Figure 2. Third,
Distream archives significant latency reduction compared to the
baselines. In particular, Distream achieves 128.2× and 184× aver-
age latency reduction, while VideoEdge-L only achieves 1.5×.

Figure 10 provides a more comprehensive view of the compar-
ison by plotting the full distribution of throughput and latency,
including the 1st, 25th, 50th (median), 75th and 99th percentiles in
the box plot. In terms of throughput, Distream has a much wider
throughput range, which indicates that Distream is able to handle
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Throughput Latency
avg med 75th 99th avg med 75th 99th

Distream 2.9× 3.1× 2.9× 2.5× 128.2× 189.3× 147.9× 112×
VideoEdge-L 2.1× 2.2× 1.9× 1.5× 1.5× 2.4× 1.6× 1.4×
Centralized 1.9× 2.0× 1.7× 1.3× 1.4× 2.2× 1.5× 1.2×

Table 2: Performance gain over Camera-Only (Campus Surveil-
lance).

Throughput Latency
avg med 75th 99th avg med 75th 99th

Distream 1.6× 1.6× 1.9× 2.0× 184× 604.3× 446.8× 52.6×
VideoEdge-L 1.2× 1.2× 1.2× 1.2× 1.5× 1.8× 1.5× 1.2×
Centralized 1.1× 1.1× 1.1× 1.1× 1.2× 1.4× 1.2× 1.1×

Table 3: Performance gain over Camera-Only (Traffic Monitoring).
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Figure 10: A closer look at the throughput and latency distribution.

a much wider range of amounts of workloads than the baselines. In
terms of latency, the average latency of Distream for the Campus
Surveillance and Traffic Monitoring application is 0.34s and 0.27s,
which is much less than the baselines, which ranges from 28.54s
to 43.93s for Campus Surveillance and 9.98s to 49.68s for Traffic
Monitoring. This result indicates that the throughput improvement
in Distream does not come at the cost of sacrificing its latency.

Latency SLOMiss Rate. Figure 11 compares the latency SLO miss
rate of Distream against baselines. As shown, Distream outper-
forms the baselines by a large margin. In particular, Distream is
able to achieve a near-zero latency SLO miss rate (0.7% and 1.5%)
on the Campus Surveillance and Traffic Monitoring application re-
spectively, while the baselines have much higher miss rates (at least
60.7% Campus Surveillance and 93.8% for Traffic Monitoring).

Why Distream Outperforms the Baselines? Distream outper-
forms both Centralized and Camera-Only because Distream is
able to leverage the compute resources at both cameras and edge
cluster sides while Centralized and Camera-Only could not. For
VideoEdge-L, Distream is able to achieve better performance for
the following two reasons:

Reason#1: Higher Resource Utilization. In terms of through-
put, Distream outperforms the baselines because it is able to utilize
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Figure 11: Latency SLO miss rate comparison.

the idle compute resources at both cameras and the edge cluster
to process the workloads to enhance the throughput. To see this,
we continuously track the workload imbalance index across smart
cameras and the edge cluster. As shown in Figure 12 (a), Distream
is able to achieve a near-zero workload imbalance for about 60%
of the time. In contrast, VideoEdge-L is experiencing significant
workload imbalance (more than 200% imbalance index) for 90%
of the time for being agnostic to the dynamics of the workloads.

Reason#2: LessAccumulatedWorkloads. In terms of latency,
Distream outperforms the baselines because with higher compute
resource utilization, Distream is able to process the workloads at a
much faster rate than the baselines, preventing the workloads from
being accumulated at cameras or edge cluster. As such, Distream
has much less workloads waiting in the queue, which significantly
reduces the workload queuing time and hence the latency. To see
this, we continuously track the accumulated workloads in the local
queue at each camera and the edge cluster. As shown in Figure 12
(b), Distream is able to achieve a near-zero amount of accumulated
workloads for about 80% of the time. In contrast, VideoEdge-L is ex-
periencing significantly high amount of accumulated workloads for
most of the time. As such, the workload queuing time in Distream
is much lower, which is the root cause of its low latency.

0 200 400 600
(a) Workload Imbalance

Index (%)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

T
im

e

0 20 40 60 80 100
(b) Accumulated Workload

(Normalized) (%)

Distream VideoEdge-L

Figure 12: Illustration on why Distream outperforms baselines.

5.3 Component-wise Analysis
The design of Distream enables adaptive cross-camera workload
balancing and adaptive camera-cluster workload partitioning. In
this section, we implemented two breakdown versions of Distream
to take a closer look at the contribution of each component.
• Distream-L has adaptive cross-camera workload balancing,
but has static camera-cluster workload partitioning based on
the compute capacity ratio of cameras and cluster.

• Distream-P has adaptive camera-cluster workload partition-
ing, but does not enable cross-camera workload balancing.
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Table 4 shows the comparison results on the Campus Surveil-
lance application. As shown, the performance gains brought by both
Distream-L and Distream-P are similar and significant. On average,
Distream-L achieves 2.4× throughput gain and 5.9× latency reduc-
tion respectively compared to Camera-Only. Distream-P achieve
2.5× throughput gain and 6.3× latency reduction respectively com-
pared to Camera-Only. This result indicates the importance of both
adaptive cross-camera workload balancing and adaptive camera-
cluster workload partitioning to the whole system. Distream is able
to combine the advantages of both Distream-L and Distream-P to
achieve better performance than using only one of them.

Throughput Latency
avg med 75th 99th avg med 75th 99th

Distream-L 2.4× 2.5× 2.3× 2.2× 5.9× 8.2× 5.5× 5.2×
Distream-P 2.5× 2.5× 2.3× 2.1× 6.3× 9.2× 6.6× 5.1×

Table 4: Component-wise analysis of Distream. Performance gains
are over Camera-Only.

5.4 Sensitivity Analysis
The design of Distream involves two key system hyper-parameters:
(i) the cross-camera workload balancing threshold 𝛽 (§3.2), and
(ii) the camera-cluster workload partition scheduling interval 𝛾
(§3.4). In this section, we evaluate the impact of these system hyper-
parameters on the performance of Distream. In addition, since cross-
camera workload balancing requires migrating workloads through
the network, we also evaluate the impact of network bandwidth on
the performance of Distream.
Impact of Cross-Camera Workload Balancing Threshold 𝛽 .
Figure 13a shows Distream’s sensitivity to the cross-camera work-
load balancing threshold 𝛽 . We only show 99th percentile through-
put (left y-axis, black) and 99th percentile latency (right y-axix, red)
because they are sensitive to hyper-parameter changes and can
better reflect the impact on the system performance. We observe
that when 𝛽 is below 20%, the performance of Distream does not
change much.When 𝛽 exceeds 20%, the 99th percentile throughput
begins to drop and 99th latency increases. This is because a larger 𝛽
would trigger load balancing less often. As a result, the system may
suffer from performance loss due to workload imbalance. Therefore,
we set 𝛽 to be 20%.
Impact of Camera-Cluster Workload Partition Scheduling
Interval 𝛾 . Figure 13b shows Distream’s sensitivity to the camera-
cluster workload partition scheduling interval 𝛾 . We see that the
99th percentile throughput and 99th percentile latency do not
change much when the interval is less than 0.5s. When 𝛾 is be-
tween 0.5s to 1.5s, the system performance has slightly declined.
When 𝛾 is greater than 1.5s, the system performance significantly
declines as the interval increases. Therefore, we set 𝛾 to 0.5s.
Impact of Network Bandwidth. We also examine Distream’s
sensitivity to network bandwidth. We evaluate Distream with net-
work bandwidth at 10Mbps (low bandwidth) and 50Mbps (high
bandwidth), which covers the bandwidth range in standard video
surveillance systems on the market. Table 5 lists our evaluation
results. As shown, both the throughput and latency are very similar
between 10Mbps to 50Mbps. This result indicates that Distream is
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Figure 13: Impact of system hyper-parameters on the performance
of Distream.

robust to network bandwidth changes and is able to achieve high
performance even with a network bandwidth of 10Mbps.

Throughput (IPS) Latency (s)
avg med 75th 99th avg med 75th 99th

Low Bandwidth (10Mbps) 489.1 509 590 647 0.34 0.09 0.47 2.05
High Bandwidth (50Mbps) 490.9 510 593 650 0.31 0.07 0.41 1.75

Table 5: Performance of Distream under low (10Mbps) and high
(50Mbps) network bandwidths.

5.5 Scaling Performance
To evaluate the scaling performance of Distream, we use the Cam-
pus Surveillance dataset and examine the throughput and latency
as Distream scales up its number of smart cameras from 6 to 12,
18, and 24. To match the compute resources with new workloads
brought by the new cameras, we add one GPU to the edge cluster
whenever six smart cameras are added to the system.

Figure 14 illustrates the scaling performance of Distream in
terms of throughput (upper) and latency (lower). As shown, Dis-
tream is able to scale its throughput up nearly linearly. Specifically,
Distream achieves a 3.95× average throughput from 489.1 IPS
when processing videos streamed from 6 cameras to 1931.4 IPS
when processing videos streamed from 24 cameras. Meanwhile,
Distream is able to maintain a similar low latency when scaling up.

5.6 System Overheads
The system overheads incurred by the design of Distream come
from two sources. The first source comes from solving the opti-
mization problems for cross-camera workload balancing in §3.2 and
identifying the optimal DAG partition points in §3.4. Their over-
head is 16us and 4us with six cameras and one GPU, and 21us and
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8us when scaled up to 24 cameras and 4 GPUs. This result indicates
that our proposed heuristics are highly efficient and incur negligible
overheads. The second source of overhead comes from the RPC call
for migrating workloads across smart cameras (§3.4). As shown in
Table 6, even if under the low bandwidth condition (i.e., 10Mbps),
each RPC call only takes 2.1ms on average for workload migration.
When we employ batching RPC, this overhead is amortized when
the RPC batch size increases, making the overheads of cross-camera
workload balancing negligible.

Batch Size Total Migration Time Avg RPC Overhead
1 2.1ms 2.1ms
10 7.4ms 0.74ms
20 9.2ms 0.46ms

Table 6: Cross-camera workload balancing overheads of Distream.

5.7 Benefits to Existing Systems
As summarized in Table 1, existing live video analytics systems
are agnostic to the workload dynamics in real-world deployments.
Instead, they focus on designing different techniques to optimize
the resource-accuracy tradeoff of live video analytics systems. In
this section, we add the workload adaptation techniques proposed
in Distream onto VideoEdge [19] to examine how Distream could
enhance its performance. We select VideoEdge instead of other
status quo live video analytics systems listed in Table 1 because
VideoEdge is also a fully distributed framework that partitions the
video analytics pipeline across cameras and cluster.

Figure 15 compares the performance between VideoEdge and
VideoEdge + Distream. As illustrated, VideoEdge + Distream is
able to generate a better resource-accuracy trade-off curve than
VideoEdge. In particular, Distream is able to boost the accuracy
by 21% when compute resource is limited, and is able to boost
the accuracy by 7% when compute resource is adequate. Such
improvement is made possible due to the higher resource utilization
brought by the workload adaptation mechanism of Distream. With
higher resource utilization, VideoEdge does not need to sacrifice as
much accuracy as before to trade for resources.

6 RELATEDWORK
Live video analytics is a killer application not only for mobile vision
[13, 14, 20, 24] but also for large-scale distributed settings. Our work
is closely related to DL-based live video analytics systems with dis-
tributed cameras. A majority of these systems are designed to pro-
cess video streams in a centralized cluster. For example, Focus [18]
customizes small DL classifiers to generate object indexes in each
video frame to enable fast offline video query. NoScope [25] uses
specialized DL models to reduce inference overheads for through-
put gain with small accuracy loss. Besides them, Chameleon [22],
VideoStorm [39], and AWStream [38] leverage resource-accuracy
tradeoffs for system optimization. Chameleon [22] reduces the
overhead caused by searching for optimal tradeoff configuration.
VideoStorm [39] exploits the variety of quality and lag goals in
video analytics tasks and optimizes compute resources in GPU clus-
ters. AWStream [38] is focused on adapting to network bandwidth
variation to achieve low-latency high-accuracywide-area streaming
analytics. Different from these works, instead of trading accuracy
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Figure 15: Resource-accuracy tradeoff curve comparison between
VideoEdge and VideoEdge + Distream.

for less compute resource consumption, Distream achieves high
throughput and low latency by maximizing the resource utilization
across cameras and edge cluster without sacrificing the accuracy.

The closest work to Distream is VideoEdge [19]. Although Dis-
tream and VideoEdge are both built upon a distributed architec-
ture that involves smart cameras and edge cluster for live video
analytics, they are different in three aspects. First, Distream fo-
cuses on enabling workload-adaptive live video analytics while
VideoEdge is workload agnostic. Second,VideoEdge targets optimiz-
ing resource-accuracy tradeoff while Distream focuses on maximiz-
ing throughput and attaining latency SLO without compromising
accuracy. Third, VideoEdge performs video analytics pipeline place-
ment across cameras, edge and cloud where the dynamic network
bandwidth is the main bottleneck. In contrast, Distream performs
workload allocation across cameras and edge cluster based on work-
load dynamics to eliminate the bottleneck in compute resources.
In fact, Distream is complementary to VideoEdge: as shown in
§5.7, Distream is able to provide a better resource-accuracy tradeoff
curve when integrated with VideoEdge.

7 CONCLUSION AND FUTUREWORK
In this paper, we present the design, implementation, and evaluation
of Distream, a distributed workload-adaptive live video analytics
system based on the smart camera-edge cluster architecture. Dis-
tream addresses the key challenges brought by workload dynamics
in real-world deployments, and contributes novel techniques that
complement existing live video analytics systems. We have imple-
mented Distream and conducted a rich set of experiments with
a testbed consisting of 24 cameras and a 4-GPU edge cluster on
two real-world distributed video datasets. Our experimental results
show that Distream consistently outperforms the status quo in
terms of throughput, latency, and latency SLO miss rate. Therefore,
we believe Distream represents a significant contribution to en-
abling live video analytics at scale. In the current form, Distream
treats cross-camera workload balancing and camera-cluster parti-
tioning as two separate components. We plan to work on a joint
solution as our future work. We will also work on designing com-
mon programming and network abstraction to support live video
analytics application development based on our framework, and
plan to expand our framework to the wireless settings.
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