
Distream: Scaling Live Video Analytics with Workload-Adaptive
Distributed Edge Intelligence

Xiao Zeng†, Biyi Fang†, Haichen Shen‡, Mi Zhang†
†Michigan State University, ‡Amazon Web Services

ABSTRACT
Video cameras have been deployed at scale today. Driven by the
breakthrough in deep learning (DL), organizations that have de-
ployed these cameras start to use DL-based techniques for live
video analytics. Although existing systems aim to optimize live
video analytics from a variety of perspectives, they are agnostic to
the workload dynamics in real-world deployments. In this work, we
present Distream, a distributed live video analytics system based
on the smart camera-edge cluster architecture, that is able to adapt
to the workload dynamics to achieve low-latency, high-throughput,
and scalable live video analytics. The key behind the design of Dis-
tream is to adaptively balance the workloads across smart cameras
and partition the workloads between cameras and the edge cluster.
In doing so, Distream is able to fully utilize the compute resources
at both ends to achieve optimized system performance. We eval-
uated Distream with 500 hours of distributed video streams from
two real-world video datasets with a testbed that consists of 24
cameras and a 4-GPU edge cluster. Our results show that Distream
consistently outperforms the status quo in terms of throughput,
latency, and latency service level objective (SLO) miss rate.

CCS CONCEPTS
• Computing methodologies → Distributed artificial intelli-
gence; Computer vision.

KEYWORDS
Distributed Deep Learning Systems, On-Device AI, Large-Scale Live
Video Analytics, Workload Adaptive, Scheduling, Edge Computing
ACM Reference Format:
Xiao Zeng†, Biyi Fang†, Haichen Shen‡, Mi Zhang†. 2020. Distream: Scaling
Live Video Analytics withWorkload-Adaptive Distributed Edge Intelligence.
In The 18th ACM Conference on Embedded Networked Sensor Systems (SenSys
’20), November 16–19, 2020, Virtual Event, Japan. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3384419.3430721

1 INTRODUCTION
Video cameras are ubiquitous. Today, cameras have been deployed
at scale at places such as traffic intersections, university campuses,
and grocery stores. Driven by the recent breakthrough in deep
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SenSys ’20, November 16–19, 2020, Virtual Event, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7590-0/20/11. . . $15.00
https://doi.org/10.1145/3384419.3430721

learning (DL) [26], organizations that have deployed these cameras
start to use DL-based techniques for live video analytics [19, 22, 39].
Analyzing live videos streamed from these distributed cameras is
the backbone of a wide range of applications such as traffic control
and security surveillance. As many of these applications require
producing analytics results in real-time, achieving low-latency, high-
throughput, and scalable video stream processing is crucial [36].

Live video analytics systems require high-resolution cameras to
capture high-quality visual data for analytics. As camera number
scales up, these always-on cameras collectively generate hundreds
of gigabytes of data every single second, making it infeasible to
transmit such gigantic volume of data to data centers in the cloud
for real-time processing due to insufficient network bandwidth and
long transmission latency between cameras and the cloud [40].

The key to overcoming this bottleneck is to move compute re-
sources close to where data reside. Status quo live video analytics
systems hence stream camera feeds to local edge clusters for data an-
alytics where much higher network bandwidth is provided [22, 25,
31, 39]. To move compute resources even closer to data sources, ma-
jor video analytics providers (e.g., Avigilon, Hikvision, NVIDIA) are
replacing traditional video cameras with “smart cameras”. Equipped
with onboard DL accelerators, these smart cameras are not only able
to perform basic video processing tasks such as background sub-
traction and motion detection, but also capable of executing compli-
cated compute-intensive DL-based pipelines to detect and recognize
the objects and a variety of their attributes [15, 16, 23, 37]. Since
each smart camera brings extra compute resources to process video
streams generated by itself, this smart camera-edge cluster architec-
ture is the key to enabling live video analytics at scale [9, 19, 23].
Motivation & Limitations of Status Quo. In real-world deploy-
ments, depending on what areas the cameras are covering, the
number of objects of interest (e.g., people, vehicles, bikes) captured
by each camera is different and can vary significantly over time. For
example, for surveillance systems deployed on university campuses,
a camera that covers the building entrance captures much larger
numbers of people before and after classes than any other time;
a camera that points at the emergency exit where people rarely
visit has no objects of interest captured most of the time. As a con-
sequence, the workload of recognizing the captured objects and
their attributes produced at each camera is different and inherently
dynamic over time.

As listed in Table 1, in recent years, live video analytics systems
such as VideoStorm [39], Chameleon [22] and NoScope [25] have
emerged. These systems enable efficient processing of a large num-
ber of camera streams, but are designed to process the streams
within a centralized cluster.

With the emergence of smart cameras, recent systems start to
leverage the compute resources inside smart cameras for distributed

https://doi.org/10.1145/3384419.3430721
https://doi.org/10.1145/3384419.3430721

SenSys ’20, November 16–19, 2020, Virtual Event, Japan X. Zeng, B. Fang, H. Shen, M. Zhang

Objective Architecture Video Analytics
Pipeline Partition

Workload
Adaptive

Cross-Camera
Workload Balancing

VideoStorm [39] Schedule video stream processing workloads Centralized N/A No N/A
with resource-accuracy tradeoff

Chameleon [22] Reduce the overhead of searching for the optimal Centralized N/A No N/A
resource-accuracy configuration

NoScope [25] Accelerate video analytics using resource-accuracy tradeoff Centralized N/A No N/A
FilterForward [9] Identify important frames on smart cameras Camera-Only Fixed No No
VideoEdge [19] Partition the video analytics pipeline across camera Distributed Dynamic No No

and cluster to optimize resource-accuracy tradeoff
Distream Enable workload adaptation for scalable, low-latency and Distributed Dynamic Yes Yes

high-throughput live video analytics without sacrificing accuracy

Table 1: Comparison between Distream and status quo live video analytics systems.

live video analytics. FilterForward [9] proposes a camera-only so-
lution which identifies important video frames and filter out unim-
portant ones directly on smart cameras. VideoEdge [19], on the
other hand, proposes a fully distributed framework that partitions
the video analytics pipeline across cameras and cluster with the
objective to optimize the resource-accuracy tradeoff. While these
systems aim to optimize live video analytics from a variety of per-
spectives, they are agnostic to the workload dynamics in real-world
deployments described above, making them fall short in two situa-
tions: on one hand, failing to utilize the compute resources inside
idle cameras could considerably jeopardize system throughput; on
the other hand, failing to alleviate the workloads from cameras that
are overloaded by bursty workloads could incur significantly high
latency, causing the system not able to meet the latency service level
objective (SLO) imposed by the live video analytics applications.
Overview of the Proposed Approach. In this paper, we present
Distream – a distributed framework based on the smart camera-
edge cluster architecture – that is able to adapt to the workload
dynamics in real-world deployments to achieve low-latency, high-
throughput, and scalable DL-based live video analytics. The under-
pinning principle behind the design of Distream is to adaptively
balance the workloads across smart cameras as well as partition the
workloads between cameras and the edge cluster. In doing so, Dis-
tream is able to fully utilize the compute resources at both ends to
jointly maximize the system throughput and minimize the latency
without sacrificing the video analytics accuracy.

The design of Distream involves three key challenges.
• Challenge#1: Cross-CameraWorkloadBalancing. One key
obstacle to achieving high-throughput low-latency live video
analytics is caused by the imbalanced workloads across cameras.
Therefore, the first challenge lies in designing a scheme that
balances the workloads across cameras. However, the cross-
camera workload correlation, the heterogeneous onboard com-
pute capacities of smart cameras, and the overhead of workload
balancing altogether make designing such a scheme not trivial.

• Challenge#2: Camera-ClusterWorkloadPartitioning. An-
other key obstacle to achieving high-throughput low-latency
live video analytics is caused by the imbalanced workloads
between smart cameras and the edge cluster. To balance the
workloads between cameras and edge cluster, the video analyt-
ics pipeline should be partitioned based on the workload ratio
of the two sides. However, the possible options to partition the

video analytics pipeline are quite limited in number, making
workload partitioning between camera and edge cluster by na-
ture coarse-grained. As a result, the partitioned video analytics
pipeline may not match the workload ratio of the two sides.

• Challenge#3: Adaptation to Workload Dynamics. Given
the dynamics of workloads in real-world deployments, the opti-
mal solutions for cross-camera workload balancing and camera-
cluster workload partitioning vary over time. Being able to adapt
to such workload dynamics is a must for high-performance live
video analytics systems. Designing such an adaptation scheme,
however, is not trivial, as the optimal pipeline partitioning so-
lution for each camera can be different. More importantly, since
the workloads are jointly executed between cameras and edge
cluster, for the whole system to achieve the best performance,
the optimal pipeline partitioning solutions for all the cameras
need to be jointly determined. This is a much more challeng-
ing problem compared to the single-pair workload partitioning
problem tackled in the literature [10, 12].
To address the first challenge, Distream incorporates a cross-

camera workload balancer that takes the cross-camera workload
correlation, heterogeneous compute capacities of smart cameras, as
well as the overhead of workload balancing into account, and formu-
lates the task of cross-camera workload balancing as an optimiza-
tion problem. In particular, the proposed cross-camera workload
balancer incorporates a long-short term memory (LSTM)-based
recurrent neural network which is able to enhance the performance
of cross-camera workload balancing by predicting incoming work-
loads in the near future to avoid migrating workloads to cameras
that are going to experience high workloads.

To address the second challenge, Distream incorporates a sto-
chastic partitioning scheme that partitions the video analytics
pipeline in a stochastic manner. In doing so, it provides much more
partition flexibility and much finer partition granularity. As such,
Distream is able to partition the pipeline to match the workload
ratio of the smart camera and edge server.

To address the third challenge, Distream incorporates a work-
load adaption controller which triggers the cross-camera work-
load balancer when cross-camera workload imbalance is detected.
Moreover, it formulates the task of jointly identifying the optimal
pipeline partitioning solutions for all the cameras as an optimiza-
tion problem with the objective to maximize the overall system
throughput subject to the latency SLO imposed by the live video
analytics applications.

Distream: Scaling Live Video Analytics with Workload-Adaptive Distributed Edge Intelligence SenSys '20, November 16�19, 2020, Virtual Event, Japan

System Implementation & Summary of Evaluation Results.
We implementedDistreamand deployed it on a self-developed
testbed that consists of24 smart cameras and a 4-GPU edge cluster.
We evaluateDistreamwith 500hours of distributed video streams
from two real-world video datasets: one from six tra�c cameras
deployed in Jackson Hole, WY [7] for tra�c monitoring application,
and the other from 24 surveillance cameras deployed on a uni-
versity campus for security surveillance application. We compare
Distreamagainst three baselines:Centralized, which processes all
the workloads on the edge cluster;Camera-Only, which processes
all the workloads on smart cameras; andVideoEdge[19]. Our re-
sults show thatDistreamconsistently outperforms the baselines
in terms of throughput, latency, and latency SLO miss rate by a
large margin due to its workload adaptation schemes. Moreover,
our scaling experiments show thatDistreamis able to scale up
system throughput nearly linearly while maintaining a low latency
with negligible overheads. Finally, we show that the workload adap-
tation techniques proposed inDistreamcould bene�t existing live
video analytics systems and enhance their performance as well.

Summary of Contributions. To the best of our knowledge,Dis-
treamrepresents the �rst distributed framework that enables workl-
oad-adaptive live video analytics under the smart camera-edge
cluster architecture. It identi�es a key performance bottleneck and
contributes novel techniques that address the limitations of existing
systems. We believe our work represents a signi�cant step towards
turning the envisioned large-scale live video analytics into reality.

2 BACKGROUND AND MOTIVATION
2.1 Live Video Analytics Pipeline
Modern live video analytics pipelines typically adopt a cascaded
architecture which consists of a front-end object detector followed
by a back-end task-speci�c module to perform a variety of analytics
tasks on each of the detected object of interest within a video frame.

There are two types of object detectors that have been commonly
used in existing live video analytics systems [22]. The �rst type is
the CNN-based object detector (e.g., YOLO [32], SSD [27] and Faster-
RCNN [33]) which extracts and identi�es all the objects of interest
in a frame with one single inference. However, such an object
detector has to be constantly extracting features from frames and
performing inference even if there is no object of interest appearing
in video streams. In many scenarios in real-world deployments,
however, the objects of interest may only appear in video streams
for short periods of time. In such case, a signi�cant amount of
compute resources is wasted. The second type of object detector
is to �rst use a light-weight background subtractor [41] to extract
the regions where objects of interest reside from the frame. It sends
these regions to a classi�er to identify the object within each region.
As such, it produces objects of interest only when they appear in the
frame. WhileDistreamis a generic framework which supports both
types of object detectors, in this work, we focus on the background
subtraction-based detector to illustrate our ideas.

The task-speci�c module in general can be represented as a
directed acyclic graph (DAG). In this work, we use attribute recog-
nition as a concrete example of the task-speci�c module to illustrate
our ideas. Speci�cally, each vertex in the DAG represents a DNN
classi�er that recognizes a particular attribute of the object; each

Figure 1: Live video analytics pipeline used in Distream .

directed edge represents a data �ow from one classi�er to another.
For example, the task-speci�c DAG in Figure 1 consists of three
branches. Based on the type of the detected object (vehicle, per-
son, or others), the task-speci�c module selects one of the three
branches, each of which employs a cascaded sequence of classi�ers
to further identify the attributes of the object1.

Based on the pipeline illustrated in Figure 1, going through each
classi�er within the DAG is regarded as an individualworkload2.
Therefore, identifying an object of interest and its attributes within
a video frame produces multiple workloads to be processed by the
live video analytics system.

2.2 Workload Dynamics in Real-world
Deployments

To illustrate the workload dynamics in real-world deployments,
we collected a dataset from 24 surveillance cameras deployed on a
university campus (Ÿ5.1). Given the limited space, we pick a repre-
sentative video clip to make our points. Speci�cally, Figure 2 shows
the workloads generated by four surveillance cameras deployed
at a university building on a weekday between 12pm to 12:30pm.
Among them,CAM1 monitors a square next to the building en-
trance;CAM2monitors a sideway outside the building;CAM3and
CAM4cover two di�erent corridors inside the building.

Figure 2: Workload dynamics in real-world deployment.

1Although we adopted the design choice of treating each task independently,Distream
is �exible to support multi-task learning where a DNN inference produces multiple
results. It should be noted that not all the tasks can be combined into a single multi-task
DNN model. Thus our DAG formulation is general enough to support all the cases.
2We did not include capturing images and background extraction as workloads mainly
because these steps consume much less computation compared to DNN-based inference
and thus can be executed locally fast enough without o�oading.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Live Video Analytics Pipeline
	2.2 Workload Dynamics in Real-world Deployments
	2.3 Need for Workload Adaptation

	3 Distream Design
	3.1 Overall Architecture
	3.2 Balancing the Workloads across Smart Cameras
	3.3 Partitioning the Workload between Smart Cameras and Edge Cluster
	3.4 Workload Adaptation Controller

	4 System Implementation
	5 Evaluation
	5.1 Experimental Methodology
	5.2 Overall Performance
	5.3 Component-wise Analysis
	5.4 Sensitivity Analysis
	5.5 Scaling Performance
	5.6 System Overheads
	5.7 Benefits to Existing Systems

	6 Related Work
	7 Conclusion and Future Work
	8 Acknowledgement
	References

