
Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?

Introduction
Typical NAS methods encode the search space using the adjacency matrix-based 
encoding. However, the size of the adjacency matrix grows quadratically as search 
space scales up, making downstream architecture search less efficient in large 
search spaces [1]. To improve search efficiency, recent NAS methods propose to 
learn continuous embeddings of neural architectures [2,3]. In these methods, 
architecture embeddings and search algorithms are jointly optimized in a 
supervised way, guided by the accuracies of architectures selected by the search 
algorithms. However, it cannot necessarily improve embedding learning due to 
entangling architecture representation learning and architecture search together. 

• We propose arch2vec, a simple yet effective unsupervised architecture 
representation learning method for neural architecture search.

• Decouple architecture embedding learning and architecture search into two 
separate processes.

• Better preserve local structure relationship of neural architectures and helps 
construct a smoother latent space, which benefits downstream search. 

Experiments 
• We compare the predictive performance of the pretrained embeddings and 

supervised embeddings. This metric measures how well the embeddings can 
predict the performance of the corresponding architectures.
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Method

Let A denote Adjacency Matrix, X denote Operation Matrix. Augment A 
as Ã = A + AT to transfer original directed graph into undirected one to allow 
bi-directional information flow.

Encoder:

L-layer Graph Isomorphism Network (GINs):

Decoder:

Training Objective:

Pretrained 
Embeddings (ours)

Supervised 
Embeddings

• We train a Gaussian 
Process model with 250 
sampled data to predict all 
data and report the results 
across 10 different seeds. 
We use RMSE and the 
Pearson correlation 
coefficient to evaluate 
points with test accuracy 
larger than 0.8.

Pretrained 
Embeddings (ours)

Supervised 
Embeddings

• We visualize the latent spaces learned by arch2vec and its supervised learning 
counterpart in 2-dimensional space. Compared to supervised embeddings, 
pretrained embeddings span the whole latent space, and architectures with 
similar accuracies are clustered and distributed more smoothly in the latent space.

• Conducting architecture search on such smooth performance surface is much 
easier and is hence more efficient.

● We visualize a sequence of architecture cells decoded from the learned latent 
space of arch2vec and supervised approach. 

Pretrained 
Embeddings (ours)

Supervised 
Embeddings

Top: Pretrained Embeddings
(edit distances between adjacent architectures 

are 4, 6, 1, 5, 1, 1, 1, 5, 2, 3, 2, 4, 2, 5, 2)

• We compare the distribution of L2 distance between architecture pairs by edit 
distance, measured by 1,000 architectures sampled in a long random walk with 
1 edit distance apart from consecutive samples. The L2 distance of pretrained 
embeddings grows monotonically with increasing edit distance. 

• This observation indicates that the pretrained embeddings are able to better 
capture the structural information of neural networks, and thus make similar 
architectures clustered better.

• In NAS-Bench-101, arch2vec considerably 
outperforms its supervised counterpart 
and the discrete encoding after 50,000 
wall clock seconds.

• In NAS-Bench-201, arch2vec consistently 
outperforms other approaches on all the 
three datasets, leading to better 
validation and test accuracy as well as 
reduced variability.

• In DARTS, arch2vec leads to competitive 
search performance among different 
cell-based NAS methods with comparable 
model parameters.
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