
Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?

Introduction
Typical NAS methods encode the search space using the adjacency matrix-based
encoding. However, the size of the adjacency matrix grows quadratically as search
space scales up, making downstream architecture search less efficient in large
search spaces [1]. To improve search efficiency, recent NAS methods propose to
learn continuous embeddings of neural architectures [2,3]. In these methods,
architecture embeddings and search algorithms are jointly optimized in a
supervised way, guided by the accuracies of architectures selected by the search
algorithms. However, it cannot necessarily improve embedding learning due to
entangling architecture representation learning and architecture search together.

• We propose arch2vec, a simple yet effective unsupervised architecture
representation learning method for neural architecture search.

• Decouple architecture embedding learning and architecture search into two
separate processes.

• Better preserve local structure relationship of neural architectures and helps
construct a smoother latent space, which benefits downstream search.

Experiments
• We compare the predictive performance of the pretrained embeddings and

supervised embeddings. This metric measures how well the embeddings can
predict the performance of the corresponding architectures.

Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, Mi Zhang

Michigan State University

Method

Let A denote Adjacency Matrix, X denote Operation Matrix. Augment A
as Ã = A + AT to transfer original directed graph into undirected one to allow
bi-directional information flow.

Encoder:

L-layer Graph Isomorphism Network (GINs):

Decoder:

Training Objective:

Pretrained
Embeddings (ours)

Supervised
Embeddings

• We train a Gaussian
Process model with 250
sampled data to predict all
data and report the results
across 10 different seeds.
We use RMSE and the
Pearson correlation
coefficient to evaluate
points with test accuracy
larger than 0.8.

Pretrained
Embeddings (ours)

Supervised
Embeddings

• We visualize the latent spaces learned by arch2vec and its supervised learning
counterpart in 2-dimensional space. Compared to supervised embeddings,
pretrained embeddings span the whole latent space, and architectures with
similar accuracies are clustered and distributed more smoothly in the latent space.

• Conducting architecture search on such smooth performance surface is much
easier and is hence more efficient.

● We visualize a sequence of architecture cells decoded from the learned latent
space of arch2vec and supervised approach.

Pretrained
Embeddings (ours)

Supervised
Embeddings

Top: Pretrained Embeddings
(edit distances between adjacent architectures

are 4, 6, 1, 5, 1, 1, 1, 5, 2, 3, 2, 4, 2, 5, 2)

• We compare the distribution of L2 distance between architecture pairs by edit
distance, measured by 1,000 architectures sampled in a long random walk with
1 edit distance apart from consecutive samples. The L2 distance of pretrained
embeddings grows monotonically with increasing edit distance.

• This observation indicates that the pretrained embeddings are able to better
capture the structural information of neural networks, and thus make similar
architectures clustered better.

• In NAS-Bench-101, arch2vec considerably
outperforms its supervised counterpart
and the discrete encoding after 50,000
wall clock seconds.

• In NAS-Bench-201, arch2vec consistently
outperforms other approaches on all the
three datasets, leading to better
validation and test accuracy as well as
reduced variability.

• In DARTS, arch2vec leads to competitive
search performance among different
cell-based NAS methods with comparable
model parameters.

Reference
[1] Neural Architecture Search: A Survey. Elsken et. al., JMLR 2019.
[2] Neural Architecture Optimization. Luo et. al., NeurIPS 2018.
[3] Darts: Differentiable architecture search. Liu et. al., ICLR 2019.

Existing Approach

Our Approach
(arch2vec)

Bottom: Supervised Embeddings
(edit distances between adjacent

architectures are 8, 6, 7, 7, 9, 8, 11, 11, 6, 10,
10, 11, 10, 11, 9)

