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e We visualize a sequence of architecture cells decoded from the learned latent

IntrOdUCtlon EXpe”mentS space of arch2vec and supervised approach.
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* Decouple architecture embedding learning and architecture search into two

Bottom: Supervised Embeddings
separate processes.

(edit distances between adjacent
architectures are 8,6,7,7,9, 8, 11, 11, 6, 10,
10, 11, 10, 11, 9)

* We compare the distribution of L2 distance between architecture pairs by edit
distance, measured by 1,000 architectures sampled in a long random walk with
1 edit distance apart from consecutive samples. The L2 distance of pretrained
embeddings grows monotonically with increasing edit distance.
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(edit distances between adjacent architectures
e Better preserve local structure relationship of neural architectures and helps are4,6,1,5,1,1,1,5,2,3,2,4,2,5,2)

construct a smoother latent space, which benefits downstream search.
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Training Objective: £ =E_,, ; [log p(X,A|Z)] — Dki(q(Z|X,A)|[p(Z))



