
SCYLLA: QoE-aware Continuous Mobile Vision with FPGA-based
Dynamic Deep Neural Network Reconfiguration

Shuang Jiang†, Zhiyao Ma†, Xiao ZengF, Chenren Xu†, Mi ZhangF, Chen Zhang\, Yunxin Liu\

†Peking University FMichigan State University \Microsoft Research

Abstract—Continuous mobile vision is becoming increasingly
important as it finds compelling applications which substantially
improve our everyday life. However, meeting the requirements
of quality of experience (QoE) diversity, energy efficiency and
multi-tenancy simultaneously represents a significant challenge.
In this paper, we present SCYLLA, an FPGA-based framework
that enables QoE-aware continuous mobile vision with dynamic
reconfiguration to effectively address this challenge. SCYLLA
pre-generates a pool of FPGA design and DNN models, and
dynamically applies the optimal software-hardware configuration
to achieve the maximum overall performance on QoE for
concurrent tasks. We implement SCYLLA on state-of-the-art
FPGA platform and evaluate SCYLLA using drone-based traffic
surveillance application on three datasets. Our evaluation shows
that SCYLLA provides much better design flexibility and achieves
superior QoE trade-offs than status-quo CPU-based solution that
existing continuous mobile vision applications are built upon.

I. INTRODUCTION

Continuous mobile vision is becoming an increasingly im-
portant service on today’s mobile devices, ranging from smart-
phones, wearable gadgets to drones. State-of-the-art vision-
based mobile applications such as augmented reality [1],
traffic surveillance [2] and cognitive assistance [3], [4] can
substantially revolutionize the way we interact with ambient
environments for improving our everyday life.

The unique characteristics of continuous mobile vision,
i.e., quality of experience (QoE) (e.g., inference accuracy and
latency) difference across tasks, energy efficiency, and hetero-
geneous multi-tenancy need to be well satisfied and balanced
over the journey – it is always desirable to accurately and
timely recognize all the in-view objects in fine-grain while
extend the battery life as long as possible. Most recently, Deep
Neural Network (DNN) has become the de facto technology
for computer vision tasks because of its superiority in accuracy
[5], [6], [7]. However, the model complexities pay for high
computational resources [8], [9], leading to high end-to-end
latency in CPU-based implementation. GPU exploits operator-
level parallelism to achieve low latency, but at a much greater
energy cost, which is often not acceptable for mobile devices.

As another feature, in continuous mobile vision, the appli-
cation context continuously changes. The in-view objects of
interest can come and go, and thus they natively carry the
multi-tenancy property. For instance, for a drone-based traffic
surveillance system, a traffic estimation (e.g., for flow control)
task requires a generic object detection and recognition engine,
while for each detected vehicle, the type classification and/or
license plate recognition task can come as a follow-up query.
This feature requires highly efficient system support for multi-
tenancy, especially from concurrency and heterogeneity per-

spective. GPU’s SIMT (Single Instruction, Multiple Thread)
architecture makes it not able to efficiently execute concurrent
and heterogeneous tasks – it suffers from poor performance in
concurrent tasks [10] and several seconds of model switching
overhead. Most recently, AI chips emerge as an ASIC solution
for application-specific performance optimization. Unfortu-
nately, they are not designed for concurrency and hetero-
geneity. In a nutshell, the nature of dynamic application QoE
requirement, limited energy budget, and heterogeneous multi-
tenancy in continuous mobile vision makes today’s main-
stream computing engines highly inefficient and inflexible.

Motivated by the problems aforementioned, we present
SCYLLA, an FPGA-based framework that enables QoE-aware
continuous mobile vision with dynamic reconfiguration to
meet the unique characteristics of continuous mobile vision
applications. The design of SCYLLA sits on top of FPGA,
not only utilizing its intrinsic properties of low latency and
energy efficiency, but also exploiting its hardware support for
parallelism and its unique reconfiguration capability. Our key
insight is that DNN models typically do not fully occupy
the on-board resources. Consequently, we can have different
FPGA designs to either allow concurrent execution of mul-
tiple small (heterogeneous) tasks, or optimize the latency or
accuracy which typically requires more on-board resources,
with the objective to jointly optimize the compute resource
allocation and task scheduling for heterogeneous multi-tenancy
in an energy-efficient manner.
Challenges and Solutions. The design of SCYLLA addresses
two key challenges. First, it is difficult to provide multiple QoE
profiles and fast switch among them to support multi-tenancy
and QoE with limited on-board resources. To address this
challenge, SCYLLA pre-generates a pool of FPGA design and
DNN model profiles with different trade-offs among latency,
energy and accuracy. It dynamically re-configures FPGA and
selects DNN models for different QoE requirements. With fast
reconfiguration1, SCYLLA is able to efficiently switch among
different FPGA design and DNN model profiles to provide
flexible supports for QoE and multi-tenancy. Second, it is
non-trivial to optimize the overall performance across multiple
concurrently running tasks with different QoE requirements
[12], [13]. To address this challenge, SCYLLA employs utility
functions that encode different QoE metrics together, and
uses a QoE-aware task scheduler to select FPGA design and
DNN model profiles to maximize the total utility value of the
tasks. In doing so, SCYLLA is able to select the “optimal”

1We have evaluated that the time for reconfiguration of the logic is about
80∼90 ms on the Xilinx ZCU102 FPGA board [11].

software-hardware configuration and achieve the maximum
overall performance on QoE for all the concurrent tasks.
Performance Evaluation. We implemented SCYLLA on
state-of-the-art FPGA platform and evaluated SCYLLA using
drone-based traffic surveillance application on two real-world
datasets and one synthetic dataset. Our evaluation results show
that compared to status-quo CPU-based solution, SCYLLA is
able to provide flexible and superior trade-offs in the design
space among accuracy, processing latency, energy consump-
tion. Specifically, SCYLLA is able to reduce the processing
latency by 11.9x and the energy consumption by 71.5x. More-
over, SCYLLA is able to reduce the frame drop percentage by
about 61.3% and achieve 60% improvement on the percentage
of tasks that meet the latency bounds of latency-critical tasks.
Key Contributions.
• To our best knowledge, SCYLLA is the first FPGA-based

framework that enables QoE-aware continuous mobile
vision with dynamic DNN reconfiguration to meet the
unique characteristics of continuous mobile vision.

• We design a QoE profiling scheme that generates multiple
FPGA design and DNN model profiles to support dynamic
QoE requirements. We also design a QoE-aware multi-
tenant task scheduling scheme to achieve the maximum
overall performance on QoE for concurrent tasks.

• Our evaluation shows that SCYLLA provides much better
design flexibility and achieves superior QoE trade-offs than
status-quo CPU-based solution that existing real-world
continuous mobile vision applications are built upon. We
believe SCYLLA sheds light on leveraging new hardware
and hardware-software co-design techniques to enhance
the performance for continuous mobile vision systems.

II. MOTIVATION AND BACKGROUND

A. Motivating Scenario

Our work is motivated by killer applications of continu-
ous mobile vision such as drone-based traffic surveillance –
it not only presents a flexible solution not constrained by
fixed monitoring point, but also poses research challenges in
handling dynamic vision tasks in an energy-efficient manner.
For instance, a drone runs the traffic estimation (i.e., vehicle
counting) task as a background service for real-time flow
control purpose. This process essentially relies on object
detection algorithm, which locates every vehicle in the frame
and then triggers finer-grained tasks such as vehicle type
classification and license plate recognition, to be carried in
immediate or future queries. Such tasks come with different
QoE requirements from time to time and require completely
different computational (e.g., DNN) engines. Such highly dy-
namic context change poses new challenges to meet the QoE
requirements for all the queries.
Why FPGA, not GPU? Given its highly parallel architecture,
GPU becomes one of the most popular platforms for DNNs.
However, we argue that, compared to GPU, FPGA fits much
better for continuous mobile vision for the following two
reasons. First, the SIMT design of GPU is optimized for
executing a single DNN model. Recent work has shown GPU

being highly inefficient in executing multiple DNN models
concurrently [10]. However, the multi-tenant characteristic of
continuous mobile vision requires systems to concurrently run
multiple applications at the same time. The MIMD architecture
of FPGA naturally accommodates such multi-tenancy. Second,
the energy consumption is crucial to battery-powered mobile
systems. The gap in energy consumption makes FPGA more
attractive for power-hungry continuous mobile vision. Previous
work has already shown that FPGA is energy-efficient and fit
for DNN-based vision applications [14], [15], [16].

B. FPGA Primer

In general, FPGA is a large set of programmable logic
blocks. The logic blocks can be regarded as many parallel
“cores”, and (re)configured with arbitrary parallelism design to
implement customized functions for performance (e.g., latency
and throughput) optimization. FPGA usually contains Look-
Up Tables (LUTs) that can be programmed to execute any
combinational logic, Digital Signal Processing (DSP) units
for arithmetic operations, and Block-RAMs (BRAMs) to store
data on the chip. The FPGA is usually connected to an on-
board co-processor or a host PC for co-processing. Typically,
a piece of off-the-shelf FPGA contains tens of thousand LUTs,
thousands of DSPs and hundreds of Block RAMs.

FPGA’s special advantages are appealing for achieving the
goals of SCYLLA and inspire us to design DNN accelerators
and different QoE profiles on it. FPGA is good at latency-
sensitive job because it has special capability of circuit-
level customization on its massively parallel computing units
and on-chip storage banks, which saves a large portion of
overheads in general-purpose processors, like instruction fetch,
cache miss, task scheduling etc. Existing FPGA accelerators
achieved 3-30x speedup compared with CPU on different
DNN models [17], [15]. What is more, FPGA is an MIMD
architecture, which guarantees high concurrency. With proper
circuit partition, FPGA is able to support multiple DNN
models running at the same time without any need to do
time-multiplexing. Besides, FPGA is natively energy-efficient,
making it friendly for the mobile scenarios.

III. SCYLLA DESIGN

A. Design Goals

SCYLLA is aimed to support multi-tenant DNN-based com-
puter vision tasks with different QoE requirements. To achieve
its full promise, SCYLLA needs to fulfill the following goals:

• High Concurrency. As most single computer vision task
does not occupy the whole on-board resource, the system
should allow as much concurrency as possible to fully
utilize the available resources to parallelize the tasks.
The parallelization together with FPGA-based acceleration
should reduce the processing latency of the tasks.

• QoE-aware Scheduling. User requests can come with dif-
ferent QoE requirements. The system design should be able
to flexibly adapt to such dynamics while minimizing the
overhead in switching between different task executions.

• Energy-aware Operation. Energy is often constrained in
mobile devices, but can be traded for better performance.
The system should have a power-saving mechanism that
allows favoring longer operation time by sacrificing QoE.

Frames &
User Requests❷

❸

❹

❺

❶

❷ Raw Video Frames

Detected Objects❸

Object Queries❹

❺ Decision

Video Source DRAM

Frame
Buffer

Object
Buffer

DNN
Model

Parameter

Reconfigure
Function

FPGA PL

ARM PS

Reconfigure
Analyzer

Multi-tenant
Task scheduler

Target Object Detection

Object-specific
Recognitions

❶

❺

Figure 1: SCYLLA’s System Design and Operational Flow.

B. System Overview

As an overview, the SCYLLA design is based on
multi-processor system-on-chip with both software (i.e.,
ARM) and hardware (i.e., FPGA) programmability. We
leverage this feature to adopt a software-hardware co-
design scheme: we implement the query management and
task scheduling logic, namely Frame/Object Buffer and
Multi-tenant Task Scheduler in the processing system (PS)
part, and leave all the compute-intensive workloads (i.e.,
DNN-based computer vision algorithm) to be accelerated in
the re-configurable FPGA programmable logic (PL) part.

The operational flow of SCYLLA is illustrated in Fig. 1.
Firstly, Frame Buffer takes all the external input 1 , including
both the frames from continuous video stream along with
the user request (i.e., objects of interest and requirements
on latency, accuracy and energy) arriving randomly. Specif-
ically, it keeps all the input frames and periodically sends
these frames to the Target Object Detection solver 2 for
recognizing all the in-frame objects. The recognized objects
will be 3 returned to the Object Buffer waiting for further
fine-grained processing. Later the queries will be 4 sent to
the Multi-tenant Task Scheduler, which monitors the run-
time resource and runs the scheduling algorithm to select an
“optimal” FPGA design and DNN models from the profiles
for each query to maximize the overall performance of QoE
(§V-C). Then the queries and scheduling decisions are sent
to the PL part 5 , which will then (optionally) invoke the
Reconfigure Function to reconfigure the FPGA design, and
execute the corresponding tasks. Upon finishing processing
these queries, the system continues to process the frames in
the Frame Buffer and repeats the previous operations.

IV. QOE PROFILE GENERATION

One key feature of SCYLLA is to satisfy different QoE
requirements for concurrently running computer vision tasks.
This requires SCYLLA to provide multiple QoE profiles (e.g.,
trade-off among latency, accuracy and energy) for each task.
Inspired by the customizable and reconfigurable feature of
FPGA, we propose to generate multiple FPGA design profiles
with different trade-offs between latency and resource usage
(achieving different parallelism and energy consumption), and

Loop_1: for(o = 0; o < OUT; ++o){
#pragma LOOP_UNROLL factor = Q1

Loop_2: for(r = 0; r < ROW; ++r){
Loop_3: for(c = 0; c < COL; ++c){

#pragma LOOP FLATTEN
#pragma LOOP_UNROLL factor = Q2

Loop_4: for(i = 0; i < IN; ++i){
Loop_5: for(f1 = 0; f1 < F1; ++f1){

Loop_6: for(f2 = 0; f2 < F2; ++f2){
output[o][r][c] +=
filter[o][i][f1][f2] * input[i][r+f1][c+f2];

}}}}}}

Figure 2: Pseudo code of a convolution layer in DNN.

dynamically reconfigure the FPGA at runtime. In the mean-
time, model compression is a typical approach to generate
multiple DNN models for different QoE settings [18], [19].
We thus leverage model quantization, one type of model
compression approaches that is suitable for FPGA acceleration
to generate multiple DNN model profiles with different trade-
offs between latency and accuracy. Lastly, we combine the
FPGA design profiles and the DNN model profiles together
to provide multiple configurations that vary in terms of QoE.
Such 〈FPGA design,DNN model〉 combination enriches
the QoE profiles, providing more opportunities to optimize
the overall performance of the concurrent vision tasks.

A. FPGA Design Profiles

As mentioned earlier (§II), FPGA can be configured with
dedicated parallelism design by utilizing different amounts of
resources. In other words, we can implement a single “large”
accelerator utilizing all the resources to execute one single
task; or we can implement multiple “small” instances on
FPGA to execute several tasks in parallel. Inspired by this, we
design multiple FPGA accelerators that are different in terms
of performance and resource utilization for the given DNN-
based vision tasks. Specifically, we modify the parameters
of optimization methods, including changing the factor of
unrolled loops, the pipeline initiation interval (the clock cycles
needed to process a new input), to justify the parallelism of
accelerators and their resource utilization on FPGA. It should
be noted that the obtained FPGA design profiles do not change
the precision of the DNN model parameters, meaning that
running the same DNN model under different FPGA profiles
will result in different latency, but the inference accuracy
of DNN models will remain unchanged. Besides, with the
occupied resource decreasing, the energy consumption on
FPGA will also be reduced, meaning that we can save more
energy by running a DNN model on a “small” instance with
a relatively long latency as trade-off.

We take the convolution layer which is usually the most
computation-intensive component [9], [20] in DNN models as
an example. A convolution layer plays the role of “feature
extractor” by convolving the input images or feature maps
from previous layers with a set of filters, which has the
dominant computation workload in deep learning algorithms.
Fig. 2 illustrates a standard 6-loop convolution algorithm (the
stride is set as 1 here). It generates OUT feature maps whose
size are ROW ×COL by convolving IN input feature maps

x

x

x

x

x

x

Figure 3: Computation performance under different configu-
rations for the 3rd conv layer in YOLO-tiny.

with OUT filters sized in IN × F1 × F2. To parallelize
the code for acceleration on FPGA, Loop Unrolling is an
effective method. For instance, if we unroll Loop 1, Loop 2
and Loop 3 with a unrolling factor pair 〈Q1, Q2〉23, Q1×Q2
processing units (e.g., the DSP units) will be used to run in
parallel, and the latency is expected to be reduced by about
Q1×Q2 times ideally. Increasing 〈Q1, Q2〉 will increase par-
allelism and improve performance. Therefore, the computation
performance of FPGA accelerator for CNN can be formulated
as the following equation:

Comp perf =
OUT ·ROW · COL · IN · F1 · F2
dOUT

Q1 e · d
ROW ·COL

Q2 e · IN · F1 · F2
(1)

Given the constraint that Q1 × Q2, the total used DSP
number, should be smaller than the resource upper bound
provided by FPGA. Q1, Q2 are non-negative variables.

0 < Q1×Q2 < # of DSPs (2)

We use the convolution from layer 9 (the 3rd convolution
layer) in YOLO-tiny model as an example to illustrate our
scheme. Tab. I shows the layer configuration of this con-
volution. With above formulation, we can define a design
space for this convolution configuration with variance to
different 〈Q1, Q2〉. Fig. 3 shows this design space for the
example. From this figure, we have two observations. First,
even with the same number of DSPs, different 〈Q1, Q2〉 design

2The unroll factor Q1 means that Loop 1 will only execute OUT/Q1 times,
and each time Q1 duplications of the inner logic will execute in parallel.

3Since Loop 2 and Loop 3 are row and column dimensions for output
image. They can be flattened to a single loop and use one unrolling factor

Input feature map (IN) 64

Output feature map (OUT) 32

Feature map size (ROW × COL) 112× 112

Kernel size (F1× F2) 3× 3

Table I: Configuration of 3rd convolution in YOLO-tiny.

performance varies. For # of DSPs = 512, optimal design
configuration “design 1” is 8x faster than the worst “design
4”. Second, with increase of the number of DSPs in use, the
performance of optimal design increases accordingly. Thus,
we leverage this optimization scheme to help us explore the
trade-offs between DSP resource usage and latency. In the
following sections, we will evaluate three design instances.

B. DNN Model Profiles
To satisfy the different requirements on accuracy and la-

tency, we seek to generate DNN models that vary on accu-
racy and latency with model compression techniques. Model
quantization is one type of compression techniques. The key
idea is to quantize the DNN model parameters from high bit-
width floating point representations (e.g., 32-bit floating point)
to lower bit-width fixed point [21], [22] or even binarized ones
[23]. In doing so, the models can be stored and computed un-
der low bit-width; and the latency for executing the quantized
models can be effectively reduced. At the same time, as the
quantization reduces the precision of parameters, it also leads
to a loss on inference accuracy. Usually, less bit width results
in lower accuracy but faster processing speed [22], [24]. The
existence of accuracy-latency trade-off enables us to generate
multiple DNN model profiles with different trade-offs to meet
diverse QoE requirements via quantization.

Due to the customizable feature, FPGA can be designed
to work at any bit width (from 1 to a hardware-related
upper bound). Thus, quantization is naturally suitable for
FPGA-based acceleration. For each vision task and its DNN
models, we generate a set of quantized models with dif-
ferent bit width (e.g., 8-bit and 6-bit) as the model pro-
files. These model profiles with different accuracy-latency
trade-offs are used together with the FPGA design profiles.
Each 〈FPGA design,DNN model〉 pair can decide a
〈latency, accuracy, resource utilization〉 vector for a spe-
cific task. This combination enriches the space of QoE profiles,
providing more choices for the task scheduler to optimize the
performance on QoE of given vision tasks.

C. Performance Study
We implement three FPGA configuration plans on the

Xilinx ZCU102 board [11] and choose three DNN models to
study the performance of our profiling method. As mentioned

DSP LUT FF BRAM

Design 1 51.9 57.6 21.7 79.0

Design 2 38.1 70.2 26.98 81.15

Design 3 33.24 81.16 31.4 78.02

Table II: Resource utilization (%) of FPGA.

YOLO-tiny (mAP) MobileNetSSD GoogLeNet

6-bit 52.2 84.8 87.99

8-bit 56.5 86.6 89.91

32-bit (original) 57.1 87.7 91.2

Table III: Accuracy (%) of model profiles.

before, we implement generic convolution kernels with differ-
ent parallelism. Tab. II illustrates the total resource utilization
on FPGA. Design 1 uses the most computation resources with
the best performance. Design 2 and 3 use less resource and
thus take a longer time.

YOLO-tiny MobileNetSSD GoogLeNet

6-bit 8-bit 6-bit 8-bit 6-bit 8-bit

Design 1 188.3 294.1 48.1 89.3 31.8 44.4
Design 2 303.3 384.6 116.3 208.3 80.6 135.1
Design 3 400.1 526.3 263.1 370.1 228.8 322.6

Table IV: Inference latency (ms) under different profiles.

YOLO-tiny MobileNetSSD GoogLeNet

6-bit 8-bit 6-bit 8-bit 6-bit 8-bit

Design 1 0.873 1.361 0.222 0.412 0.149 0.208
Design 2 0.796 1.01 0.191 0.342 0.214 0.367
Design 3 0.684 0.964 0.172 0.242 0.391 0.514

Table V: Energy cost (J/image) under different profiles.

For each DNN model, we generate 6-bit and 8-bit fixed-
point instances via model quantization. The accuracy of them
are shown in Tab. III. For all the DNNs here, the accuracy
of 8-bit instance is higher than the 6-bit ones. Combining the
FPGA configuration and quantized DNN models, we evaluate
the processing latency of each DNN model under different
profiles and Tab. IV shows the results. We can see that under
the same FPGA configuration, the latency of 6-bit quantized
model is shorter than that of the 8-bit model for each DNN. On
the other hand, for a given DNN model, its latency also varies
under different FPGA configurations. Design 3 has the longest
latency as the computing power of each kernel is relatively
low, while design 1 achieves the shortest latency. Tab. V lists
the energy consumption and we can observe similar results
that for each DNN model, the energy consumption varies
with different FPGA configurations and quantization bits. Such
trade-off provides us multiple selections to schedule multiple
vision tasks to maximize the overall performance of QoE.

V. QOE-AWARE TASK SCHEDULING

A. Principles of QoE-aware Task Scheduling

With the generated FPGA design and DNN model profiles,
SCYLLA is able to optimize the overall performance for
multiple vision tasks. The key is to formulate and jointly
maximize the “rewards” of QoE parameters including latency,
accuracy and energy. Unlike the scheduling strategies of CPU-
based platforms, in which each request can acquire a part of
the CPU time that makes them run “concurrently”, the number
of tasks that can be processed in parallel is decided by the
number of computing engines for a certain FPGA design. If
the number of requests exceeds the number of engines, some
requests must wait until an engine is available. This makes the
scheduling problem on FPGA different from previous works
as we must consider the impact of waiting time of tasks.

We are to balance among three factors of tasks, namely
latency, accuracy and energy. Ideally, we want each task to be

completed as soon as possible, i.e., with short latency, along
with high recognition accuracy and low energy consumption.
However, there is a complex interaction or trade-off among
latency, accuracy and energy as described in §IV-C. To deal
with the complexities, we leverage the principle of utility
function to combine those three factors for joint optimization,
which is a common practice in computer systems [13], [25],
[26]. We search through the possible schedule plans, and
choose the one that achieves the highest utility value. As the
optimization of utility value is NP-Hard, we design a heuristic
approach to search for an approximate optimal solution.

B. Problem Formulation
Let U represent the set of mobile vision tasks to be

scheduled and P represent the set of FPGA design profiles.
For a task u ∈ U , we let Mu represent the set of DNN
models to execute u. Given an FPGA profile p ∈ P and a
model profile mu ∈ Mu, we let t(p,mu, u), acc(p,mu, u)
and e(p,mu, u) represent the processing latency, accuracy and
energy of task u under these conditions, respectively. In fact,
t(p,mu, u) contains the time for execution on FPGA, time to
wait for available engines and time to reconfigure the FPGA,
which can be written in the following form:

t(p,mu, u) = texec(p,mu, u) + twait + µ · treconfig(p) (3)

where µ is 0 or 1, representing whether the reconfiguration
process happens. twait of a task is decided by the number
of tasks before it, their processing latency and the number
of computing engines under FPGA profile p. Besides, we let
N(p) denote the number of engines on FPGA for given p,
and Ncur(t) denote the number of tasks running in parallel
at moment t. N(p) is mainly decided by the “bottleneck”
resource to implement one engine (e.g., the BRAM utilization
shown in Tab. II). Our utility function is defined as follows:

U(p,mu, u) =αT ·min(0, tmax(u)− t(p,mu, u))+

αA · (acc(p,mu, u)− accmin(u))+

αE · (emax(u)− e(p,mu, u))

(4)

where tmax(u), accmin(u) and emax(u) are the minimum or
maximum QoE goals for task u, respectively. αT , αA and αE

are constant parameters in the range of [0, 1] to control the
QoE trade-off preference.

To maximize the performance of our system, we choose to
maximize sum of utilities, which is a typical scheduling scheme
used in previous work [18], [13], [27]. The optimization
objective can be formulated as follows:

max
p∈P,mu∈Mu

∑
u∈U

U(p,mu, u) (5)

s.t.∀p ∈ P,∀t,Ncur(t) ≤ N(p)

The solution should select a DNN model for each task and
a FPGA design profile to execute all the tasks, as well as the
order to execute the given tasks. Solving such a non-convex
problem to maximize the sum of utilities is computationally

hard. Based on this optimization problem, we consider the
strategies for FPGA reconfiguration and energy consumption
discussed before, and propose a heuristic scheduling scheme
to support online multi-tenant scheduling.

C. QoE-aware Task Scheduling Scheme
The FPGA platform we use can be configured to have 1, 2

or 4 kernels (i.e., tasks that can be processed in parallel). Tasks
must be divided into 1, 2 or 4 sets accordingly. To partition
tasks in real time, we design a greedy division scheme as
shown in Alg. 1. It repeatedly chooses the set which has the
minimum total execution time and assigns a task to it.

Algorithm 1 Task Division Scheme
Input: A sequence of tasks U
Output: A division of tasks to several task sets S, where |S| = 1, 2 or 4

for each u ∈ U do
2: Select s ∈ S with smallest total execution time

Assign u to s
4: end for

return S

Algorithm 2 Executing Sequence Determination and Model
Selection Scheme
Input: A set of tasks s
Output: Plan: <execution order, model profile>
1: Sort all u ∈ s in ascending order of tmax(u)
2: for each u ∈ s do
3: Set quant(u) = 8bit
4: end for
5: while ∃u ∈ s s.t. t(p,mu, u) > tmax(u) and ∃u ∈ U s.t.

quant(u) == 8bit do
6: for each u ∈ s s.t. quant(u) == 8bit do
7: Calculate total utility increase ∆util(u) when setting quant(u) =

6bit
8: end for
9: Select usel = argmaxu ∆util(u)

10: if ∆util(usel) > 0 then
11: Set quant(u) = 6bit
12: else
13: Break the loop
14: end if
15: end while

Given the divided sets of tasks, we design a scheme to de-
termine the executing sequence and the quantization of model
to use for each set of the tasks. Specifically, as illustrated
in Alg. 2, considering that the latency will accumulate with
the tasks waiting for available engines, we firstly sort tasks
by their latency requirements to let the tasks with shorter
latency bounds execute earlier. We set all tasks to use 8-bit
quantization at the beginning. If all latency requirements are
met, the searching is done; otherwise, we repeatedly choose
one task that changing its model from 8-bit to 6-bit increases
the total utility value the most, until that we cannot further
increase total utility value or all models are set to 6-bit.

Finally, we compare among the FPGA design profiles and
choose the one with the greatest total utility value.

D. Put Everything Together
Fig.4 shows a real instance of scheduling and execution time

pattern, from which we can see the alternative execution of
object detection, i.e., the YOLO-tiny, and fine-grained recog-
nition, i.e., the GoogLeNet and MobileNetSSD. In particular,

Schedule

YOLO-tiny

Reconfiguration

GoogLeNet-8bit

GoogLeNet-6bit

MobileNetSSD-8bit

MobileNetSSD-6bit

Insert Frame

Time

FPGA Resource

Figure 4: SCYLLA’s scheduling sequence snapshot.

the scheduler dynamically selects the FPGA design and DNN
model profiles based on the calculated utility values. The width
of YOLO-tiny blocks varies because the complexity of frame
influences the running time. When executing fine-grained tasks
on 4 kernels, each job takes a relatively prolonged time,
but 4 tasks can run in parallel. On the other hand, 1-kernel
profile permits each task to run at full speed but in sequence.
Reconfiguration happens when the current FPGA design is not
the needed one. One thing to mention is that we run 3 YOLO-
tiny tasks in parallel instead of 4 tasks, because the bandwidth
of the on-chip bus is not large enough to support 4 YOLO-tiny
tasks in parallel.

VI. IMPLEMENTATION

We use a Xilinx ZCU102 FPGA board [11], one of the
newest FPGA developing board, as the hardware platform to
prototype SCYLLA. The Xilinx ZCU102 board contains a 1.2-
GHz ARM Cortex-A53 processor and a XCZU9EG FPGA.
We implement the DNN accelerators (i.e., the FPGA PL part)
and generate the FPGA design profiles based on CHaiDNN
[28] using Xilinx SDx 2018.2 Tool. Specifically, the DNN
accelerators are firstly implemented in C/C++, and then we
analyze the C/C++ code to localize the most compute-intensive
“bottlenecks”, and insert HLS pragmas to let SDx generate
pipelines, unrolled loops or leverage other optimization tech-
niques to improve the parallelism. Then SDx invokes HLS
toolchains to synthesize hardware code (e.g., Verilog) from the
C/C++ implementation and generate a bitstream to configure
the FPGA logic. We leverage the basic implementation of
DNN engines (e.g., convolution) in CHaiDNN, and modify the
source codes for different parallelism and resource utilization
to generate the FPGA design profiles. Besides, we also modify
the software stack of CHaiDNN, moving its online parameter
quantization process to be executed offline. The modification
reduces the initialization time of running DNN inference from
nearly 30s to about 2s for the DNN models we used, making
CHaiDNN able to support the online mobile scenarios and
fast re-initialization when changing DNN models (Tab. VI). In
general, our modification extends the function and improves
the performance of CHaiDNN. The Task Scheduler is imple-
mented using C++ and running on the ARM co-processor.

YOLO-tiny MobileNetSSD GoogLeNet

CHaiDNN 21.67 8.31 5.07

Modified 2.08 1.58 1.02

Table VI: Loading time (s) of DNN models.

VII. EVALUATION

A. Experimental Setup

Tasks and DNN models. We choose drone-based traffic
surveillance, a typical and important continuous mobile vision
application for our evaluation. Due to the mobility, drone is
able to track traffic conditions in large areas from dynamic
views, providing services that fixed surveillance cameras can-
not provide. Our application includes three types of vision
tasks in traffic surveillance:
• Object Detection. Object detection is the “backbone” task

in traffic surveillance systems as the detected objects can
be used for further classification. It detects the generic
category of objects (e.g., cars, person, traffic signs etc.)
and finds their locations in the frame. We select YOLO
[29], one of the most commonly used DNN models, which
is well-known for its fast speed and acceptable accuracy,
for our object detection task. The model is trained on the
Pascal VOC 2012 dataset [30] which contains 21 classes.

• License Plate Recognition. This task detects the position
of license plates and identifies the numbers on the plates,
which usually works together with traffic violation detec-
tion systems. For this task, we use a MobileNetSSD model
provided in the HyperLPR project [31]. In our system, this
application takes the detected cars from YOLO, detects and
recognizes the license plate numbers.

• Car Type Classification. Our last task aims to recognize
the specific type (brands and models, e.g., Audi A6) of
detected cars for further data analysis as described in [13].
We select the GoogLeNet model in the Caffe Model Zoo
[32] for this task. The model was trained on the CompCars
dataset [33] that contains nearly all common car types.

Video Datasets. We evaluate SCYLLA using two real-world
datasets and one synthetic dataset. Due to lack of public drone-
based surveillance datasets, we use our own video clips cap-
tured by DJI Mavic Pro [34], the most advanced commercial
drones. We also capture video clips on streets using a Sony
dsc-RX100 camera [35] and select five public videos captured
by the surveillance cameras on streets from YouTube. These
video clips captured by fixed cameras are similar with the
cases when drones are hovering in the air (e.g., serving at
crossroads in the countryside without surveillance cameras).
To cover more cases, we generated synthetic video data using
Unreal CV [36]. Fig. 5 illustrates three example frames of
different datasets. We select and split 22 representative video
clips and the length of each clip is about 10∼20s. During
evaluation, we extract raw images from the clips, store them
on the FPGA board, and feed them sequentially, mimicking
the real video ingestion. The tasks, DNN models and datasets
for training are summarized in Tab. VII.

Task DNN Model Training Dataset

Object Detection YOLO-tiny Pascal VOC 2012

License Plate Recognition MobileNetSSD HyperLPR

Car Type Classification GoogLeNet CompCars

Table VII: Tasks, DNN models and datasets in our work.

(a) Drone Data (b) Fixed Camera Data (c) Synthetic Data

Figure 5: Example frames of the three datasets.

Baseline. The status-quo for real-world deployed continuous
mobile vision applications is based on CPU. We thus set up
a CPU-based design as our baseline. For fair comparison, we
use an Intel Core-i7 7700HQ CPU with 4 GB memory (the
same as that on ZCU102 board) as the hardware platform.
We use the CPU version of Caffe [37] framework to execute
the DNN models because CHaiDNN only supports Caffe’s
model format as input. We firstly evaluate the latency and
energy consumption to execute the three DNN models on this
CPU platform. We then take the scheduled execution trace of
SCYLLA as input and conduct a trace-driven emulation. For the
multiple-kernel execution on FPGA, we create given number
of threads and make the threads sleep for a given duration
of time to emulate the process of execution. As we do not
have support for 8-bit/6-bit quantization on the CPU platform,
we use the original DNN model parameters (32-bit) without
quantization. Tab. VIII shows the performance of the baseline.

YOLO-tiny MobileNetSSD GoogLeNet

Latency (ms) 579.1 629.3 563.5

Energy (J/image) 17.25 18.87 17.06

Table VIII: Performance on the CPU Platform.

B. Results

We process all the video clips in the three datasets with
SCYLLA and the baseline. For SCYLLA, we change the αT , αA

and αE in the utility function to tune the scheduling preference
and obtained different performance results.
Latency-Energy Trade-off. Firstly, we keep αA fixed and
tune the ratio of αT and αE to evaluate the overall perfor-
mance on latency and energy consumption. Fig. 6 compares
the performance of SCYLLA and baseline over the three
datasets. We have two key observations. First, by tuning the
ratio of αT and αE , SCYLLA is able to achieve different
trade-offs between latency and energy consumption while the
baseline can only provide fixed performance, demonstrating
the superiority of SCYLLA on providing flexible selections on
QoE. Second, SCYLLA performs much better on both latency
and energy consumption than baseline. For the drone dataset,
the best configuration of SCYLLA in our evaluation (the circled
purple triangle point that has the longest normalized Euclidean
distance to baseline, meaning the best overall performance)
reduces the latency by 11.9x. For the fixed camera data and
synthetic data, the latency is reduced by 12.3x and 11.4x,
respectively. One main reason is that the time to execute
YOLO-tiny on CPU is long. It can only process 1.7 frames
per second. The frames accumulate rapidly and cannot be
consumed in time, resulting in long delay before processing,

 0.23

 0.24

 0.25

 0.26

 0.27

 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
/t

a
s
k
)

Latency (s)

Latency Energy Trade-off on Drone Camera Data

SCYLLA
Baseline

(15.836,17.94)

O

(a) Drone Data

 0.23

 0.24

 0.25

 0.26

 0.27

 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
/t

a
s
k
)

Latency (s)

Latency Energy Trade-off on Fixed Camera Data

SCYLLA
Baseline

(15.242,17.82)

O

(b) Fixed Camera Data

 0.23

 0.24

 0.25

 0.26

 0.27

 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
/t

a
s
k
)

Latency (s)

Latency Energy Trade-off on Synthetic Data

SCYLLA
Baseline

(16.113,18.03)

O

(c) Synthetic Data

Figure 6: Latency-Energy Performance of SCYLLA and Baseline.

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

R
e

la
ti
v
e

 A
c
c
u

ra
c
y

Latency (s)

Latency Accuracy Trade-off on Drone Camera Data

SCYLLA
Baseline

(15.836,1)

(a) Drone Data

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

R
e

la
ti
v
e

 A
c
c
u

ra
c
y

Latency (s)

Latency Accuracy Trade-off on Fixed Camera Data

SCYLLA
Baseline

(15.242,1)

(b) Fixed Camera Data

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

R
e

la
ti
v
e

 A
c
c
u

ra
c
y

Latency (s)

Latency Accuracy Trade-off on Synthetic Data

SCYLLA
Baseline

(16.113,1)

(c) Synthetic Data

Figure 7: Latency-Accuracy Performance of SCYLLA and Baseline.

and thus causing long latency. As for energy consumption,
the best configuration of SCYLLA can reduce the average
energy consumption by nearly 71.5x on average over the three
datasets, meaning that SCYLLA is much more energy-efficient.

Latency-Accuracy Trade-off. Next, we keep αE fixed and
tune the ratio of the other two parameters to see the overall
performance on processing latency and inference accuracy.
The results are shown in Fig. 7. As we use the original
floating-point model parameters for our CPU-based baseline,
its accuracy is marginally higher than that in SCYLLA due to
the precision differences. We normalized the highest accuracy
(89.57% on average over the three datasets) as 1.0 to see
the relative accuracy loss. We have similar observation that
SCYLLA has a trade-off between latency and accuracy by
adjusting αT and αA. Compared with the baseline, SCYLLA
can reduce the latency by 12.1x with only 2.3% loss in terms
of relative accuracy on average. When tuning αT and αA,
the changes on latency is relatively small. This is because we
can only provide two selections of accuracy (i.e., 6-bit and 8-
bit) for each DNN model given the constraint of CHaiDNN.
With CHaiDNN planning to support more selections of model
quantization, SCYLLA will be able to exhibit larger advantage
in terms of latency-accuracy trade-off.

Frame Drop Percentage. When the input frames cannot be
processed by YOLO-tiny in time, they will accumulate in the
Frame Buffer. However, the size of Frame Buffer is always
limited in real systems. Frames will be dropped if the Frame
Buffer is full. In other words, smaller Frame Drop Percentage
means better performance of the system. We evaluate the
Frame Drop Percentage under different input frame rates in
unit of frames per second (FPS). We set the size of Frame
Buffer to 3x of the FPS (e.g., 15 for 5 FPS) to provide a 3-
second latency tolerance. For SCYLLA, we choose the “best”
configurations in Fig. 6 (i.e., the circled purple triangle points)
for the three datasets, respectively. We can see Fig. 8 that
for all the three datasets, with FPS increasing, the frame

drop percentage increases for both SCYLLA and the baseline,
but SCYLLA achieves much lower value than CPU. SCYLLA
begins to drop a few frames (4.3% on average) when FPS
increases to 4, while CPU drops about 14.5% of the frames
even if FPS is only 1. When FPS achieves 10, SCYLLA drops
nearly half of the frames (45% on average), while CPU drops
nearly 90% of the frames. We can safely say that SCYLLA can
work at 5 FPS well with only 10% frames dropped which is
acceptable in many cases, reducing the frame drop percentage
by 61.3% compared with CPU. This reduction significantly
improves the user experience.
Latency Bound Meet Percentage. For many continuous
mobile vision applications, latency is the most important QoE
metric. The number of processed tasks that meet the latency
“deadline” or Maximum Latency Bound (MLB) defined by
users can reflect the performance of system. Thus, we evaluate
the percentage of tasks whose latency is within the MLB.
We set several different values of MLB, and choose the best
configurations of SCYLLA to compare it with the baseline. As
shown in Fig. 9, SCYLLA performs much better than CPU on
all the three datasets. When using SCYLLA, about 31.4% of
the tasks finished within the 1-second MLB, which is near
real-time in terms of human perception [4], while no task can
be finished within 1 second when using the CPU baseline.
With MLB increasing, the percentage of tasks that meet the
MLB increases rapidly on SCYLLA. When MLB is 3, nearly
all the tasks (98.4% on average) running on SCYLLA can meet
this latency bound, while this value is only 24.3% for CPU.
Even if the MLB increases to 5, only 39.5% of the tasks can
meet the latency bound on CPU. We can safely conclude that
SCYLLA can achieve more than 60% improvement on finishing
the tasks within a MLB that is less than 5 seconds.

VIII. DISCUSSION

Scalability. While in this work, we prototyped SCYLLA on a
single FPGA board, the design of SCYLLA can be easily scaled

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 8 10

F
ra

m
e

 D
ro

p
 P

e
rc

e
n

ta
g

e

Frame Per Second (FPS)

Frame Drop Percentage with Respect to FPS on Drone Camera Data

SCYLLA
Baseline

0.0 0.0 0.0
4.3

10.4

21.3

36.5

46.7

14.6

47.2

61.2
68.3

72.9
76.1

81.2

89.4

(a) Drone Data

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 8 10

F
ra

m
e

 D
ro

p
 P

e
rc

e
n

ta
g

e

Frame Per Second (FPS)

Frame Drop Percentage with Respect to FPS on Fixed Camera Data

SCYLLA
Baseline

0.0 0.0 0.0
3.3

10.6

20.0

35.1

43.3

14.2

46.5

59.5

67.2
71.3

75.3
80.5

88.6

(b) Fixed Camera Data

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 8 10

F
ra

m
e

 D
ro

p
 P

e
rc

e
n

ta
g

e

Frame Per Second (FPS)

Frame Drop Percentage with Respect to FPS on Synthetic Data

SCYLLA
Baseline

0.0 0.0 0.0
4.2

11.2

22.1

36.7

44.5

14.8

46.9

60.6
67.9

72.6
76.9

82.8
89.2

(c) Synthetic Data

Figure 8: Frame Drop Percentage of SCYLLA and Baseline.

 0

 20

 40

 60

 80

 100

1 1.5 2 3 5

L
a

n
te

n
c
y
 B

o
u

n
d

 M
e

e
t

P
e

rc
e

n
ta

g
e

Maximum Latency Bound (MLB) (s)

Bound Meet Percentage with Respect to MLB on Drone Camera Data

SCYLLA
Baseline

31.4

63.1

87.2

98.3 100.0

0.0
4.1 6.9

24.2

39.6

(a) Drone Data

 0

 20

 40

 60

 80

 100

1 1.5 2 3 5

L
a

n
te

n
c
y
 B

o
u

n
d

 M
e

e
t

P
e

rc
e

n
ta

g
e

Maximum Latency Bound (MLB) (s)

Bound Meet Percentage with Respect to MLB on Fixed Camera Data

SCYLLA
Baseline

32.7

63.8

86.8

99.6 100.0

0.0
3.9

7.3

25.1

40.2

(b) Fixed Camera Data

 0

 20

 40

 60

 80

 100

1 1.5 2 3 5

L
a

n
te

n
c
y
 B

o
u

n
d

 M
e

e
t

P
e

rc
e

n
ta

g
e

Maximum Latency Bound (MLB) (s)

Bound Meet Percentage with Respect to MLB on Synthetic Data

SCYLLA
Baseline

30.2

61.6

85.4

97.2 100.0

0.0
3.2

7.8

23.5

38.7

(c) Synthetic Data

Figure 9: Latency Bound Meet Percentage of SCYLLA and Baseline.

to cluster or even LAN scale with centralized management,
and can potentially play critical roles in mobile edge comput-
ing to serve more clients with (predictive) dynamic requests.
Fine-grained Reconfiguration. In this work, we design
SCYLLA under the constraint of 3 reconfigurable choices with
different numbers of same kernels on FPGA. The number
of choices is limited because CHaiDNN only allows such
configurations. In fact, FPGA’s MIMD architecture and recon-
figuration capability enables combination of different types of
computation engines. With best-fit hardware design for specific
DNN structures, SCYLLA can provide more reconfiguration
choices and schedule massive concurrent small and heteroge-
neous tasks, and we would expect higher performance gain.

IX. RELATED WORK

SCYLLA is inspired by the increasing importance of contin-
uous mobile vision and multi-tenant task scheduling, but dif-
fers from existing work on hardware platform and techniques
that support QoE-aware multi-tenant task scheduling.
Continuous Mobile Vision. Recent years have witnessed the
great efforts to optimize the performance of continuous mobile
vision based on CPU [12], [20], [18], GPU [38], [39] and
FPGA [40], [41]. As for on-device solutions, DeepCache [20]
caches and reuses the results of previous frames via effective
image matching to reduce latency and energy cost. NestDNN
[18] builds multi-capacity DNN models to provide resource-
accuracy trade-offs and leverages a resource-aware scheduler
to jointly optimize the performance of latency and accuracy.
Our work is inspired by the aforementioned work but differs
with the main innovation that leverages the unique reconfigu-
ration property of FPGA, provides flexible performance trade-
off among different QoE metrics, and optimizes the overall
performance on QoE accordingly.
QoE-aware Multi-Tenant Task Scheduling. Many existing
systems such as Morpheus [42] and Jockey [43] dynamically

allocate resources to optimize the latency of streaming tasks
for data centers. Some real-time systems leverage utility or
cost functions to satisfy the soft deadlines of multi-tenant tasks
[44], [13], [18]. In particular, VideoStorm [13] firstly considers
“processing quality”(i.e., QoE) for live video analytic and
jointly optimizes the performance across multiple queries via
task scheduling. Compared with the existing systems, SCYLLA
focuses on the resource-constrained continuous mobile vision
scenario instead of large-scale clusters, and it introduces new
challenges for QoE-aware task scheduling specific to FPGA.

X. CONCLUSION

This paper presents SCYLLA, an FPGA-based framework
that enables multi-tenant dynamic QoE support for contin-
uous mobile vision applications. SCYLLA proposes a novel
reconfiguration-based profile generation approach which pre-
generates a pool of FPGA design and DNN model profiles with
different QoE performance. At runtime, SCYLLA dynamically
selects the optimal software-hardware configuration via QoE-
aware task scheduling to jointly optimize the performance on
latency, energy and accuracy for the concurrent vision tasks.
Our evaluation shows that SCYLLA is able to reduce the
processing latency by 11.9x and saving 71.5x of the energy
consumption compared to status-quo CPU-based solution.
Besides its superior QoE performance, SCYLLA is able to
reduce the frame drop percentage by 61.3% and achieve 60%
higher latency bound meet percentage.

ACKNOWLEDGMENTS

This work is supported in part by National Key Research
and Development Plan, China (Grant No. 2016YFB1001200),
National Natural Science Foundation of China (Grant No.
61802007), Science and Technology Innovation Project of
Foshan City, China (Grant No. 2015IT100095), and NSF
Awards CNS-1617627 and PFI:BIC-1632051. Chenren Xu is
the corresponding author: chenren@pku.edu.cn

REFERENCES

[1] H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan, “Avr:
Augmented vehicular reality,” in ACM MobiSys, 2018.

[2] K. Kanistras, G. Martins, M. J. Rutherford, and K. P. Valavanis, “Survey
of unmanned aerial vehicles (uavs) for traffic monitoring,” Handbook of
unmanned aerial vehicles, 2015.

[3] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan,
“Towards Wearable Cognitive Assistance,” in ACM MobiSys, 2014.

[4] Z. Chen, W. Hu, J. Wang, S. Zhao, B. Amos, G. Wu, K. Ha, K. El-
gazzar, P. Pillai, R. Klatzky, D. Siewiorek, and M. Satyanarayanan, “An
Empirical Study of Latency in an Emerging Class of Edge Computing
Applications for Wearable Cognitive Assistance,” in ACM SEC, 2017.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[6] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
Deep Features For Scene Recognition Using Places Database,” in NIPS,
2014.

[7] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the
Gap to Human-level Performance in Face Verification,” in IEEE CVPR,
2014.

[8] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, 2017.

[9] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Towards Uniformed Representation and Acceleration For Deep Convo-
lutional Neural Networks,” IEEE TCAD, 2018.

[10] P. Jain, X. Mo, A. Jain, H. Subbaraj, R. S. Durrani, A. Tumanov,
J. Gonzalez, and I. Stoica, “Dynamic space-time scheduling for gpu
inference,” in NeurIPS, 2018.

[11] “Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit,” https://ww
w.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html.

[12] R. LiKamWa and L. Zhong, “Starfish: Efficient Concurrency Support
for Computer Vision Applications,” in ACM MobiSys, 2015.

[13] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live Video Analytics at Scale with Approximation
and Delay-tolerance,” in USENIX NSDI, 2017.

[14] S. Jiang, D. He, C. Yang, C. Xu, G. Luo, Y. Chen, Y. Liu, and J. Jiang,
“Accelerating Mobile Applications at the Network Edge with Software-
Programmable FPGAs,” in IEEE INFOCOM, 2018.

[15] Q. Xiao, Y. Liang, L. Lu, S. Yan, and Y.-W. Tai, “Exploring Heteroge-
neous Algorithms for Accelerating Deep Convolutional Neural Networks
on FPGAs,” in ACM DAC, 2017.

[16] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava,
R. Gupta, and Z. Zhang, “Accelerating Binarized Convolutional Neural
Networks with Software-Programmable FPGAs,” in ACM FPGA, 2017.

[17] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural Net-
works,” in ACM FPGA, 2015.

[18] B. Fang, X. Zeng, and M. Zhang, “NestDNN: Resource-Aware Multi-
Tenant On-Device Deep Learning for Continuous Mobile Vision,” in
ACM MobiCom, 2018.

[19] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishna-
murthy, “MCDNN: An Approximation-Based Execution Framework for
Deep Stream Processing Under Resource Constraints,” in ACM MobiSys,
2016.

[20] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “DeepCache: Principled
Cache for Mobile Deep Vision,” in ACM MobiCom, 2018.

[21] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
Learning With Limited Numerical Precision,” in ICML, 2015.

[22] S. Anwar, K. Hwang, and W. Sung, “Fixed Point Optimization of
Deep Convolutional Neural Networks for Object Recognition,” in IEEE
ICASSP, 2015.

[23] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training neural networks with weights and
activations constrained to +1 or -1,” arXiv e-print, Feburary 2016.

[24] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized Convolu-
tional Neural Networks for Mobile Devices,” in IEEE CVPR, 2016.

[25] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure, “Adaptive
Control of Extreme-scale Stream Processing Systems,” in IEEE ICDCS,
2006.

[26] R. Johari and J. N. Tsitsiklis, “Efficiency Loss in a Network Resource
Allocation Game,” Mathematics of Operations Research, vol. 29, no. 3,
2004.

[27] P. Marbach, “Priority Service and Max-Min Fairness,” in IEEE INFO-
COM, 2002.

[28] “CHaiDNN: An HLS based Deep Neural Network Accelerator Library
for Xilinx Ultrascale+ MPSoCs,” https://github.com/Xilinx/CHaiDNN.

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-time Object Detection,” in IEEE CVPR, 2016.

[30] “The Pascal VOC 2012 Dataset,” http://host.robots.ox.ac.uk/pascal/VO
C/voc2012/.

[31] “HyperLPR: A High Performance License Plate Recognition Frame-
work,” https://github.com/zeusees/HyperLPR.

[32] “Caffe Model Zoo,” http://caffe.berkeleyvision.org/model zoo.html.
[33] “The Comprehensive Cars (CompCars) dataset,” http://mmlab.ie.cuhk.

edu.hk/datasets/comp cars/index.html.
[34] “DJI Mavic Pro.” 2018, https://www.dji.com/mavic.
[35] “SONY dsc-RX100 V,” https://www.sony.com/electronics/cyber-shot-c

ompact-cameras/dsc-rx100m5a.
[36] “UnrealCV,” https://unrealcv.org/.
[37] “Caffe Deep Learning Framework,” http://caffe.berkeleyvision.org/.
[38] L. N. Huynh, Y. Lee, and R. K. Balan, “DeepMon: Mobile GPU-based

Deep Learning Framework for Continuous Vision Applications,” in ACM
MobiSys, 2017.

[39] W. Zhang, S. Li, L. Liu, Z. Jia, Y. Zhang, and D. Raychaudhuri, “Hetero-
Edge: Orchestration of Real-time Vision Applications on Heterogeneous
Edge Clouds,” in IEEE INFOCOM, 2019.

[40] S. Jiang, D. He, C. Yang, C. Xu, G. Luo, Y. Chen, Y. Liu, and J. Jiang,
“Accelerating mobile applications at the network edge with software-
programmable fpgas,” in IEEE INFOCOM, 2018.

[41] S. Wang, C. Zhang, Y. Shu, and Y. Liu, “Live video analytics with
fpga-based smart cameras,” in ACM HotEdgeVideo, 2019.

[42] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tu-
manov, J. Yaniv, R. Mavlyutov, Í. Goiri, S. Krishnan, J. Kulkarni
et al., “Morpheus: Towards Automated SLOs for Enterprise Clusters,”
in USENIX OSDI, 2016.

[43] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca,
“Jockey: Guaranteed Job Latency in Data Parallel Clusters,” in ACM
EuroSys, 2012.

[44] B. Ravindran, E. D. Jensen, and P. Li, “On Recent Advances in
Time/Utility Function Real-Time Scheduling and Resource Manage-
ment,” in IEEE ISORC, 2005.

