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Abstract

The use of automatic methods, often referred to as Neu-

ral Architecture Search (NAS), in designing neural network

architectures has recently drawn considerable attention. In

this work, we present an efficient NAS approach, named HM-

NAS, that generalizes existing weight sharing based NAS

approaches. Existing weight sharing based NAS approaches

still adopt hand designed heuristics to generate architecture

candidates. As a consequence, the space of architecture

candidates is constrained in a subset of all possible archi-

tectures, making the architecture search results sub-optimal.

HM-NAS addresses this limitation via two innovations. First,

HM-NAS incorporates a multi-level architecture encoding

scheme to enable searching for more flexible network ar-

chitectures. Second, it discards the hand designed heuris-

tics and incorporates a hierarchical masking scheme that

automatically learns and determines the optimal architec-

ture. Compared to state-of-the-art weight sharing based

approaches, HM-NAS is able to achieve better architecture

search performance and competitive model evaluation accu-

racy. Without the constraint imposed by the hand designed

heuristics, our searched networks contain more flexible and

meaningful architectures that existing weight sharing based

NAS approaches are not able to discover.

1. Introduction

Neural architecture search (NAS) has recently attracted

significant interests due to its capability of automating neural

network architecture design and its success in outperforming

hand-crafted architectures in many important tasks such as

image classification [1], object detection [2], and semantic

segmentation [3]. In early NAS approaches, architecture can-

didates are first sampled from the search space; the weights

of each candidate are learned independently and are dis-

carded if the performance of the architecture candidate is

not competitive [4, 1, 5, 6]. Despite their remarkable per-

formance, since each architecture candidate requires a full

training, these approaches are computationally expensive,

consuming hundreds or even thousands of GPU days in order

to find high-quality architectures.

To overcome this bottleneck, a majority of recent efforts

focuses on improving the computation efficiency of NAS

using the weight sharing strategy [4, 7, 8, 9, 10]. Specifi-

cally, rather than training each architecture candidate inde-

pendently, the architecture search space is encoded within

a single over-parameterized supernet which includes all

the possible connections (i.e., wiring patterns) and oper-

ations (e.g., convolution, pooling, identity). The supernet

is trained only once. All the architecture candidates inherit

their weights directly from the supernet without training

from scratch. By doing this, the computation cost of NAS is

significantly reduced.

Unfortunately, although the supernet subsumes all the

possible architecture candidates, existing weight sharing

based NAS approaches still adopt hand designed heuristics

to extract architecture candidates from the supernet. As an

example, in many existing weight sharing based NAS ap-

proaches such as DARTS [7], the supernet is organized as

stacked cells and each cell contains multiple nodes connected

with edges. However, when extracting architecture candi-

dates from the supernet, each candidate is hard coded to have

exactly two input edges for each node with equal importance

and to associate each edge with exactly one operation. As

such, the space of architecture candidates is constrained in a

subset of all possible architectures, making the architecture

search results sub-optimal.

Given the constraint of existing weight sharing ap-

proaches, it is natural to ask the question: will we be able to

improve architecture search performance if we loosen this

constraint? To this end, we present HM-NAS, an efficient

neural architecture search approach that effectively addresses

such limitation of existing weight sharing based NAS ap-

proaches to achieve better architecture search performance

and competitive model evaluation accuracy. As illustrated in

Figure 1, to loosen the constraint, HM-NAS incorporates a

multi-level architecture encoding scheme which enables an

architecture candidate extracted from the supernet to have



arbitrary numbers of edges and operations associated with

each edge. Moreover, it allows each operation and edge

to have different weights which reflect their relative impor-

tance across the entire network. Based on the multi-level

encoded architecture, HM-NAS formulates neural architec-

ture search as a model pruning problem: it discards the

hand designed heuristics and employs a hierarchical mask-

ing scheme to automatically learn the optimal numbers of

edges and operations and their corresponding importance as

well as mask out unimportant network weights. Moreover,

the addition of these learned hierarchical masks on top of

the supernet also provides a mechanism to help correct the

architecture search bias caused by bilevel optimization of

architecture parameters and network weights during supernet

training [11, 12, 13]. Because of such benefit, HM-NAS is

able to use the unmasked network weights to speed up the

training process.

We evaluate HM-NAS on both CIFAR-10 and ImageNet

and our results are promising: HM-NAS is able to achieve

competitive accuracy on CIFAR-10 with 1.6× to 1.8× less

parameters and 2.7× total training time speed-up compared

with state-of-the-art weight sharing approaches. Similar re-

sults are also achieved on ImageNet. Moreover, we have

conducted a series of ablation studies that demonstrate the

superiority of our multi-level architecture encoding and hier-

archical masking schemes over randomly searched architec-

tures, as well as single-level architecture encoding and hand

designed heuristics used in existing weight sharing based

NAS approaches. Finally, we have conducted an in-depth

analysis on the best-performing network architectures found

by HM-NAS. Our results show that without the constraint

imposed by the hand designed heuristics, our searched net-

works contain more flexible and meaningful architectures

that existing weight sharing based NAS approaches are not

able to discover.

In summary, our work makes the following contributions:

• We present HM-NAS, an efficient neural architecture

search approach that loosens the constraint of existing

weight sharing based NAS approaches.

• We introduce a multi-level architecture encoding

scheme which enables an architecture candidate to have

arbitrary numbers of edges and operations with dif-

ferent importance. We also introduce a hierarchical

masking scheme which is able to not only automati-

cally learn the optimal numbers of edges, operations

and important network weights, but also help correct the

architecture search bias caused by bilevel optimization

during supernet training.

• Extensive experiments show that compared to state-

of-the-art weight sharing based NAS approaches, HM-

NAS is able to achieve better architecture search effi-

ciency and competitive model evaluation accuracy.
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Figure 1: The pipelines of (a) existing weight sharing based

NAS approaches such as DARTS [7] and SNAS [8]; and (b)

HM-NAS (our approach).

2. Related Work

Designing high-quality neural networks requires domain

knowledge and extensive experiences. To cut the labor in-

tensity, there has been a growing interest in developing auto-

mated neural network design approaches through NAS. Pio-

neer works on NAS employ reinforcement learning (RL) or

evolutionary algorithms to find the best architecture based on

nested optimization [4, 1, 5, 6]. However, these approaches

are incredibly expensive in terms of computation cost. For

example, in [1], it takes 450 GPUs for four days to search

for the best network architecture.

To reduce computation cost, many works adopt the weight

sharing strategy where the weights of architecture candidates

are inherited from a supernet that subsumes all the possible

architecture candidates. To further reduce the computation

cost, recent weight sharing based approaches such as DARTS

[7] and SNAS [8] replace the discrete architecture search

space with a continuous one and employ gradient descent to

find the optimal architecture. However, these approaches re-

strict the continuous search space with hand designed heuris-

tics, which could jeopardize the architecture search perfor-

mance. Moreover, as discussed in [11, 12, 13], the bilevel

optimization of architecture parameters and network weights

used in existing weight sharing based approaches inevitably

introduces bias to the architecture search process, making

their architecture search results sub-optimal. Our approach

is related to DARTS and SNAS in the sense that we both

build upon the weight sharing strategy. However, our goal

is to address the above limitations of existing approaches to

achieve better architecture search performance.

Our approach is also related to ProxylessNAS [9]. Proxy-

lessNAS formulates NAS as a model pruning problem. In

our approach, the employed hierarchical masking scheme

also prunes the redundant parts of the supernet to generate

the optimal network architecture. The distinction is that

ProxylessNAS focuses on pruning operations (referred to



NAS Approach
Architecture

Encoding

Retrain

from Scratch

Use

Proxy

ENAS [4] Operations Yes Yes

NASNet [1] Operations Yes Yes

AmoebaNet [6] Operations Yes Yes

NAONet [14] Operations Yes Yes

ProxylessNAS [9] Operations Yes No

FBNet [15] Operations Yes No

DARTS [7] Operations Yes Yes

SNAS [8] Operations Yes Yes

HM-NAS Operations & Edges No No

Table 1: Comparison between HM-NAS and other NAS

approaches on a number of important dimensions.

as path in [9]) of the supernet, while HM-NAS provides a

more generalized model pruning mechanism which prunes

the redundant operations, edges, and network weights of the

supernet to derive the optimal architecture. Our approach is

also similar to ProxylessNAS as being a proxyless approach.

Rather than adopting a proxy strategy like [7, 8], which

transfers the searched architecture to another larger network,

both HM-NAS and ProxylessNAS directly search the ar-

chitectures on target datasets without architecture transfer.

However, unlike ProxylessNAS which involves retraining as

the last step, HM-NAS eliminates the prolonged retraining

process and replaces it with a fine-tuning process with the

reuse of the unmasked pretrained supernet weights.

Table 1 provides a comparison between HM-NAS and

relevant approaches on a number of important dimensions.

The combination of the proposed multi-level architecture

encoding and hierarchical masking techniques makes HM-

NAS superior over many existing approaches. We quantify

such superiority in §4.

3. Our Approach

3.1. Search Space and Supernet Design with Multi-
Level Architecture Encoding

Following [6, 7, 8], we use a cell structure with an ordered

sequence of nodes as our search space. The network is then

composed of several identical cells which are stacked on top

of each other. Specifically, a cell is represented using a di-

rected acyclic graph (DAG) where each node x in the DAG is

a latent representation (e.g., a feature map in a convolutional

network). A cell is set to have two input nodes, one or more

intermediate nodes, and one output node. Specifically, the

two input nodes are connected to the outputs of cells from

two previous cells; each intermediate node is connected by

all its predecessors; and the output node is the concatenation

of all the intermediate nodes within the cell.

To build the supernet that subsumes all the possible

architectures in the search space, existing works such as

DARTS [7] and SNAS [8] associate each edge in the DAG

with a mixture of candidate operations (e.g., convolution,

pooling, identity) instead of a definite one. Moreover, each

candidate operation of the mixture is assigned with a learn-

able variable (i.e., operation mixing weight) which encodes

the importance of this candidate operation. As such, the mix-

ture of candidate operations associated with a particular edge

is represented as the softmax over all candidate operations:

o(x) =
N∑

i=1

exp(αi)∑
j exp(αj)

oi(x) (1)

where {oi} denote the set of N candidate operations, {αi}
denote the set of N real-valued operation mixing weights.

Although this supernet encodes the importance of dif-

ferent candidate operations within each edge, it does not

provide a mechanism to encode the importance of different

edges across the entire DAG. Instead, all the edges across

the DAG are constrained to have the same importance. How-

ever, as we observed in our experiments (§4), loosening this

constraint is able to help NAS find better architectures.

Motivated by this observation, in HM-NAS’s supernet,

besides encoding the importance of each candidate operation

within an edge, we introduce a separate set of learnable

variables (i.e., edge mixing weights) to independently encode

the importance of each edge across the DAG. As such, each

intermediate node x(i) in the DAG is computed based on all

of its predecessors as:

x(i) =
∑

j<i

exp(β(i,j))∑
k<i exp(β(i,k))

o(x(j)) (2)

where β(i,j) denote the real-valued edge mixing weight for

the directed edge (i, j).
In summary, α = {αi} encode the architecture at the

operation level while β = {β(i,j)} encode the architecture

at the edge level. Therefore, we have constructed a supernet

with multi-level architecture encoding where α and β alto-

gether encode the overall architecture of the network, and

we refer to {α,β} as the architecture parameters.

3.2. Training the Supernet

To train the multi-level encoded supernet, we follow [7]

to jointly optimize the architecture parameters {α,β} and

the network weights w in a bilevel way via stochastic gra-

dient descent with first or second-order approximation. Let

Ltrain and Lval denote the training loss and validation loss

respectively. The goal is to find {α∗,β∗} that minimize

Lval(α,β,w∗), where w∗ is obtained by minimizing the

training loss w∗ = argminw Ltrain(α
∗,β∗,w). For the

details of this bilevel optimization, please refer to [7] as we

do not claim any new contribution on this part.

Here we want to emphasize two techniques that we find

helpful in training our multi-level encoded supernet. First,

due to insufficient training of network weights w at the be-

ginning of the supernet training, the architecture parameters



3

0

2

1

3

0

2

1

Supernet with Multi-level 
Architecture Encoding

3

0

2

1
Network
Weights 

0.9
0.8
1.1
0.1
1.2
1.0

0.3 0.2 1.8
0.8 0.1 1.5
0.2 0.0 1.1
0.1 0.5 0.9
1.2 0.3 0.4
0.3 0.8 0.8

(0, 1)
(0, 2)
(0, 3)
(1, 2)
(1, 3)
(2, 3)

0.8 0.2 0.9
1.8 1.2 1.1
0.3 1.2 0.2

M

Real-Valued 
Hierarchical Mask

Masked 
Architecture

Masked
Weights

Masked
Weights

Step 1

Real-Valued 
Hierarchical Mask

1.9
1.8
1.4
1.1
1.2
1.2

0.2 0.1 1.9
1.8 0.1 0.5
0.1 0.2 1.1
0.1 1.5 1.9
1.3 0.5 0.6
0.3 1.2 0.4

(0, 1)
(0, 2)
(0, 3)
(1, 2)
(1, 3)
(2, 3)

0.2 0.2 1.9
1.8 0.2 0.4
0.3 1.4 0.2

Step k

M M

M

M M

Masked 
Architecture

Figure 2: Illustration of the iterative hierarchical masking process on a single cell. In this example, each edge has 3

candidate operations marked using red, yellow, and blue color respectively. In each iteration, the real-valued hierarchical

masks {M r
α,M

r
β ,M

r
w} are passed through a deterministic thresholding function to obtain the corresponding binary masks

(highlighted grids represent ‘1’, the rest represent ‘0’) that mask out redundant operations, edges, and weights of the supernet.

α and β could be randomly selected. To avoid this, similar

to [15], we adopt a warm start in training of w while freez-

ing the training of α and β. Second, updating α and β too

frequently could lead to underfitting of w. We solve this by

triggering the optimization of α and β stochastically rather

than doing it constantly, with a probability of p = σ(iter),
where iter is the number of iterations and σ(·) is a monoton-

ically non-increasing function that satisfies σ(0) = 1. After

a prolonged decrease, the probability p may even be set to

zero, i.e., no bilevel optimization is conducted any longer

and only w is optimized.

3.3. Searching the Optimal Architecture via
Hierarchical Masking

Given the trained supernet, we formulate neural archi-

tecture search as a model pruning problem, and iteratively

prune the redundant operations, edges, and network weights

of the supernet in a hierarchical manner to derive the op-

timal architecture through a scheme which we refer to as

hierarchical masking.

Figure 2 illustrates the iterative hierarchical masking

process on a single cell. Specifically, we begin with the

trained supernet as our base network, and initiate three types

of real-valued masks for operations, edges, and network

weights, respectively. These masks are passed through a

deterministic thresholding function to obtain the correspond-

ing binary masks. These generated binary masks are then

elementwisely multiplied with the architecture parameters

{α∗,β∗} and network weights w∗ of the supernet to gen-

erate a searched network. By iteratively training the real-

valued masks through backpropagation combined with net-

work binarization techniques [16] in an end-to-end manner,

the binary masks learned in the end are able to mask out

redundant operations, edges, and network weights in the

supernet to derive the optimal architecture.

Formally, let M r = {M r
α,M

r
β ,M

r
w} denote the real-

valued hierarchical masks, where M r
α,M

r
β ,M

r
w is the real-

valued mask for operations, edges, and network weights,

respectively. Architecture search is then reduced to find-

ing M r∗ which minimizes the training loss of the masked

supernet:

M r∗ = argmin
Mr

L(PM (α∗,β∗,w∗)) (3)

M = H(M r − τ) (4)

where M = {Mα,Mβ ,Mw} are the corresponding bi-

nary masks, H(·) is the Heaviside step function as the deter-

ministic thresholding function, τ is the pre-defined threshold,

and P(·) is the elementwise projection function. In this work,

we use elementwise multiplication for P(·).
Even though the Heaviside step function in (4) is non-

differentiable, we adopt the approximation strategy used in

BinaryConnect [16] to approximate the gradients of real-

valued masks Mr using the gradients of the binary masks

M , and thus update the real-valued masks Mr using the

gradients of the binary masks M . As shown in prior

works [17, 16, 18], this strategy is effective because the

gradients of M actually act as a regularizer or a noisy es-

timator of the gradients of Mr. By doing this, the binary

masks can be trained in an end-to-end differentiable manner.

3.4. Deriving the Final Model via Fine-Tuning

The hierarchical masking process in §3.3 outputs not only

the optimal network architecture but also a set of optimized

network weights. As such, we can derive the final model

via fine-tuning instead of retraining the searched architec-

ture from scratch. With the optimized network weights, the

searched architecture is able to maintain comparable accu-

racy compared to the supernet (e.g., ∼1% loss on CIFAR-

10), and thus acts as a significantly better starting point for



Algorithm 1: HM-NAS

Input: multi-level architecture encoded supernet

Θ(α,β,w), real-valued masks Mr
α, Mr

β , Mr
w, threshold

τ , deterministic thresholding function H(·), elementwise

projection function P(·)

Output:
{
Θ̂(α∗,β∗,w∗),M∗

α,M
∗

β ,M
∗

w

}
: the

optimized searched model and binary masks

// supernet training

Initialize α ← α0, β ← β0, w ← w0, t ← 0.

while not converge do
Update β and α by descending ∇βLval(α

∗, β, w∗)
and ∇αLval(α, β∗, w∗) with a probability of σ(t)

Update w by descending ∇wLtrain(α
∗, β∗, w)

t ← t+ 1
end

// searching via hierarchical masking

Initialize Mr
α ← M0

α, Mr
β ← M0

β , Mr
w ← M0

w

while not converge do
Feed forward and loss calculation with

PH(Mr
w−τ)(w

∗), PH(Mr
α−τ)(α

∗), PH(Mr
β
−τ)(β

∗)

Update Mr by descending

∇H(Mr
−τ)Ltrain(PM (α∗,β∗,w∗))

end

// fine-tuning the searched network

Initialize w ← w∗. Construct searched network

Θ̂(α∗,β∗,w) masked by M∗

α,M
∗

β ,M
∗

w.

while not converge do
Update unmasked w by descending

∇wLtrain(PM∗(α∗,β∗,w))
end

fine-tuning. This not only ensures higher accuracy, but also

replaces the prolonged retraining process with a more effi-

cient fine-tuning process, as we will demonstrate in §4.2.

4. Experiments and Results

We evaluate the performance of HM-NAS and compare

it with state-of-the-arts NAS approaches on two benchmark

datasets: CIFAR-10 (§4.2) and ImageNet (§4.3). More-

over, we have conducted a series of ablation studies that

validate the importance and effectiveness of the proposed

multi-level architecture encoding scheme and hierarchical

masking scheme incorporated in the design of HM-NAS

(§4.4). Finally, we provide an in-depth analysis on the archi-

tecture found by HM-NAS (§4.5).

4.1. Experimental Setup

We use 3 cells and 36 initial channels to build the supernet

for CIFAR-10, and 5 cells and 24 initial channels for Ima-

geNet. Following DARTS [7], our cell consists of 7 nodes

in all the experiments. The input nodes, i.e., the first and

second nodes of cell k is the output of cell k − 1 and k − 2,

respectively. The output node is the depthwise concatena-

tion of all the intermediate nodes. We include the following

operations: 3 × 3 and 5 × 5 separable convolutions, 3 × 3
and 5× 5 dilated separable convolutions, 3× 3 max pooling

and average pooling, and identity. ReLU-Conv-BN triplet is

adopted for convolutional operations except the first convo-

lutional layer (Conv-BN), and each separable convolution is

applied twice. The default stride is 1 for all operations unless

the output size is changed. The experiments are conducted

using a single NVIDIA Tesla V100 GPU.

4.2. Results on CIFAR-10

Training Details. We begin with training the supernet for

100 epochs with batch size 128. In each epoch, we first

train weights w on 80% of the training set using SGD with

momentum. The initial learning rate is 0.1 with decay fol-

lowing a cosine decaying schedule. The momentum is 0.9

and weight decay is 3e-4. Architecture parameters α, β

are randomly initialized and scaled by 1e-3. Next, We train

α and β on the rest 20% of the training set with Adam

optimizer [19] with the learning rate of 3e-4 and weight de-

cay of 1e-3. We empirically observe more stable training

process when using Adam for optimizing the architecture

parameters, which is also used in [7]. Following [15], we

postpone the training of α and β by 10 epochs to warm

up w first. The supernet training takes 7.5 hours (or 30

hours for the second-order approximation). Once the super-

net is trained, we perform 20 epochs of neural architecture

search via hierarchical masking using the entire training set.

Hierarchical masks M r
α,M

r
β ,M

r
w are initialized as 1e-2.

They are trained using the Adam optimizer with an initial

learning rate of 1e-4 for M r
w and 1e-5 for M r

α and M r
β ,

which is decayed by a factor of 10 after 10 epochs. The

binarizer threshold τ (Equation 4) is 5e-31. The hierarchical

mask training takes 3.5 hours. Lastly, the masked network is

fine-tuned for 200 epochs for 9.6 hours with cutout [20].

Architecture Evaluation. Table 2 shows our evaluation

results on CIFAR-10 where ‘c/o’ denotes cutout adapted

from [20]. The test error of HM-NAS is on par with state-of-

the-art NAS methods. Notably, HM-NAS achieves this by

using the fewest parameters among all methods. Specifically,

HM-NAS only uses 1.8M parameters, which is 1.4× to 3.2×
fewer compared to others.

Performance at Different Training Stages. Table 3 breaks

down the complete architecture search process of HM-NAS

and shows the performance of HM-NAS at different stages.

Specifically, compared to the supernet, the searched network

(derived after hierarchical masking) loses only ∼1% accu-

racy with 40% less parameters. Although directly using

this searched network is not optimal (with test error 5.14%),

it does provide a good initialization for fine-tuning, which

leads to lower test error (from 5.14% to 2.41%).

1Our method is robust to thresholds in the range of [0, 1e-2].



Architecture
Test Error

(%)

Params

(M)

Search Cost

(GPU days)

Train Cost

(GPU days)

Total Cost

(GPU days)

Search

Method

DenseNet-BC [21] 3.46 25.6 - - - manual

ENAS + c/o [4] 2.89 4.6 0.45 (630 epochs)† - RL

NASNet-A + c/o [1] 2.65 3.3 3150 - - RL

SNAS + c/o [8] 2.85 2.8 1.5 1.5 (600 epochs) 3 gradient-based

ProxyLess-G + c/o 2.08 5.7 4* (600 epochs) - gradient-based

AmoebaNet-A + c/o [6] 3.34 ± 0.06 3.2 3150 - - evolution

AmoebaNet-B + c/o [6] 2.55 ± 0.05 2.8 3150 - - evolution

DARTS (1st order) + c/o [7] 3.00 ± 0.14 3.3 1.5* 2† (600 epochs) 3.5 gradient-based

DARTS (2nd order) + c/o [7] 2.76 ± 0.09 3.3 4* 2† (600 epochs) 6 gradient-based

HM-NAS (1st order) + c/o 2.78 ± 0.07 1.8 0.45 0.4 (200 epochs) 0.85 gradient-based

HM-NAS (2nd order) + c/o 2.41 ± 0.05 1.8 1.4 0.4 (200 epochs) 1.8 gradient-based

* Results obtained from authors’ official response in openreview.
† Results obtained using code publicly released by the authors.

Table 2: Comparison with state-of-the-arts on CIFAR-10.

Architecture

Test

Error

(%)

Params

(M)

Params

Reduction

(%)

Supernet 4.2 3 -

Searched Network 5.14 1.8 40

Searched Network + Fine-Tuning 2.41 1.8 40

Table 3: Performance of HM-NAS at different architecture

search stages.

Architecture Search Cost Analysis. To find the optimal ar-

chitecture, HM-NAS only uses 0.85 or 1.8 GPU days, which

is significantly faster compared to all other NAS methods.

To understand why HM-NAS is efficient, we compare the

complete architecture search process of HM-NAS to DARTS.

Figure 3 illustrates the training curve of HM-NAS (in blue

color) and DARTS2 (in red color) during the complete ar-

chitecture search process on CIFAR-10. Specifically, both

HM-NAS and DARTS use the first 100 epochs to train the

supernet with the same train/validation dataset split. Due

to multi-level architecture encoding, HM-NAS is able to

achieve better test results after 100 epochs. Then, DARTS

transfers the learned cell to build a larger network and re-

trains it from scratch. This process takes approximately 600

epochs to converge. In contrast, from 100 epoch to 120

epoch and onward, HM-NAS performs architecture search

via hierarchical masking and fine-tuning, respectively. This

process only takes 220 epochs to converge, which is 2.7×
faster compared to DARTS.

4.3. Results on ImageNet

We conduct experiments on ImageNet 1000-class [22]

classification task, where input image size is 224× 224. The

dataset has around 1.28M training images and we test on the

50k validation images.

Training Details. We adopt the small computation regime

(e.g., MobileNet-V1 [23]) in the experiments. Following

2Our implementation based on the code released by the authors.
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Start 
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Figure 3: Training curves of HM-NAS (in blue color) and

DARTS (in red color) on CIFAR-10. Solid lines denote test

errors (y-axis on the left); dashed lines denote training errors

(y-axis on the right).

[15], 100 classes from the original 1,000 classes of Ima-

geNet is randomly sampled to train the supernet for 100

epochs with batch size 128. It takes around one GPU day

to finish the supernet training. Once the supernet is trained,

the hierarchical masking is then performed with the same

optimization settings mentioned in §4.2. The hierarchical

masking process takes around one GPU day to finish. Lastly,

the searched network is fine-tuned on the entire ImageNet

training dataset (with 1,000 classes) for 60 epochs with ini-

tial learning rate 1e-2 then decreased to 1e-3 at the epoch 30.

This phase takes around 3 GPU days to finish.

Architecture Evaluation. Table 4 shows our evaluation re-

sults on ImageNet. The result is comparable to DARTS,

considering that we adopt the exact same search space

in DARTS [7], which uses the operations incorporated in

MobileNet-V1 [23]. Notably, we achieve comparable results

to the state-of-the-art gradient-based NAS approaches [8, 7]

with 1.2× to 1.3× less parameters and 1.08× to 1.2× less

FLOPs. With a larger supernet and better candidate op-

erations such as the ones used in MobileNet-V2 [24], We

believe that the results could be further improved.

4.4. Ablation Studies

In this section, we conduct a series of ablation studies to

demonstrate the superiority of the design of HM-NAS. The



Architecture
Top-1 Acc.

(%)

Params

(M)

FLOPs

(M)

MobileNet-V1 [23] 70.6 4.2 569

MobileNet-V2 [24] 74.7 6.9 585

NASNet-A [1] 74.0 5.3 564

Amoeba-A [6] 74.5 5.1 555

DARTS [7] 73.3 4.7 574

SNAS [8] 72.7 4.3 522

HM-NAS 73.4 3.6 482

Table 4: Comparison with state-of-the-arts on ImageNet.

ablation studies are conducted on CIFAR-10 with second-

order derivative introduced in Table 2.

Comparison to Single-Level Architecture Encoding. To

demonstrate the superiority of the proposed multi-level ar-

chitecture encoding scheme over single-level architecture

encoding, we compare the single-level encoded network

against the multi-level encoded network, both with hand de-

signed heuristics (by replacing each mixed operation with the

most likely operation and taking the top-2 confident edges

from distinct nodes). As shown in Table 5, the multi-level

architecture encoding achieves 2.7% test error, giving 0.4%
accuracy improvement over the single-level one.

Comparison to Hand Designed Heuristics. To demon-

strate the superiority of learned hierarchical masks over hand

designed heuristics, we compare the multi-level encoded net-

work with learned hierarchical masks against the one with

hand designed heuristics. As shown in Table 5, the hierar-

chical masks achieve 2.41% test error, providing about 0.3%
accuracy improvement over hand designed heuristics.

Comparison to Random Architectures. As discussed

in [11, 25], random architecture is also a competitive choice.

Therefore, we perform a random architecture search from

the same supernet for 18 times. As shown in Table 6, the

average test error of random architecture is 3.41%. This is

competitive to the test error of single-level encoded network

(3.1% in Table 5), whose search space is constrained by

hand designed heuristics. Similar findings are also observed

in [11]. In contrast, HM-NAS outperforms the random ar-

chitecture by 1% in test error with 3× less training epochs.

This is because with multi-level architecture encoding and

hierarchical masking, the search space is significantly en-

larged, making it challenging for random search to find a

competitive network.

Comparison to Random Initialization. As our final ab-

lation study, to demonstrate the superiority of unmasked

network weights obtained from hierarchical masking over

random weights, we randomly initialize the weights of the

searched network (same architecture as HM-NAS) and train

it for 600 epochs on par with the training setup in DARTS.

We run 5 times of random initialization, each running the

same number of epochs. As shown in Table 6, the average

Architecture

Encoding
Derived Rule

Test

Error

(%)

Params

(M)

Single-Level (α) Hand Designed Heuristics 3.1 2.5

Multi-Level (α, β) Hand Designed Heuristics 2.7 2.1

Multi-Level (α, β) Learned Hierarchical Masks 2.41 1.8

Table 5: Comparison to single-level architecture encoding

and hand designed heuristics.

Architecture
Test Error

(%)

Params

(M)

Train Cost

(epochs)

Random Architecture 3.41 ± 0.15 2.1 600

Random Initialization ‡ 2.95 ± 0.08 1.8 600

HM-NAS 2.41 ± 0.05 1.8 200
‡ Same architecture as HM-NAS + c/o with random initialized weights.

Table 6: Comparison to random architectures and random

initialization.

test error of random initialization is 2.95%, which is compa-

rable to DARTS but considerably higher than HM-NAS. This

result indicates that a good initialization for the searched net-

work is critical for obtaining the best-performing results and

fast convergence.

4.5. Searched Architecture Analysis

Finally, we provide an in-depth analysis on the network

architecture found by HM-NAS. We have the following three

important observations.

Different Learned Importance for Different Edges. Fig-

ure 4(a) and Figure 5(a) illustrate the details of the learned

cell for CIFAR-10 and ImageNet respectively, where the im-

portance of edge, i.e., edge mixing weight β(i,j), is marked

above every edge. Unlike DARTS in which each edge has

the same hard-coded importance, due to multi-level architec-

ture encoding, the best-performing cell found by HM-NAS

has different learned importance for different edges across

the cell. Moreover, we find that edges connecting to later

intermediate nodes have higher importance than early in-

termediate nodes. One possible explanation is that during

cell construction, each intermediate node is ordered and is

derived from its predecessors by accumulating information

passed from its predecessors. Hence, it has more influence

on the output of the cell, which is reflected by the higher

importance learned through our approach. Once the impor-

tance of the edge is no longer heuristically determined but

automatically learned, the multi-level architecture encoding

provides a more flexible way to encode the entire supernet

architecture and thus provides us with a better superset for

architecture search.

Robustness of Learned Edge Importance. We repeat the

experiments 5 times with random seeds on both CIFAR-10

and ImageNet datasets, and report the (per run) averaged

incoming edge importance in each immediate node with the
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Figure 4: Details of learned cell for CIFAR-10. (a) cell structure. (b) number of input edges of four intermediate nodes. (c)

histogram of the number of edges w.r.t the number of operations selected.
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Figure 5: Details of learned cell for ImageNet. (a) cell structure. (b) number of input edges of four intermediate nodes. (c)

histogram of the number of edges w.r.t the number of operations selected.

(a) CIFAR-10 (b) ImageNet

Figure 6: Robustness of learned edge importance of (a)

CIFAR-10 and (b) ImageNet. The learned importance of

different edges does not strongly depend on initialization.

best validation performance of the architecture over epochs

(we keep track of the most recent architectures). As shown in

Figure 6, we observe that the learned importance of different

edges does not strongly depend on initialization: even if

the initial weights are randomly initialized, after the search

process completes, the later intermediate nodes always have

higher importance than earlier nodes.

More Flexible Architectures. Figure 4(b) and Figure 5(b)

show the number of input edges connecting to each inter-

mediate node, while Figure 4(c) and Figure 5(c) show the

histogram of the number of edges w.r.t the number of oper-

ations selected (e.g. the third bar from the left shows that

three edges have two associated operations). Unlike DARTS

in which each intermediate node is hard coded to have ex-

actly two input edges and each edge is hard coded to have

exactly one operation, the best-performing cell found by

HM-NAS has intermediate nodes which have more (≥ 2) in-

coming edges, and edges are associated with zero (the edge

is removed) or multiple (≥ 1) operations. This observation

suggests that HM-NAS is able to find more flexible architec-

tures that existing weight sharing based NAS approaches are

not able to discover.

In principle, other constraints such as the number of cells,

the number of channels, the number of nodes in a cell, and

the combination operation (e.g. sum, concatenation) can all

be further relaxed by the proposed multi-level architecture

encoding and hierarchical masking schemes. We leave these

explorations as our future work.

5. Conclusion

We present an efficient NAS approach named HM-NAS

that generalizes existing weight sharing based NAS ap-

proaches. HM-NAS incorporates a multi-level architecture

encoding scheme to enable an architecture candidate to have

arbitrary numbers of edges and operations with different im-

portance. The learned hierarchical masks not only select the

optimal numbers of edges, operations and important network

weights, but also help correct the architecture search bias

caused by bilevel optimization in supernet training. Experi-

ment results show that, compared to state-of-the-arts, HM-

NAS is able to achieve competitive accuracy on CIFAR-10

and ImageNet with improved architecture search efficiency.
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