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Human biology is deeply rooted in the daily 24-hour temporal period.  
Our biochemistry varies significantly and idiosyncratically over the 
course of a day. Staying out of sync with one’s circadian rhythm can 
lead to many complications over time, including a higher likelihood for 

cardiovascular disease, cancer, obesity, and mental health problems [1]. Constant 
changes in daily rhythm due to shift work has been shown to increase risk factors 
for cancer, obesity, and Type 2 diabetes. Moreover, the advent of technology 
and the resultant always-on ethos can cause rhythm disruption on personal and 
societal levels for about 70% of the population [2]. 

Circadian disruption can also cause a serious deficit in cognitive performance. 
In particular, alertness – a key biological process underlying our cognitive 
performance – reflects circadian rhythms [3]. Sleep deprivation and circadian 
disruption can result in poor alertness and reaction time [3]. The decline in 
cognitive performance after 20 to 25 hours of wakefulness is equivalent to a Blood 
Alcohol Concentration (BAC) of 0.10% [4]. To compare, in New York State, a BAC 
of more than 0.05% is considered “impaired” and 0.08% is considered “intoxicated” 
[5]. In other words, the effects of sustained sleep deprivation and circadian 
disruption on cognitive performance is similar (or worse) to being intoxicated. Ill

us
tr

at
io

n,
 is

to
ck

ph
ot

o.
co

m
 



17September 2019 | Volume 23, Issue 3   GetMobile

[MOBILE PLATFORMS]



GetMobile    September 2019 | Volume 23, Issue 318

Output Physiological
and Behavioral Variables

Central 
Pacemaker

SCN

External Input

Ambient Light
Rest/Activity

Feeding

Sleep
Ocular Parameters

Hormones
Arterial Pressure 

Alertness and Cognition
Sympathetic
Parasympathetic

Peripheral 
Oscillators

[MOBILE PLATFORMS]

FIGURE 2. Hardware and Software Platforms for Alertness Sensing.
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Sleep and circadian issues also result in serious 
productivity loss and work occupational 
accidents in the workplace. Th e yearly 
economic loss caused by insuffi  cient sleep 
amounts to a staggering $411 billion in 
the USA alone [6]. Th e incremental cost to 
employers from productivity loss, absenteeism, 
turnover, workplace accidents, and increased 
insurance and medical costs are more than 
$10,000 per year per shift  worker over and 
above the cost of a comparable day worker 
[7], [8]. Sleep and circadian disruption also 
adversely impact memory and learning 
capabilities. In particular, hippocampal-
dependent learning and memory forming 
strongly refl ects circadian infl uence [9]. 

Overview: Th e central circadian clock for 
humans is located in the suprachiasmatic 
nucleus (SCN) of the hypothalamus [36] 
(Figure 1) and drives circadian rhythmicity 
in other brain areas and peripheral tissues 
by sending them neural and humoral 
signals. Environmental periodical cues can 
reset the phase of the central pacemaker 
so that the period and phase of circadian 
rhythms coincide with the timing of the 
external cues. Most peripheral tissues and 
organs contain circadian oscillators. Usually, 
they are under the control of the SCN; 
however, under some circumstances (e.g., 
restricted feeding, jet lag and shift  work), 
they can desynchronize from the SCN. 
Central pacemakers and peripheral oscillators 
are responsible for the daily rhythmicity 
observed in most physiological and behavioral 
functions, such as sleep-wake cycles, physical 
exercise, and feeding time, providing feedback 
in turn that can modify the function of the 
SCN and peripheral oscillators.

Since SCN is located deep in the brain, it is 
not feasible or ethical to measure the status 
directly. Traditionally, human circadian phase 
is evaluated by a 26-50h inpatient assessment of 
continuous core body temperature or multiple 
hours of blood or saliva samples for melato-
nin assay [10]. Such assessments are invasive, 
time consuming, and resource intensive. 

In recent years, mobile sensing researchers 
have been exploring ways to unobtrusively 
and passively infer one’s circadian rhythm 
and link the measure to her cognitive ability, 
performance, sleep and well-being. Th ese 
mobile sensing technologies have enabled 
individuals to monitor their daily lives and 
enabled scientifi c investigators to passively 

collect real-time data without disrupting 
people’s habitual routines. Multiple time-
points of less invasive wearable or mobile 
activity or physiological sensors have been 
applied to infer circadian rhythm and 
alertness [11]–[14]. 

In this article, we will discuss some of 
the key technical challenges associated with 
designing such mobile sensing technologies 
from both the hardware and soft ware 
point of view. We will highlight some of 
the most recent and promising hardware 
and soft ware platforms for mobile sensing 
of alertness, sleep, and circadian rhythm. 
Finally, we will discuss future opportunities 
in this research direction.

TECHNICAL CHALLENGES 
Th ere are a number of technical challenges 
associated with designing mobile sensing 
technologies for capturing alertness, sleep, 
and circadian rhythm information in an 
unobtrusive manner. 

a)  Balancing Accuracy-Obtrusiveness 
How to unobtrusively measure internal 
physiology and behavior to accurately 
infer about sleep, alertness and circadian 
rhythm is one of the most important 
design considerations. More specifi cally, 
balancing accuracy and obtrusiveness 
of the mobile sensing technology is 
the key for the scalability and potential 
real world impact. Technologies and 
procedures that are invasive and 
intrusive tend to capture the internal 
physiological factors more accurately. 

b)  Robustness Th e second key challenge 
is variability across environments. 
Th e sensing modules can be deployed 
in relatively static environments like 
the bedside to moderately dynamic 
environments like the workplace to 
highly dynamic environments such 
as a vehicle. As a result, methods/
techniques to handle diverse and 
dynamic environments are warranted. 

FIGURE 1. General overview 
of the circadian system.
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frame rates of 100-250 fps, while consuming 
only a few tens of milliwatts of power and 
requiring only a micro-controller with a few 
tens of kilobytes of memory for processing.

AlertnessScanner: AlertnessScanner 
(Figure 2b) [24] is a mobile application 
for Android smartphones that can infer 
alertness by leveraging front-facing pictures 
taken passively from smartphones, such as 
during screen unlocks. Measuring reaction 
time from the Psychomotor Vigilance Task 
test at diff erent times in a day as ground truth 
of alertness is relatively highly intrusive and 
requires active participation from the user. 
Th is system predicts alertness by extracting 
the pupil to iris ratio from pictures of the 
user’s face and using a regression model. 
Based on results from two in-the-wild 
studies, it was found that AlertnessScanner 
can infer alertness without requiring any 
action from the user beyond the normal 
smartphone usage.

Sleep Sensing 
DoppleSleep: Radar-based sleep sensing is 
a new promising technology for contactless 
measurement of sleep quantity and quality. 
Radar modules can be manufactured in 
the form of relatively small BiCMOS chips, 
suitable for integration in portable electronic 
devices. Radio frequency signals have been 
interpreted with convolution and recurrent 
neural networks for sleep stage prediction to 
fairly accurately predict sleep in healthy young 
people [17]. Th ere has even been some early 
work with radar to detect sleep apnea [18, 19]. 

c)  Performance Th e third key challenge 
is to design and implement a hardware 
soft ware design that can achieve privacy 
and energy effi  ciency. To ensure privacy, 
we need to process the raw sensor 
streams locally without uploading to 
the cloud. Th is requires an effi  cient 
computation fabric that can compute 
markers locally on the sensing modules.

HARDWARE AND SOFTWARE 
PLATFORMS FOR ALERTNESS, 
SLEEP, AND CIRCADIAN 
RHYTHM SENSING
Alertness Sensing
iShadow: iShadow (Figure 2a) [21], [22] is 
a novel near-infrared spectroscopy (NIR) 
imaging based ultra-low power wearable 
eyeglass platform for fatigue and alertness 
sensing. Th is work uses sparse sampling 
together with NIR imaging to achieve high 
frame rates at milliwatts power consumption. 
It measures gaze direction, pupil dilation, 
blink rate, saccadic movements, and other 
eye-related parameters from which cognitive 
measures, such as fatigue and alertness can 
be extracted. Some of the major capabilities 
of our system includes: (1) we provide a 
sparse neural network-based approach that 
enables gaze tracking at low power [21], (2) 
we track pupil size and pupil position by 
leveraging adaptive sampling approaches 
[23], (3) we show in [22], a system that 
estimates eyelid location and blinks at low 
power and enables us to infer cognitive state 
such as drowsiness and fatigue. Collectively, 
our approaches allow us to operate at high 

DoppleSleep is such a contactless sleep 
sensing platform, using a 24 GHz Doppler 
radar for estimating sleep stages [20]. By 
estimating the Doppler frequency shift  in 
the backscattered wave from an individual’s 
body, it tracks the person’s body movement, 
including turning, moving limbs, and sitting. 
As human body motion is diff erent from 
that of machine motion in the frequency 
domain, DoppleSleep can also fi lter out 
extraneous motion from various machines 
and appliances (e.g., fans, air conditioning 
units, or speakers) in the room. As heart and 
breathing rate falls in diff erent parts of the 
frequency spectrum, they could be separated 
with frequency-based technique. 

DoppleSleep (Figure 3a) fuses body 
motion, heart rate, and breathing rate 
information to model sleep stages and quality 
in a single person-sleeping scenario. Overall, 
with a Leave-One-Subject-Out (LOSO) 
cross-validation experiment, DoppleSleep 
achieved an F1 score of 89.1% for sleep 
versus wake classifi cation and an F1 score of 
80.2% for REM versus Non-REM sleep stage 

WE DISCUSS 
TECHNICAL 
CHALLENGES 
ASSOCIATED WITH 
DESIGNING SUCH 
MOBILE SENSING 
TECHNOLOGIES 
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FIGURE 3. Hardware and software platforms for sleep sensing. 
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classifi cation for eight participants in their 
homes. More importantly, such a radar-based 
platform can also be eff ective at fi nding the 
root physiological condition or cause of 
diff erent sleep and circadian disruptions, and 
in suggesting actionable recommendations 
with the help of advanced AI techniques 
and a clinician in the loop.

LSTMSleep: Machine learning and 
statistical models have been developed for 
ambulatory sleep detection from continuous 
smartphone and wearable sensor data [11-
14], [26], [25], [28-32]. Recently, a type of 
recurrent neural network with long-short-
term memory (LSTM) cells for synthesizing 
temporal information was used to develop 
an algorithm that uses multimodal data 
(e.g., location, inertial sensor, app usage, text 
and phone call log) from smartphones and 
wearable technologies to detect sleep/wake 
state and sleep onset/off set (Figure 3b) 
[28]. Th e model was trained based on 
5580 days of multimodal data from 186 
participants and compared the new 
method for sleep/wake classifi cation and 
sleep onset/off set detection to (1) non-
temporal machine learning methods and 
(2) a state-of-the-art actigraphy soft ware. 
Th e new LSTM method achieved a sleep/
wake classifi cation accuracy of 96.5%, and 
sleep onset/off set detection F1 scores of 0.86 
and 0.84 respectively, with mean absolute 
errors of 5.0 and 5.5 min, respectively, 
when compared with sleep/wake state and 
sleep onset/off set assessed using actigraphy 
and sleep diaries. Th e LSTM results were 

statistically superior to those from non-
temporal machine learning algorithms and 
the actigraphy soft ware. Th e new algorithm 
showed good generalization by comparing 
participant-dependent and participant-
independent models and making the model 
nearly real-time with slightly reduced 
performance.

Circadian Rhythm Sensing 
Multiple human circadian phase markers, 
including melatonin, core body temperature 
(CBT), and cortisol have been used for 
research and clinical purposes [15]. 
A substantial number of studies have 
demonstrated that the onset of melatonin 
secretion under dim light conditions (also 
called Dim Light Melatonin Onset, or 
DLMO in short) is the single most accurate 
marker for measuring the circadian phase 
information [33]. Th e secretion of melatonin 
is regulated by various factors, including 
the circadian clock, lighting conditions, 
mood, and exercise [37]. Under dim light 
conditions in normally entrained humans, 
the secretion of melatonin remains at a 
low level during the daytime and increases 
sharply for about two hours prior to habitual 
bedtime [38]. Monitoring melatonin profi les, 
however, requires frequent collection of 
saliva or blood over at least seven hours in 
dim light conditions; this is expensive and 
inconvenient and, since these samples must 
be sent for assay, results are not available 
immediately. As a result, innovations in 
sensing are required that will be both 
accurate and unobtrusive. 

Th ere is some ongoing work to estimate 
DLMO using machine learning or statistical 
regression models and unobtrusive sensor 
data, such as sleep-wake patterns, skin 
temperature, heart rate and light exposure 
[11–13]. Some studies investigated the 
relationships among sleep regularity, circadian 
disruption and performance and wellbeing 
[25], [27] [34]. Most studies leverage either 
daily sampled data (sleep onset/off set 
time) [40, 41] or frequently sampled data 
(including light exposure, skin temperature, 
activity every minute) [42–44]. In our recent 
work, BiTimescale, we propose a two-step 
framework for estimating DLMO using the 
data of both time scales (Figure 4) [45]. Th e 
fi rst step summarizes the data prior to the 
current day, while the second step combines 
this summary with frequently sampled data of 
the current day. We evaluate several variants 
of a moving average model, which inputs sleep 
timing data as the fi rst step and recurrent 
neural network models as the second step for 
estimating DLMO. Th e experimental results 
show that our two-step model with two-time-
scale features has statistically signifi cantly 
lower root-mean-square errors than the 
models that use either daily sampled data 
or frequently sampled data alone.

FUTURE OPPORTUNITIES 
Looking ahead, despite these initial hard-
ware and soft ware successes in sensing 
circadian rhythm and its related biomarkers 
(e.g., alertness, sleep), there are still gaps 
and barriers in the circadian phase and 
misalignment modeling. One major challenge 

FIGURE 4. BiTimescale: Two-Step framework for estimating dim light melatonin onset.
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