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When Virtual Reality Meets Internet of Things in the Gym: Enabling
Immersive Interactive Machine Exercises

FAZLAY RABBI∗, TAIWOO PARK∗, BIYI FANG, MI ZHANG,Michigan State University
YOUNGKI LEE, Singapore Management University

With the advent of immersive virtual reality (VR) head-mounted displays (HMD), we envision that immersive VR will
revolutionize the personal fitness experience in our daily lives. Toward this vision, we present JARVIS, a virtual exercise
assistant that is able to provide an immersive and interactive gym exercise experience to a user. JARVIS is enabled by the
synergy between Internet of Things (IoT) and immersive VR. JARVIS employs miniature IoT sensing devices removably
attachable to exercise machines to track a multitude of exercise information including exercise types, repetition counts, and
progress within each repetition in real time. Based on the tracked exercise information, JARVIS shows the user the proper way
of doing the exercise in the virtual exercise environment, thereby helping the user to better focus on the target muscle group.
We have conducted both in-lab experiments and a pilot user study to evaluate the performance and effectiveness of JARVIS,
respectively. Our in-lab experiments with fifteen participants show that JARVIS is able to segment exercise repetitions with
an average accuracy of 97.96% and recognize exercise types with an average accuracy of 99.08%. Our pilot user study with ten
participants shows statistically significant improvements in perceived enjoyment, competence, and usefulness with JARVIS
compared to a traditional machine exercise setting (p < 0.05). Finally, our surface electromyography (sEMG) signal analysis
conducted during the pilot user study shows statistically significant improvement in terms of muscle activation (p < 0.01),
indicating the potential of JARVIS in providing an engaging and effective guidance for machine exercises.
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1 INTRODUCTION
The promise of immersive virtual reality (VR) is starting to look very real with the emergence of head mounted
displays (HMDs) such as Oculus Rift [2], Samsung Gear VR [3], and HTC VIVE [1]. Immersive VR soaks a
user in a computer-generated simulated environment that naturally responds to the movements of the user. An
engaged immersive virtual experience is thus realized by employing sensing technologies that capture the user’s
movements and using those information to update the sensory stimuli presented to the user via a HMD. As such,
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it creates an illusion of being immersed in a virtual environment in which the user can interact [39]. Given its
unique capability of enabling such engaged virtual experience, immersive VR has been regarded as a technology
that has the significant potential to revolutionize a wide range of industries such as entertainment, education,
fitness and health care.

As one of its important application areas, we envision that immersive VRwill help people improve their workout
experiences in the gym environment. Today, workout in the gym has become one important part of people’s
modern life [40]. However, working out on the exercise machines in the gym could make exercisers feel easily
bored [22, 24]. Moreover, without the feedback from professional trainers, it is challenging for novice exercisers
to perform a certain exercise in an adequate pace with the right group of muscles employed. This prevents
exercisers from making steady progress, and eventually makes exercisers lose their interests and motivation.
In this paper, we propose a virtual exercise assistant, named JARVIS, that is able to provide an immersive and

interactive gym exercise experience to a user, which we envision has the potential to fundamentally change the
way how people work out in the gym. JARVIS is enabled by the synergy between two emerging technologies:
Internet of Things (IoT) and immersive VR. At the backend, JARVIS uses a miniature IoT sensing device removably
attachable to exercise machines to continuously and automatically track a multitude of exercise information
including exercise types, repetition counts, and progress within each repetition in real time. At the frontend,
JARVIS leverages an immersive VR HMD to create a virtual exercise environment along with a virtual body
of the user within the environment. Based on the extracted exercise information, JARVIS shows the user the
proper way of doing the exercise, instructs the user to adjust exercise pace, and guides the user to focus on the
particular muscle group that the exercise targets. In this way, JARVIS is creating an immersive and interactive
gym exercise experience that was not previously available. Figure 1 illustrates how JARVIS is being used during
machine exercise and the immersive and interactive VR gym exercise experience it provides.

(a) (b)

Fig. 1. (a) a user using JARVIS during machine exercise; (b) stereoscopic screen images of the virtual exercise environment
along with a virtual body of the user within the environment.

Motivating Scenario. Steve has been seeking an effective way to adhere to regular machine exercise schedules.
Personal trainers could not be with him all the time, and most of the existing mobile fitness apps require him to
manually log his exercise progress, which is burdensome. Steve decided to try JARVIS virtual exercise assistant.
He brings a VR HMD and a miniature IoT sensing device to a gym. He attaches the sensing device onto a trunk
curl machine and wears the HMD. In a few repetitions, JARVIS automatically detects the current exercise type and
immediately displays a virtual exercise environment for the trunk curl exercise. JARVIS shows a “virtual Steve”
in the virtual exercise environment that follows Steve’s exercise movements. JARVIS also shows the real-time
exercise progress information, and highlights the muscle group on which he needs to focus. This helps Steve
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easily give more attention on the target muscle group. Once Steve finishes trunk curl, JARVIS turns off the VR
exercise scene and switches to outside pass-through camera to let Steve navigate to the next exercise machine.
Challenges. The design of JARVIS presents several challenges. First, the foundation of JARVIS is to recognize
the types of machine exercises and to track exercise progress automatically. This requires a sensing mechanism
to capture movements during machine exercises. Unfortunately, most exercise machines in the gyms are not yet
instrumented with sensing capabilities to capture exercise movements. Second, high accuracy and low latency are
two key requirements of highly interactive systems to achieve high perceived usability and satisfaction [13, 17, 30].
As a highly interactive VR application, JARVIS needs to meet those strict performance requirements. Therefore,
designing lightweight sensor data processing algorithms that incur minimal latency while achieving high accuracy
of exercise information tracking represents a unique challenge for JARVIS. Third, a VR HMD that employs a
smartphone as a host processing and display device is prone to the overheat problem due to continuous high-
quality VR scene rendering. Therefore, reducing the computation load of the VR rendering while satisfying the
needed visual quality represents another unique challenge for JARVIS.
Approach. To address the first challenge, JARVIS employs a miniature IoT sensing device that can be easily
attached to exercise machines and track machine exercises by capturing machine movements during exercises.
This machine-attachable approach not only equips exercise machines with sensing capabilities without being
instrumented but also turns JARVIS into a mobile system that allows a user to enjoy immersive VR exercise
experience anywhere.

The proposed machine-attachable approach also helps achieve higher exercise information tracking accuracy.
The most commonly used approach for tracking machine exercises in the literature is using a smartphone or
a wearable sensing device such as a wristband [11, 27, 43]. Compared to this human-wearable approach, the
proposed machine-attachable approach has two key advantages for tracking machine exercises with high accuracy.
First, the machine-attachable approach is able to easily capture machine exercises which target abdominal and
lower limb muscles that the human-wearable approach has difficulty to capture. Second, since the sensing device
is attached to the exercise machine, the machine-attachable approach only captures machine movements caused
by machine exercises. In contrast, the human-wearable approach captures not only body movements caused by
machine exercises but also non-exercise body movements between exercise sessions, which requires significant
signal processing efforts to filter out [34]. JARVIS leverages these advantages and employs lightweight sensor
data processing algorithms to accurately track machine exercises in real time.
Finally, to address the overheat problem, JARVIS employs a mixed visual quality technique that effectively

reduces the overall computation workload of onboard CPU/GPU by highlighting the muscle group targeted by
the machine exercise being performed using high-quality rendering while drawing the remaining body parts
using low-quality rendering. Highlighting the muscle group also has an effect of attracting users’ attention during
exercises, which will lead to greater mind-muscle connection (MMC) [42] and muscle activation [10].
Research Questions. With the design of JARVIS, we aim to answer two research questions at the highest level:

• RQ1. Is the machine-attachable approach incorporated by JARVIS able to accurately recognize the types of
machine exercises and track exercise progress in real time?

• RQ2. Does the virtual exercise environment provided by JARVIS have the potential of leading to more
effective, engaging, and enjoyable machine exercises over traditional machine exercises without VR?

To answer the above research questions, we have conducted both in-lab experiments to evaluate the technical
components of JARVIS as well as a pilot user study focusing on the Seated Abs machine exercise to evaluate
its usability. In our preliminary in-lab experiments with fifteen participants, we show that JARVIS is able to
segment repetitions and classify exercise in real time. The mixed visual quality technique effectively reduces
the computational workload of the VR HMD device and prevents it from being overheated. Our pilot user
study with ten participants indicates the potential of effective guidance and increased enjoyment brought by
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the immersive VR exercise environment. Compared to a traditional machine exercise setting, JARVIS shows
significant differences in three subcategories of Intrinsic Motivation Inventory (IMI) [37, 41]: perceived enjoyment,
competence, and usefulness (p < 0.05 for each subcategory). The participants’ interview results confirm that the
participants found the VR user interface and the virtual self representation effective in helping them perform
machine exercises. Finally, we quantitatively analyze the perceived user engagement and muscle activities of
the users using high-fidelity clinical surface Electromyography (sEMG) sensors. Our results show that JARVIS
provides a statistically significant difference in muscle activation level (p < 0.01, p < 0.05 for external and internal
oblique abdominis respectively) compared to traditional machine exercises without JARVIS.

2 DESIGN GOALS AND RELATED WORK

2.1 Portable and Machine-Attachable Sensing Device
JARVIS is designed to be portable and can be easily attached to and removed from exercise machines. Most of
previous works employed motion sensors that are worn on different human body locations such as armbands [11,
27, 29, 48], wristband [28, 36], glove [48], waist/chest belt [11, 48], or several of these body locations [43]. In the
domain of machine exercises, our approach of using miniature sensing devices temporarily attached to exercise
machines is favored over using wearable devices because it lowers the user’s burden and cumbersomeness on
putting sensing devices on different parts of their bodies during exercises. More importantly, wearable devices
capture not only movements related to machine exercises but also non-exercise body movements between exercise
sessions. In contrast, by attaching the sensing device onto exercise machines, the collected sensor data is only
related to machine exercises. This significantly simplifies the sensor data processing effort and leads to higher
exercise information tracking accuracy.

2.2 Universal Sensing Platform
JARVIS is designed to provide a universal sensing platform that can be eventually used for any exercise machine
in a plug and play manner. Pioneer works in powering exercise machines with sensing capabilities have explored
customized instrumentation of exercise machines by integrating a variety of types of sensors into different
exercise machines [14, 33]. This approach requires considerable efforts from machine manufacturers in modifying
exercise machines, leading to significant increase of the costs of exercise machines. In contrast, JARVIS aims to
reduce the burden of machine manufacturers by developing a uniform sensing device that can provide sensing
capability to any exercise machine without customized modification. We envision that in the future, every exercise
machine will have a standardized slot/interface for the uniform sensing device to plug in. The exerciser can plug
out the device from a machine after finishing the exercise and move on to another machine. As such, JARVIS acts
as a personal device that tracks an individual’s exercises on any machine.

2.3 Online Machine Exercise Information Tracking
JARVIS is designed to provide highly accurate machine exercise information with low latency in an online manner.
A large body of previous works did not target highly interactive applications but focused on automatically
generating workout summary during or after exercise sessions [27]. As such, there has not been a dire need of
online sensor data processing. In contrast, JARVIS aims to continuously track a multitude of exercise information
including exercise types, repetition counts, and progress within each repetition in real time. This is essential for
highly interactive VR applications like virtual exercise assistant that JARVIS targets.

2.4 Immersive Movement and Fitness Training Experience
Finally, JARVIS is designed to provide a truly immersive VR gym exercise experience. There has been a series of
prior works that provide an immersive movement training experience using motion cameras and augmented
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Table 1. Comparison between existing works and JARVIS.

Author and Year
Repetition
Segmentation
Accuracy

Type
Recognition
Accuracy

Target Exercises Target Application

[11] Chang et al., 2007 94.1% 85% 9 dumbbell exercises Not specified
[14] Ding et al., 2015 94% 91% 10 dumbbell exercises Offline summary

[27] Morris et al., 2014 86.90% 93.8% 13 various types of ex-
ercises at a time

Online tracking and
offline summary

[28] Mortazavi et al., 2014 89.9% N/A 5 free and body
weight exercises Offline summary

[29] Muehlbauer et al., 2011 85.1% 91% 10 machine weight ex-
ercises Not specified

[36] Pernek et al., 2013 0.994 (F1 score) N/A 9 machine weight ex-
ercises Not specified

[43] Seeger et al., 2011 97.58% 95% 5 cardio and 11 weight
lifting Online summary

[48] Velloso et al., 2014 N/A 78.2% 5 different styles of bi-
ceps curl Not specified

JARVIS 97.96% 99.08% 12 machine weight ex-
ercises Online interactive VR

images such as YouMove [7] and MotionMA [47]. These works exemplified the potential of AR/VR applications to
enable effective movement and fitness training. Inspired by these works, JARVIS aims to deliver truly immersive
fitness training to anywhere, starting from gyms with exercise machines, by employing IoT sensing devices
and VR HMD devices. To achieve this goal, JARVIS provides the user with an immersive VR machine exercise
environment and visualizes a virtual body of the user that follows the user’s exercisemovements. More importantly,
JARVIS aims to naturally guide the user to give effective focus on specific muscle group. Inspired by several
instruction methods from the fields of kinesiology and sports physical therapy, we leverage the flexibility of
visual presentation in VR to color specific muscle group where the user needs to give focus on to achieve more
effective muscle activation including verbal and manual cues [6, 21, 38]. Table 1 summarizes these previous works
and compares them with JARVIS proposed in this paper.

3 OVERVIEW OF JARVIS
Figure 2 illustrates the system architecture of JARVIS. As shown, JARVIS operates with two types of devices: 1) a
miniature IoT sensing device that is attachable to gym machines to track machine exercises; and 2) a VR HMD
that processes the sensor data as well as visualizes the exercise information and the computer-generated virtual
environment in real time. JARVIS is composed of two core components: the Real-time Exercise Analyzer and the
VR Synthesizer that run inside the VR HMD at the backend and the frontend, respectively.
At the backend, the Real-time Exercise Analyzer retrieves the sensor data from the IoT sensing device and

analyzes the sensor data. Specifically, the Real-time Exercise Analyzer consists of two major components: 1)
Exercise Progress Tracker and 2) Exercise Type Recognizer. The role of the Exercise Progress Tracker is to segment
the streaming sensor data into individual exercise repetitions (i.e., Repetition Segmentor), count the number of
repetitions (i.e., Repetition Counter), and track the progress within each repetition (i.e., Motion Progress Detector).
Given the segmented repetitions, the Exercise Type Recognizer recognizes the exercise type of each repetition.
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Fig. 2. The system architecture of JARVIS.

Through a suite of techniques including sensor placement location identification, feature selection, and session-
wise voting, the Exercise Type Recognizer is able to achieve over 99% exercise type recognition accuracy.

At the frontend, the VR Synthesizer consists of two major components: 1) VR Scene Manager and 2) VR User
Interface. The VR Scene Manager plays two roles: it creates a virtual gym exercise environment that corresponds
to the current exercise type; it also presents a virtual body of the exerciser while highlighting the target muscle
group based on the current exercise type. The VR User Interface renders a head-up display in a virtual space and
delivers exercise progress information to a user in real time.
In the following two sections, we describe the Real-time Exercise Analyzer and the VR Synthesizer in detail.

4 REAL-TIME EXERCISE ANALYZER

4.1 Target Machine Exercises
We target 12 machine exercises recommended by the resistance training guide for healthy adults from the
American College of Sports Medicine (ACSM) [5]. These exercises are among the most common machine exercises
that target different muscle groups on the body. Each exercise uses a dedicated machine to train a specific muscle
group. The 12 machine exercises and their targeting muscle groups are shown in Figure 3.

4.2 Data Acquisition
JARVIS uses the CC2650STK SensorTag developed by Texas Instruments (TI) as the IoT sensing device. SensorTag
is TI’s state-of-the-art IoT sensing device that integrates high-performance sensors and Bluetooth Low Energy
(BLE) communication in a miniature form factor. Specifically, JARVIS utilizes the SensorTag’s on-board 3-axis
accelerometer and 3-axis gyroscope (i.e., motion sensor) to capture machine exercises. The sensing range of
the accelerometer and the gyroscope is set to be ±16g and ±1200 degree per second (dps), respectively, and the
sampling rate is set to be 10Hz. To facilitate a user to attach the SensorTag to exercise machines, we have designed
and 3D printed a plastic case (1.79 × 2.64 × 0.55 inch) with an embedded magnet to host the SensorTag. With the
magnet, the case can be easily and firmly attached to exercise machines. The SensorTag and the customized case
are illustrated in Figure 4.

4.3 Exercise Progress Tracking
4.3.1 Repetition Segmentation and Counting. The goal of repetition segmentation is to segment the streaming

sensor data so that each segment contains one complete repetition of the performed machine exercise. Since a
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E07-Leg Extension
Quadriceps

E08-Leg Curl
Hamstrings, Gluteus

E09-Lateral Raise
Deltoids

E10-Row Deltoid
Posterior Delt, Trapezius

E11-Back Ext.
Erector Spinea, Gluteus

E12-Calf Ext.
Gastrocnemius, Soleus

E01-Chest Press
Pectoralis Major, Triceps

E02-Pulldown
Biceps, Latissimus Dorsi

E03-Shoulder Press
Deltoids, Triceps

E04-Biceps Curl
Biceps

E05-Triceps Press
Triceps

E06-Seated Abs
Abdomen

Fig. 3. The twelve machine exercises considered in this work.
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Fig. 4. The miniature SensorTag device and the customized 3D printed case with an embedded magnet.

user can place the SensorTag on exercise machines in different ways which leads to different orientations, one
straightforward scheme is to derive the orientation-independent acceleration magnitude signal and then apply
peak detection on top of it to segment exercise repetitions. However, such scheme is unsuitable in the context
of machine exercises because different machine exercises will have different numbers of peaks and valleys in
each repetition. To illustrate this point, Figure 5 (a) and Figure 5 (b) depict the three axes of the accelerometer
signal as well as the corresponding acceleration magnitude signal of three repetitions of Pulldown and Seated Abs,
respectively. As shown, within each repetition, the acceleration magnitude signal of Pulldown has one peak and
two valleys while Seated Abs has three peak and two valleys. Without knowing the machine exercise type a prior,
by blindly applying peak detection, one repetition can be mistakenly segmented into multiple repetitions.
In this work, we design a Principle Component Analysis (PCA)-based scheme to segment repetitions. The

key observation behind our scheme is illustrated in Figure 5 (c) and (d). Specifically, Figure 5 (c) and Figure 5
(d) illustrate the first principle component (PC) extracted from the three axes of the accelerometer signal of
Pulldown and Seated Abs, respectively. We observe that even though the exercise type is different, each repetition
intersects the mean crossing line of the first PC signal exactly twice. The same observation holds true for all
the 12 target machine exercises considered in our work. This is because one repetition of any type of the target
machine exercises consists of one concentric phase (i.e., muscle shortening) and one eccentric phase (i.e., muscle
lengthening). The first PC reliably captures both two phases across different machine exercises.
Based on this key observation, our PCA-based repetition segment scheme first extracts the first PC of the

3-axis accelerometer data and finds the mean crossing point of the first PC. Our scheme then finds out whether
the first PC is going downward or upward at the first mean crossing point. If going downward, the lowest minima
between every non-overlapping pair of mean crossing points is the peak of the repetition and the two closest
maxima on the left and right side of the two mean crossing points are the start and end point of the repetition. If
going upward, the highest maxima between every non-overlapping pair of mean crossing points is the peak of
the repetition and the two closest minima on its left and right are the start and end of the repetition.
After a new repetition is segmented, the number of segmented repetitions is updated in real time.
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(a) (b) (c) (d)

Fig. 5. The illustration of the principle of the repetition segmentation algorithm. (a) and (b): 3-axis accelerometer data and
the corresponding acceleration magnitude signal of three repetitions of (a) Pulldown and (b) Seated Abs. (c) and (d): the first
principle component (PC) of the three axes of the accelerometer signal of (c) Pulldown and (d) Seated Abs.

4.3.2 Motion Progress Estimation. To provide the user with high interactivity, JARVIS tracks the progress of
the exerciser within each exercise repetition in real time. However, providing the exact progress status within
each repetition in real time is not feasible because the exact progress status can only be available after seeing the
complete repetition. As an alternative, we design a motion progress estimation scheme to provide a reasonable
estimation about the progress within each repetition in real time. Specifically, our scheme uses the values of the
first PC signal, obtained from the segmentation stage, to estimate the progress status. The progress status starts
from 0% and ends at 100% with a step of 10%. The specific values of the first PC signal that correspond to those
status percentages are obtained by previously seen repetitions as training data. During online motion progress
tracking, if the value of the first PC falls between two status percentages, the higher percentage will be reported
as the estimated progress status.

4.4 Exercise Type Recognition
After segmenting the machine exercises into repetitions, the second stage of machine exercise analytics is to
identify the type of the exercise for each repetition. Our key observation is that due to the different mechanical
constraints of exercise machines, each type of machine exercises has a certain form. Based on this observation,
we frame the exercise type recognition problem as a classification problem. As explained before, exercisers
could place the SensorTag on exercise machines in different ways which may lead to different orientations. To
make our classification algorithm orientation-independent, we compute the magnitude of the three dimensional
accelerometer data as well as the magnitude of the three dimensional gyroscope data within each repetition.
Based on these two magnitudes, we have extracted a list of features which have been proven to be effective for
activity recognition [52, 53]. Table 2 lists all the features. Finally, we stack the extracted features into a feature
vector and import the feature vector into a linear kernel Support Vector Machine (SVM) for classification.

Table 2. List of features used for exercise type recognition.

Mean Median Standard Deviation
Variance Skewness Kurtosis
Energy Interquartile Range Spectral Entropy

First Order Derivative Second Order Derivative Magnitude of
Average Rotational Speed

Dominant Frequency RMS Signal Magnitude Area
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4.4.1 Sensor Placement Location Identification. Although attaching a sensing device directly to exercise
machines provides cleaner sensor data, it is necessary to identify the sensor placement location on each exercise
machine that achieves the best exercise type recognition performance. To achieve our goal, without loss of
generality, we collect sensor data from two locations on each exercise machine, and find the best combination of
locations across the exercise machines by searching through all possible location combinations. Our criteria on
choosing sensor placement locations are: 1) the sensor placement locations must be easily accessible by users;
and 2) the two sensor placement locations on one machine should have different motion ranges so that the
sensor data collected from these two locations are different enough. We label the location on each machine with
larger motion range as ‘L’ and the location on each machine with smaller motion range as ‘S’. Since 12 exercise
machines are considered in this work, the number of all possible sensor location combinations is 4096.
We envision that in the future, every exercise machine produced by machine manufacturers will have a

standardized slot to plug in the SensorTag. Our experiment results will help machine manufacturers find the best
locations for those standardized slots on exercise machines.

4.4.2 Feature Selection and Session-wise Voting. To minimize the computational overhead of feature extraction,
we utilize the Sequential Floating Forward Selection (SFFS) feature selection algorithm [20] to identify a minimal
subset of features that achieves the highest accuracy for recognizing the exercise type of each repetition. In
addition, we utilize a voting scheme across repetitions in the same exercise session to further enhance the
recognition accuracy. Specifically, we take the majority of the recognized exercise types from all the repetitions
within the same exercise session as the recognized exercise type for the whole exercise session. As we will show
in the evaluation section, our session-wise voting scheme does not need more than two repetitions on average to
achieve the highest accuracy, which provides users with highly interactive experiences.

5 VR SYNTHESIZER

5.1 VR Scene Management
Once a user starts exercising, the VR Scene Manager automatically initiates a virtual exercise environment based
on the recognized exercise type. When a user is taking a rest between exercise sessions, the VR Scene Manager
provides an outside (i.e., pass-through) vision using the camera placed at the back of the VR HMD. In the following,
we describe three important features of the VR Scene Manager.

5.1.1 Virtual Self Representation. The first important feature of VR Scene Manager is the virtual self repre-
sentation created for the user. The VR Synthesizer generates a virtual body of the user which follows the user’s
movements during machine exercises. This virtual body enables the user to intuitively understand the pace and
progress of the current exercise repetition.

5.1.2 Muscle Highlighting. The second important feature of VR Scene Manager is to visually highlight the
target muscle group that corresponds to the exercise being performed. Figure 6 illustrates this feature where
the oblique abdomens muscle group is rendered using purple color, which has an effect of attracting users’
attention during exercise. This design hypothesizes that visual highlight of target muscle group will lead to
greater mind-muscle connection (MMC) [42]. MMC is a practical term denoting the strategy which gives attention
to consciously direct neural drive to the target muscle usually achieved through imagination [42]. Increased MMC
is known to lead to greater muscle activation [10], which potentially increases muscle protein accretion [49, 50].
In the following user study, we evaluate the efficacy of muscle highlighting in terms of muscle activation using
surface electromyography (sEMG) signal analysis [4, 44].

5.1.3 Mixed Visual Quality. The third important feature of VR Scene Manager is to achieve high perceived VR
rendering quality while reducing computation workload of onboard CPU/GPU. The key technique to realize this
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Fig. 6. Illustration of three different visual quality options: (a) low quality; (b) mixed quality; and (c) high quality. The oblique
abdomen of the avatar is highlighted to induce greater muscle activation.

feature is to use high-quality models that have more polygons and shader effects on the target muscle group while
rendering the remaining body parts using low-quality models that have moderate to low number of polygons
and/or less expensive shader effects. By doing this, the heat generated by the VR HMD is significantly reduced.
To illustrate this feature, Figure 6 shows three different visual quality options: (a) low quality; (b) mixed quality;
and (c) high quality, where Figure 6 (b) shows a balanced option between visual quality and computation load by
mixing a high-quality shader (e.g., a bumped specular shader with lightmap) on the target muscle group and a
low-quality shader for the remaining body parts.

5.2 VR User Interface
The VR User Interface collects the continuously tracked exercise information from the backend and displays the
information on the VR screen in real time. It employs a head-up display in a fixed location, indicating exercise
information including repetition count, elapsed time and pace. It also shows an alert indicating whether the pace
of the exercise is too fast or too slow based on the recommendations provided by the American College of Sports
Medicine (ACSM) [5].

6 EVALUATION

6.1 Experimental Setup
6.1.1 Participants. We have recruited 15 participants (11 males and 4 females) who helped collect data. The

participants are university students, researchers, and staffs with ages ranging from 22 to 48 years old (µ = 27.73;
σ = 6.65), weights ranging from 42 kg to 85 kg (µ = 60.51; σ = 8.85), heights ranging from 152 cm to 189 cm
(µ = 174; σ = 6.50), and gym exercise experience levels ranging from novice to intermediate levels.

6.1.2 Sensor Deployment. To examine the impact of sensor placement locations on the performance of JARVIS,
we attached two SensorTag devices onto two different locations on each exercise machine. Figure 7 shows an
example of the two SensorTag locations on two machines respectively.

6.1.3 Data Collection. The data were collected at a fitness center on the university campus. During data
collection, the participants were instructed to perform 12 considered machine exercises by following the short
instructions on each machine. To capture the intra-subject variability, each participant attended three sessions of
data collection on three different days. In each session, each participant performed 10 repetitions of each machine
exercise, with their preferred weights put on each machine that they consider appropriate for their strength
training. In total, each participant contributed 30 repetitions for each exercise.
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1

2 2
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Fig. 7. Illustration of SensorTag placement on the Lateral Raise machine (left) and Seated Abs machine (right). Circle 1 and 2
indicate the placement locations of two SensorTag devices on each machine.

6.2 Performance of Repetition Segmentation and Counting
6.2.1 Evaluation Metrics. We evaluate the performance of our exercise repetition segmentation scheme using

the following three metrics:
• Miss Rate (MSR).MSR is defined as the proportion of cases where our scheme misses to detect an exercise
repetition.

• Merge Rate (MGR). MGR is defined as the proportion of cases where our scheme mistakenly merges two
or more exercise repetitions into one repetition.

• Fragmentation Rate (FR). FR is defined as the proportion of cases where our scheme mistakenly splits a
single exercise repetition into more than one exercise repetitions.

6.2.2 Performance of Repetition Segmentation. Table 3 shows the performance of our exercise repetition
segmentation scheme for each type of machine exercises. In terms of MSR, our scheme achieves zero MSR for
all machine exercises. In terms of MGR, our scheme achieves zero MGR for all machine exercises except E08
(Leg Curl) with a MGR of only 0.11%. Finally, in terms of FR, our scheme achieves zero FR for 6 out of 12 types
of machine exercises. Among the other 6 types, the highest FR is only 0.33% for E05 (Triceps Press) and E10
(Row Deltoid). Taken together, the results indicate that our scheme is able to achieve highly accurate and robust
exercise repetition segmentation performance across all types of machine exercises.

Table 3. Performance of repetition segmentation.

Exercise E 01 E 02 E 03 E 04 E 05 E 06 E 07 E 08 E 09 E 10 E 11 E 12
MSR (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MGR (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00
FR (%) 0.11 0.11 0.11 0.00 0.33 0.00 0.00 0.22 0.00 0.33 0.00 0.00

6.2.3 Performance of Repetition Counting. Based on the repetitions segmented by our scheme, we achieve the
repetition counting accuracy of 97.96% out of a total of 5,400 repetitions. Taking a closer look at the counting
results, we achieve an accuracy of 99.81% for within 1 scenario (i.e., ±1 count off compared to the ground truth
within a session of 10 repetitions) and 100% for within 2 scenario.

6.3 Performance of Exercise Type Recognition
6.3.1 Identification of the Best Sensor Placement Locations. We first examine the impact of sensor placement

location on the performance of exercise type recognition. Our goal is to find the best sensor placement location
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combination across all the considered exercise machines. To achieve this goal, we trained three sets of classifiers
1) from ‘L’ locations only; 2) from ‘S’ locations only; and 3) from the best location combination, all using leave-
one-subject-out cross validation. In particular, classifier 3) is determined by brute-force search among all the
possible 4096 sensor placement location combinations.

Table 4 shows the exercise type recognition performance in terms of precision, recall, accuracy, and F1 score.
As shown, the best location classifier outperforms the ‘L’ locations only and ‘S’ locations only classifiers across
all the four metrics by a large margin. Our result demonstrates the impact of sensor placement location on the
exercise type recognition performance. More importantly, it can be used to guide the machine manufacturers to
find the best sensor placement locations on their exercise machines.

6.3.2 Performance of Session-wise Voting Scheme. Table 4 also shows the exercise type recognition performance
with the session-wise voting scheme. As expected, the session-wise voting scheme improves the exercise type
recognition performance across all the four metrics. In particular, at the best location, we have achieved a precision
of 0.9911 and a recall of 0.9907.

Table 4. Exercise type recognition performance in terms of precision, recall, accuracy, and F1 score at different sensor
placement locations with and without session-wise voting.

Location Without Session-wise Voting With Session-wise Voting
Precision Recall Accuracy F1 Score Precision Recall Accuracy F1 Score

Location ‘L’ Only 0.8102 0.8081 80.82% 0.8091 0.8854 0.8809 88.10% 0.8831
Location ‘S’ Only 0.8114 0.8121 81.22% 0.8117 0.8829 0.8815 88.17% 0.8822
Best Location 0.9432 0.9430 94.30% 0.9431 0.9911 0.9907 99.08% 0.9909

6.3.3 Performance of Subject Independent Model. We examine the exercise type recognition performance of
the subject independent model. Figure 8 shows the average recognition accuracy across all the machine exercises
using leave-one-subject-out cross validation. As shown, 11 out of 15 subjects achieve 100% accuracy while the
other 4 subjects achieve accuracy of 97.24%, 97.22%, 97.22%, and 94.45%, respectively. To provide a detailed look
at the results, Table 5 lists the confusion matrix in terms of types of machine exercises. As shown, 10 out of 12
machine exercises achieve 100% precision and recall. Taken together, our results indicate that JARVIS is able to
achieve high recognition performance across all the 12 machine exercises in a subject independent manner.

Table 5. Confusion matrix of exercise type recognition.

E01 E02 E03 E04 E05 E06 E07 E08 E09 E10 E11 E12
E01 451 0 0 0 0 0 0 0 0 0 0 0
E02 0 451 0 0 0 0 0 0 0 0 0 0
E03 0 0 451 0 0 0 0 0 0 0 0 0
E04 0 0 0 450 0 0 0 0 0 0 0 0
E05 0 0 0 0 452 0 0 0 0 0 0 0
E06 0 0 0 0 0 450 0 0 0 0 0 0
E07 0 0 0 0 0 20 420 0 10 0 0 0
E08 0 0 0 0 0 0 0 451 0 0 0 0
E09 0 0 0 0 0 0 0 0 450 0 0 0
E10 0 0 0 0 0 0 0 0 0 430 0 20
E11 0 0 0 0 0 0 0 0 0 0 450 0
E12 0 0 0 0 0 0 0 0 0 0 0 451
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Fig. 8. Performance of subject independent model. Fig. 9. Accuracy changes over number of features.

6.3.4 Impact of Number of Features. We examine the impact of the number of features on the performance
of exercise type recognition. Figure 9 shows the average recognition accuracy as a function of the number of
features selected by the sequential floating forward selection (SFFS) algorithm using leave-one-subject-out cross
validation. As shown, the recognition accuracy increases in general as the number of features increases. The
accuracy reaches the highest when using 23 features out of a total of 28 features. We also observe that the
recognition accuracy already reaches 98% when only using 12 features. This result indicates that by using a small
number of features, JARVIS can still achieve high recognition performance.

6.3.5 Impact of Amount of Training Data. We analyze the impact of amount of training data in terms of
number of subjects as well as number of sessions. First, we use data from different numbers of subjects as training
datasets and examine its impact on the performanceof exercise type recognition. Specifically, for one-subject and
fourteen-subject cases, we examined all possible fourteen subject selection combinations; for the other cases,
we examined 15 random subject selection combinations due to the large number of possible subject selection
combinations. Figure 10 (left) shows the average exercise type recognition accuracies in terms of the number of
subjects. As shown, the accuracy is 91.39% when trained on data collected from only one subject. The accuracy
increases as data from more subjects are added into the training dataset. With training data from six subjects,
we have already achieved an accuracy of 99.28%. It should be noted that the there is a drop on accuracy for the
fourteen-subject case. We conjecture that this is a result of evaluating a partial subset of all possible combinations.

Next, we use data from different numbers of exercise sessions as training datasets and examine its impact on
the performanceof exercise type recognition. Specifically, since each subject performed three exercise sessions on
each exercise machine, we used data collected from one session, two sessions, and all the three sessions as the
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Fig. 10. Impact of amount of training data: the number of subjects (left); and the number of exercise sessions (right).
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training datasets, respectively. Figure 10 (right) illustrates the average exercise type recognition accuracies in
terms of the number of exercise sessions. As shown, the accuracy is 98.03% when trained on data collected from
only one session. The accuracy increases to 98.96% when trained on data collected from two sessions.

6.4 System Performance
We evaluate the system performance of JARVIS in terms of processing time, power consumption, and device
temperature. We used a Samsung Galaxy S6 smartphone equipped with a quad-core 2.1 GHz Cortex-A57 processor
and 3 GB RAM, mounted to a Samsung Gear VR Headset as our evaluation platform.

6.4.1 Processing Time. To examine the computational demand of JARVIS, we measure the average processing
time consumed by each of the key components of the backend Real-time Exercise Analyzer. In particular, we used
the Android implementation of libSVM1 for the classification component. We run five sets of trials, with each set
including 100 repetitions of different machine exercises from different participants.

Table 6 shows the breakdown of the average processing time for each component. As shown, JARVIS is able to
achieve real-time processing performance. Taking a closer look at the result, the classification component takes
the most amount of processing time among all the components.

Table 6. Breakdown of the processing time.

Component Processing Time (ms)
Repetition Segmentation 0.010

Feature Extraction 0.011
Exercise Type Classification 0.073

Total 0.094

6.4.2 Power Consumption. To examine the power consumption of JARVIS, we use the Monsoon Power
Monitor2 to measure the power consumption of both the smartphone mounted to the VR HMD and the SensorTag.
The measurement setup is illustrated in Figure 11. During the experiment, we turn off other applications and
irrelevant services including GPS, WiFi and cellular services, and continuously transmit sensor data from the
SensorTag at 10 Hz to the smartphone through BLE. We profile the power consumption for each component
of JARVIS and measure the power consumption for 5 mins and report the averaged values. Table 7 shows the
breakdown of power consumption for each component.

Table 7. Breakdown of the power consumption.

Device Component Current (mA) Power (mW)

Smartphone

BLE Communication 61.46 245.7
Processing Backend 17.65 70.57

VR Frontend
Low Quality 800.3 3198
Mixed Quality 815.6 3259
High Quality 867.9 3468

SensorTag 10 Hz Data Transmission 3.967 11.90

Finally, we estimate the battery lifetimes of both the smartphone and the SensorTag. With a battery capacity
of 2550 mAh, JARVIS can run about 2.85 hours on a Galaxy S6 smartphone. With a 240 mAh lithium coin cell
battery, the SensorTag can keep sending in sensor data for about 60.5 hours.
1http://www.csie.ntu.edu.tw/~cjlin/libsvm/
2https://www.msoon.com/LabEquipment/PowerMonitor/
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6.4.3 Device Temperature. We measure temperature changes of the smartphone CPU over time under three
rendering quality levels: 1) high, 2) mixed, and 3) low, respectively. During rendering, the high, mixed, and low
quality level has 155.8k, 30.1k and 13.8k triangles, respectively. We run JARVIS for 30 mins and use the log feature
of the Android Debug Bridge to track the temperature changes of the smartphone CPU.

Fig. 11. Power consumption measurement
setup with Samsung Galaxy S6, Gear VR and
Monsoon Power Monitor.

Fig. 12. CPU temperature changes over time.
High-Quality mode overheats the smartphone
CPU after 15 min.

Figure 12 shows the temperature changes of the smartphone CPU under three rendering quality levels. As
shown, under the high quality level, the CPU is overheated up to 73 degree within 15 minutes. As a consequence,
JARVIS is terminated for device safety. In contrast, under the low and mixed quality levels, JARVIS is able to
run for more than 30 minutes while keeping the CPU temperature below the overheat threshold. This result
indicates that our mixed visual quality technique effectively reduces the heat generated during rendering, and
thus successfully addresses the overheat problem.

7 USER STUDY
We evaluate the efficacy and overall user experience of JARVIS, and compare it to the traditional machine exercises
without JARVIS. Our evaluation methodology consists of a questionnaire survey using Intrinsic Motivation
Inventory (IMI), a quantitative analysis of sEMG signals, and an open-ended interview analysis regarding overall
user experience.

To evaluate the effectiveness of JARVIS, we use Seated Abs as a representative type of machine exercises, due
to its health benefits and high chance of being misunderstood by users in terms of its goal. That is, abdominal
training is known to be beneficial for building the rectus muscle group around belly button. However, abdominal
muscles including rectus and oblique ones are very sensitively connected to each other, and to lumbar spine as well.
Therefore, abdominal muscle training should be performed in a way to build overall muscle balance and lumbar
stability [18]. Moreover, although the oblique abdominis muscles are considered to be more important contributors
to lumbar stability, abs training without correct guidance predominantly activate the rectus abdominis muscles
may lead to imbalance in muscle building [26]. One example of effective intervention for balanced abdominal
training is verbal instructions, which showed positive statistically significant differences in terms of balanced
abdominis muscle activation [21].

It is worthwhile to note that the degree of muscle recruitment and neuromuscular drive during exercise can be
measured and compared by the sEMG activity in sports analytics [4, 44]. Ratio of sEMG activity has been used to
evaluate their relative efficacy in eliciting higher levels of muscle recruitment [15]. Specifically, our user study
adopts sEMG-based method to evaluate the effectiveness of exercise instructions in terms of oblique abdominis
muscle recruitment [21].
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7.1 Method
7.1.1 Participants. We recruited 10 university students who are different from the participants in the earlier

data collection through department email distribution lists and an on-site recruitment at a fitness center on the
university campus. All participants had prior experience with the Seated Abs machine exercise.

7.1.2 Data Collection. sEMG data were collected using Trigno wireless sEMG device3, which consists of
one base station and multiple wireless sEMG sensors. Each sEMG sensor has signal bandwidth of 20-450 Hz,
transmission range of 40 meters and sampling rate of 4,000 samples/sec with 16-bit resolution. The base station is
capable of streaming data to an analysis software over USB wired connection. The transmitted data was saved
into computer storage for further analysis.
Following the abdominal exercise instruction study in the literature of orthopedic and sports physical ther-

apy [21], four sEMG sensors were placed at upper/lower rectus abdominis (URA/LRA) as well as external/internal
oblique abdominis (EOA/IOA). Figure 13 shows the placements of these four sEMG sensors.
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Fig. 13. Illustration of sEMG sensor placement
at upper/lower rectus abdominis (URA/LRA), and
external/internal oblique abdominis (EOA/IOA).
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Fig. 14. Without VR vs. With VR in terms of the
root-mean-square (RMS) values of sEMG signals.

7.1.3 Study Design. A within-subject design is employed. Participants were instructed in two conditions: one
(manipulated) condition with the VR exercise environment emphasizing activation of oblique abdominis, and
one (controlled) condition without the VR exercise environment. Prior to actual study participation, participants
were told about the basic user interfaces, and were asked to take a look at the VR space with their virtual body
representation.
In the controlled condition, the participants are asked to perform the exercise naturally, as they usually do

at gyms. In each condition, the participants performed two sets of Seated Abs exercises with ten repetitions,
respectively. sEMG signal was recorded from the beginning to the end of each set. The participants were allowed
to rest for up to two minutes between sets. The sequence of the conditions were balanced across the participants.

After each condition, the participants were asked to respond to 19 selected and adjusted questions from intrinsic
motivation inventory (IMI) [37, 41], which is a widely used and extensively validated set of questionnaire to
evaluate user experiences. Among five major categories of IMI, we chose three categories related to the application
and exercise context: interest/enjoyment, perceived competence, and value/usefulness, consisting of seven, five,
and seven questions respectively. The responses were collected in 7-point Likert scale and then averaged in each
category for statistical analysis.
After all conditions and surveys, a semi-structured interview followed. We asked the participants to talk

about their overall exercise experiences, including the VR application and its interface, the effectiveness of the
3http://www.delsys.com/products/wireless-emg/
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application, as well as their suggestions in design. All interview data were transcribed and analyzed by open
coding [46] and axial coding [19] to discover common themes and patterns.

7.2 Results
7.2.1 sEMG Signal Analysis. Figure 14 shows representative sEMG signals from individual trials performed

under conditions without and with JARVIS, respectively. Specifically, it shows that sEMG amplitudes of the
abdominis muscles change in response to repetitions. As shown, JARVIS shows its potential in activating the
oblique muscles.
Figure 15 summarizes the group means and standard deviations of the normalized sEMG activity of each

of the 4 muscle groups. As shown, there is a significant effect of VR application for the two oblique muscle
groups (p < 0.01 and p < 0.05 for external and internal oblique abdominis respectively). This result indicates the
potential of effectiveness of JARVIS in activating the target muscle groups.

Fig. 15. Mean normalized electormyography val-
ues for four muscle groups. With-VR significantly
different from Without-VR at oblique abdominis
(**p < .01; *p < .05).

Fig. 16. IMI survey results for three categories.
With-VR significantly different from Without-VR
(*p < .05 for all three categories).

7.2.2 Survey Analysis. Figure 16 shows the summary of IMI questionnaire responses. From all three sub-
categories of IMI, there was a significant effect of VR application found (p < 0.05). In-depth analysis revealed
that the students recruited through the mailing list, who had less experiences with strength training machines,
showed greater differences in all three categories, than ones hired on-site at the the fitness center. That is, the VR
application has a potential in motivating novice or less-experienced exercisers to engage in strength training,
implying an opportunity of broader impact to public health.

7.2.3 Interview Analysis. The participants shared their experience while trying JARVIS including its benefits
and usefulness, as well as their suggestions to provide more enjoyable machine exercises experiences through
JARVIS. They enjoyed and valued the application and its features, which is consistent with the survey results.
Virtual Self and its Movement. The participants liked JARVIS which enabled them to “see myself moving” (P8).
Seeing their virtually represented body in VR helped them in doing “the exercise a lot more correctly” (P6) and
in better “focusing on (my) body” (P6). Some participants talked about the discrepancy between real self and
virtual self, specifically in terms of their appearance: “[The man in VR] was not exactly the same (to me), but the
motion I was doing was like the same with his.” (P4) Interestingly, the discrepancy showed a positive potential
toward increased user motivation: “looking at the muscle man really attracted me to follow him.” (P1) In overall,
‘virtual self’ contributed to “more enjoyable” (P8) exercise experience and user motivation, consistent to the IMI
questionnaire survey responses as well as the previous findings in the literature of virtual avatar use and user
motivation [9, 51].
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Benefits of Muscle Highlighting. As for the visual guide for the muscle groups, the participants found that
the muscle highlighting feature was helpful, otherwise they “would never know how to do it properly” (P8);
“What the machine is targeting is the muscle, so highlighting (it) really helped me to perform well (and) instructed
me.” (P1) It naturally instructed the participants in “how to (give) focus (on their) abdominal parts” (P8), and
assisted them to better “conceptualize the way of exercise” (P10), contributing to the efficacy of the application
validated in the muscle activation analysis. We conjecture that the visual highlight of target muscle facilitated
greater Mind-muscle connection (MMC) [42], and further studies are encouraged to confirm the relationship.
Benefits of User Interface for Exercise Progress. The participants liked the real-time informative head-up
display user interface which provides “consistent feedback about time and progress” (P4); “You could definitely
better simply because it tells you the progress of the workout you are doing.” (P7) They recalled how hard it was to
“count the repetitions while focusing on the exercise” (P2), and talked that “seeing how many repetitions I had” (P3)
was very helpful.
Points of Improvements and Design Suggestions. The participants provided points of improvements and
design suggestions for JARVIS interface design. One participant mentioned a soft competition with another
pacemaker avatar or friend online in the virtual environment. This is related with Köhler effect, a well-known
theory regarding the benefits of social competition in the literature of sports science [23, 32]; “I would make
a goal to reach to keep it up with a guy in the VR.” (P8) They also wanted to try JARVIS for different machine
exercises: [it would be helpful for] other popular exercises I know like chest press. That will be very helpful because a
lot of people do need better form in that. So those compound exercises would definitely help people.” (P10).

8 DISCUSSION
Overall, the contribution of this work is three-folded. First, our work proposes an immersive and interactive
virtual exercise assistant based on the combination of IoT and VR technologies, and exemplifies its effectiveness
through a pilot user study. We envision that a series of usability and effectiveness studies will follow up toward
the realization of effective and practical ubiquitous virtual reality exercise systems and their applications. Second,
our work proposes a machine-attachable approach for the placement of motion sensing device, as well as a suite
of sensor signal processing algorithms that fully harness the advantages of clearer sensor signals provided by
the machine-attachable approach. Third, our work reports the potential of enjoyable, engaging, and effective
exercise experiences supported by the significant increases of IMI responses and qualitative interview analysis.
The user study also shows the potential effectiveness of JARVIS in facilitating better mind-muscle connection.

In the development of exercise recognition components of JARVIS, leveraging a machine-attachable IoT sensor
device brought an advantage of cleaner sensor data. It is expected that the machine-attached sensor would
generate cleaner signals while suppressing body movement noises which is one of the major challenges in human
activity and movement sensing using IMU sensors [34]. As a result, the repetition segmentation could precisely
detect repetitions by detecting local minimum and maximum peaks of the first principle component, eliminating
needs of extensive analysis methodologies such as Autocorrelation [27], which requires relatively larger number
of repetitions for accurate repetition detection.
The machine-attached sensor also brought the challenge of finding the best sensor placement to achieve

the highest accuracy of exercise type detection. That is, because the sensor is placed on a exercise machine,
the sensor signals may not fully deliver the unique human body movement characteristics from each exercise,
compared to ones from body-worn sensors. As a result, the exercise type recognition algorithm of JARVIS yields
only 88.88% of accuracy without the consideration of sensor placement. After finding the best sensor placement
combination across the exercise machines, the system achieved 99.08% of accuracy. This approach is comparable to
the previous works for finding the best wearable sensor locations for human activity tracking [8, 31], and usability
and convenience of sensor placement should be further considered in practical application usage scenarios.
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Our evaluation results also revealed the impacts of the amount of training data in terms of number of subjects
and number of sessions. As for the number of subjects, the proposed approach yielded 91.39% and 99.28% of
accuracy with one and six subjects respectively, showing that reduced number of subjects. The number of sessions
employed for training showed 98.96% and 98.03% of accuracy with two and one sessions respectively, implying
the room to reduce the burden of training data collection and the marginal differences of data characteristics
between sessions. These results have been achieved from the dataset collected while letting the subjects to set
their own preferred weights, implying that the proposed approach may have a basic level of robustness against
weight variances. Further study is needed to evaluate impacts of weights, perceived load, and user fatigue.

Our user study revealed the potentials of more enjoyable and effective exercise experience enhanced by IoT and
VR technologies. For its more practical uses, follow-up studies are needed with close collaboration with researchers
in the field of kinesiology, sports science, rehabilitation, and physical therapy. Besides the specific abdomen
exercise to reduce lower back pain [21] employed in this study, we believe that a variety of resistance training
can benefit from the similar approaches, for example, bench press [45] and elbow flexion (i.e., biceps curl) [25].
To show the potential of the efficacy of specific exercise intervention, we employed sEMG. It helps identify more
effective ways of intervention leading to higher level of muscle recruitment and neuromuscular drive [4, 15, 44].
Therefore, sEMG may be employed as a convenient method to evaluate instant muscle recruitment changes, and
different methodologies are required to track longitudinal changes of muscle and strength development, such as
1 Repetition Maximum (1RM) [16].

We admit that safety should be the foremost consideration especially in the cases of machine exercises. As
mentioned earlier, we aimed to provide immersive VR exercise experience for machine exercises, considering their
lower attention demand of body balance and enhanced safety [12] compared to free-weight exercises. However,
JARVIS may need more extensive consideration for safety, for example, allowing a user to observe surrounding
environment and to proactively handle potential threat. We are currently working on solutions to tackle this
challenge. Specifically, we are implementing a mixed-reality (MR) feedback by combining the virtual reality with
surrounding environment through the pass-through camera of HMD. In the longer term, JARVIS will be able to
run on MR devices such as Microsoft Hololens, and the current technical components of JARVIS will be able to
support it with minor frontend modifications such as augmented muscle highlighting on a real body.

For future work, we plan to evaluate the efficacy of JARVIS for other exercise types with a broader population.
We also plan to extend JARVIS as a full-pledged gym context monitoring and fitness management platform and
design entertainment-oriented games on top of it. Finally, JARVIS represents our initial effort toward ubiquitous
mixed reality [35]. We plan to extend JARVIS to enable truly ubiquitous mixed reality experiences in the future.

9 CONCLUSION
In this paper, we present the design, implementation, and evaluation of JARVIS, a virtual exercise assistant based
on a miniature IoT sensing device and a mobile VR headset to enable immersive and interactive gym exercise
experience. The realization of such virtual experience requires the VR headset to retrieve accurate information
of the machine exercise performed by the user in real time. JARVIS achieves this by attaching a miniature IoT
sensing device on gym machines and developing a suite of lightweight sensor signal processing algorithms to
recognize exercise type and track exercise progress. Based on the extracted exercise information, JARVIS creates
an immersive and interactive gym exercise experience. With JARVIS, we envision that a series of usability and
effectiveness studies will follow up toward the realization of effective and practical ubiquitous virtual reality
exercise system and applications.
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