
NestDNN: Resource-Aware Multi-Tenant On-Device
Deep Learning for Continuous Mobile Vision

Biyi Fang†, Xiao Zeng†, Mi Zhang
Michigan State University
†Co-primary authors

ABSTRACT
Mobile vision systems such as smartphones, drones, and
augmented-reality headsets are revolutionizing our lives.
These systems usually run multiple applications concur-
rently and their available resources at runtime are dynamic
due to events such as starting new applications, closing ex-
isting applications, and application priority changes. In this
paper, we present NestDNN, a framework that takes the dy-
namics of runtime resources into account to enable resource-
aware multi-tenant on-device deep learning for mobile vi-
sion systems. NestDNN enables each deep learning model
to offer flexible resource-accuracy trade-offs. At runtime, it
dynamically selects the optimal resource-accuracy trade-off
for each deep learning model to fit the model’s resource de-
mand to the system’s available runtime resources. In doing so,
NestDNN efficiently utilizes the limited resources in mobile
vision systems to jointly maximize the performance of all the
concurrently running applications. Our experiments show
that compared to the resource-agnostic status quo approach,
NestDNN achieves as much as 4.2% increase in inference
accuracy, 2.0× increase in video frame processing rate and
1.7× reduction on energy consumption.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mo-
bile computing; • Computing methodologies → Neu-
ral networks;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MobiCom ’18, October 29-November 2, 2018, New Delhi, India
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5903-0/18/10. . . $15.00
https://doi.org/10.1145/3241539.3241559

KEYWORDS
Mobile Deep Learning Systems; Deep Neural Network Model
Compression; Scheduling; Continuous Mobile Vision

ACM Reference Format:
Biyi Fang†, Xiao Zeng†, Mi Zhang. 2018. NestDNN: Resource-Aware
Multi-Tenant On-Device Deep Learning for Continuous Mobile
Vision. In The 24th Annual International Conference on Mobile Com-
puting and Networking (MobiCom ’18), October 29-November 2, 2018,
New Delhi, India. ACM, New York, NY, USA, 13 pages. https://doi.
org/10.1145/3241539.3241559

1 INTRODUCTION
Mobile systems with onboard video cameras such as smart-
phones, drones, wearable cameras, and augmented-reality
headsets are revolutionizing the way we live, work, and inter-
act with the world. By processing the streaming video inputs,
these mobile systems are able to retrieve visual information
from the world and are promised to open up a wide range of
new applications and services. For example, a drone that can
detect vehicles, identify road signs, and track traffic flows
will enable mobile traffic surveillance with aerial views that
traditional traffic surveillance cameras positioned at fixed
locations cannot provide [31]. A wearable camera that can
recognize everyday objects, identify people, and understand
the surrounding environments can be a life-changer for the
blind and visually impaired individuals [2].
The key to achieving the full promise of these mobile vi-

sion systems is effectively analyzing the streaming video
frames. However, processing streaming video frames taken
in mobile settings is challenging in two folds. First, the pro-
cessing usually involvesmultiple computer vision tasks. This
multi-tenant characteristic requires mobile vision systems to
concurrently run multiple applications that target different
vision tasks [24]. Second, the context in mobile settings can
be frequently changed. This requires mobile vision systems
to be able to switch applications to execute new vision tasks
encountered in the new context [12].
In the past few years, deep learning (e.g., Deep Neural

Networks (DNNs)) [21] has become the dominant approach

https://doi.org/10.1145/3241539.3241559
https://doi.org/10.1145/3241539.3241559
https://doi.org/10.1145/3241539.3241559

in computer vision due to its capability of achieving impres-
sively high accuracies on a variety of important vision tasks
[19, 37, 41]. As deep learning chipsets emerge, there is a
significant interest in leveraging the on-device computing
resources to execute deep learning models onmobile systems
without cloud support [3–5]. Compared to the cloud, mobile
systems are constrained by limited resources. Unfortunately,
deep learning models are known to be resource-demanding
[35]. To enable on-device deep learning, one of the common
techniques used by application developers is compressing
the deep learning model to reduce its resource demand at a
modest loss in accuracy as trade-off [12, 39]. Although this
technique has gained considerable popularity and has been
applied to developing state-of-the-art mobile deep learning
systems [8, 14, 17, 20, 38], it has a key drawback: since appli-
cation developers develop their applications independently,
the resource-accuracy trade-off of the compressed model is
predetermined based on a static resource budget at applica-
tion development stage and is fixed after the application is
deployed. However, the available resources in mobile vision
systems at runtime are always dynamic due to events such as
starting new applications, closing existing applications, and
application priority changes. As such, when the resources
available at runtime do not meet the resource demands of
the compressed models, resource contention among concur-
rently running applications occurs, forcing the streaming
video to be processed at a much lower frame rate. On the
other hand, when extra resources at runtime become avail-
able, the compressedmodels cannot utilize the extra available
resources to regain their sacrificed accuracies back.

In this work, we presentNestDNN, a framework that takes
the dynamics of runtime resources into consideration to en-
able resource-aware multi-tenant on-device deep learning
for mobile vision systems. NestDNN replaces fixed resource-
accuracy trade-offswith flexible resource-accuracy trade-offs,
and dynamically selects the optimal resource-accuracy trade-
off for each deep learning model at runtime to fit the model’s
resource demand to the system’s available runtime resources.
In doing so, NestDNN is able to efficiently utilize the lim-
ited resources in the mobile system to jointly maximize the
performance of all the concurrently running applications.
Challenges and our Solutions. The design of NestDNN
involves two key technical challenges. (i) The limitation of
existing approaches is rooted in the constraint where the
trade-off between resource demand and accuracy of a com-
pressed deep learning model is fixed. Therefore, the first chal-
lenge lies in designing a scheme that enables a deep learning
model to provide flexible resource-accuracy trade-offs. One
naive approach is to have all the possible model variants with
various resource-accuracy trade-offs installed in the mobile
system. However, since these model variants are independent

of each other, this approach is not scalable and becomes in-
feasible when the mobile system concurrently runs multiple
deep learning models, with each of which having multiple
model variants. (ii) Selecting which resource-accuracy trade-
off for each of the concurrently running deep learningmodels
is not trivial. This is because different applications have dif-
ferent goals on inference accuracies and processing latencies.
Taking a traffic surveillance drone as an example: an applica-
tion that counts vehicles to detect traffic jams does not need
high accuracy but requires low latency; an application that
reads license plates needs high plate reading accuracy but
does not require real-time response [39].

To address the first challenge, NestDNN employs a novel
model pruning and recovery scheme which transforms a deep
learning model into a single compact multi-capacity model.
The multi-capacity model is comprised of a set of descendent
models, each of which offers a unique resource-accuracy
trade-off. Unlike traditional model variants that are inde-
pendent of each other, the descendent model with smaller
capacity (i.e., resource demand) shares its model parameters
with the descendent model with larger capacity, making it-
self nested inside the descendent model with larger capacity
without taking extra memory space. In doing so, the multi-
capacity model is able to provide various resource-accuracy
trade-offs with a compact memory footprint.
To address the second challenge, NestDNN encodes the

inference accuracy and processing latency of each descen-
dent model of each concurrently running application into a
cost function. Given all the cost functions,NestDNN employs
a resource-aware runtime scheduler which selects the optimal
resource-accuracy trade-off for each deep learning model
and determines the optimal amount of runtime resources to
allocate to each model to jointly maximize the overall infer-
ence accuracy and minimize the overall processing latency
of all the concurrently running applications.
Summary of Experimental Results. We have conducted
a rich set of experiments to evaluate the performance of
NestDNN. To evaluate the performance of the multi-capacity
model, we evaluated it on six mobile vision applications that
target some of the most important tasks for mobile vision sys-
tems. These applications are developed based on two widely
used deep learning models – VGG Net [33] and ResNet [13] –
and six datasets that are commonly used in computer vision
community. To evaluate the performance of the resource-
aware runtime scheduler, we incorporated two widely used
scheduling schemes and implemented NestDNN and the
six mobile vision applications on three smartphones. We
also implemented the status quo approach which uses fixed
resource-accuracy trade-off and is thus resource-agnostic. To
compare the performance between our resource-aware ap-
proach with the resource-agnostic status quo approach, we

Model Recovery Model Pruning
Filter Importance

Ranking

Model Re-training

Filter Pruning

Pruned Model

Seed
Model #1

Seed
Model #N

Model
Freezing

Model
Re-training

Filter
Growing

Descendant
Model

Multi-Capacity
Model #N

Multi-Capacity
Model #1

Filter Pruning
Roadmap

System Specs

Model
Profile
(L, M,

A)

Runtime
Application

Queries

Offline Stage Online Stage

Model Profiling
Latency Profiler (L)

Memory Profiler (M)

Accuracy Profiler (A)

Vanilla Model #1:
e.g., Object Recognition

User Input

Scheduler

Optimal
Resource
Allocation

Mobile Vision
Systems

Optimal
Model

Selection

Runtime Resource &
App Query Monitor

Cost Function

Vanilla Model #N:
e.g., Scene Understanding

Scheduling Schemes

Figure 1: NestDNN architecture.

have designed a benchmark that emulates runtime applica-
tion queries in diverse scenarios. Our results show that:
• The multi-capacity model is able to provide flexible and

optimized resource-accuracy trade-offs nested in a single
model. With parameter sharing, it significantly reduces
model memory footprint and model switching overhead.
• The resource-aware runtime scheduler outperforms the

resource-agnostic counterpart on both scheduling schemes,
achieving as much as 4.2% increase in inference accuracy,
2.0× increase in video frame processing rate and 1.7×
reduction on energy consumption.

Summary of Contributions. To the best of our knowl-
edge, NestDNN represents the first framework that enables
resource-aware multi-tenant on-device deep learning for
mobile vision systems. It contributes novel techniques that
address the limitations in existing approaches as well as the
unique challenges in continuous mobile vision. We believe
our work represents a significant step towards turning the
envisioned continuous mobile vision into reality [6, 24, 29].

2 NESTDNN OVERVIEW
Figure 1 illustrates the architecture of NestDNN, which is
split into an offline stage and an online stage.

The offline stage consists of three phases: model pruning
(§3.1), model recovery (§3.2), and model profiling.

In the model pruning phase, NestDNN employs a state-
of-the-art Triplet Response Residual (TRR) approach to rank
the filters in a given deep learning model (i.e., vanilla model)
based on their importance and prune the filters iteratively.
In each iteration, less important filters are pruned, and the
pruned model is retrained to compensate the accuracy degra-
dation (if there is any) caused by filter pruning. The iteration
ends when the pruned model could not meet the minimum
accuracy goal set by the user. The smallest pruned model
is called seed model. As a result, a filter pruning roadmap is
created where each footprint on the roadmap is a pruned
model with its filter pruning record.

Terminology Explanation
Vanilla Model Off-the-shelf deep learning model (e.g., ResNet) trained

on a given dataset (e.g., ImageNet).
Pruned Model Intermediate result obtained in model pruning stage.
Seed Model The smallest pruned model generated in model pruning

which meets the minimum accuracy goal set by the user.
It is also the starting point of model recovery stage.

Descendant Model A model grown upon the seed model in model recovery
stage. It has a unique resource-accuracy trade-off.

Multi-Capacity Model The final descendant model that has the capacities of
all the previously generated descendant models.

Table 1: Terminologies involved in NestDNN.

In the model recovery phase, NestDNN employs a novel
model freezing and filter growing (i.e., freeze-&-grow) ap-
proach to generate the multi-capacity model in an iterative
manner. Model recovery uses the seed model as the start-
ing point. In each iteration, model freezing is first applied to
freeze the parameters of all the model’s filters. By following
the filter pruning roadmap in the reverse order, filter growing
is then applied to add the pruned filters back. As such, a
descendant model with a larger capacity is generated and its
accuracy is regained via retraining. By repeating the itera-
tion, a new descendant model is grown upon the previous
one. Thus, the final descendant model has the capacities of all
the previous ones and is thus named multi-capacity model.
In the model profiling phase, given the specs of a mobile

vision system, a profile is generated for each multi-capacity
model including the inference accuracy, memory footprint,
and processing latency of each of its descendent models.
Finally, in the online stage, the resource-aware runtime

scheduler (§3.3) continuously monitors events that change
runtime resources. Once such event is detected, the sched-
uler checks up the profiles of all the concurrently running
applications, selects the optimal descendant model for each
application, and allocates the optimal amount of runtime
resources to each selected descendant model to jointly maxi-
mize the overall inference accuracy and minimize the overall
processing latency of all those applications.
For clarification purpose, Table 1 summarizes the termi-

nologies defined in this work and their brief explanations.

3 DESIGN OF NESTDNN

3.1 Filter based Model Pruning
3.1.1 Background on CNN Architecture.

Before delving deep into filter pruning, it is important to un-
derstand the architecture of a convolutional neural network
(CNN). In general, a CNN consists of four types of layers:
convolutional layers, activation layers, pooling layers, and
fully-connected layers. Due to the computational intensity
of convolution operations, convolutional layers are the most
computational intensive layers among the four types of lay-
ers. Specifically, each convolutional layer is composed of a
set of 3D filters, which plays the role of “feature extractors”.
By convolving an image with these 3D filters, it generates a
set of features organized in the form of feature maps, which
are further sent to the following convolutional layers for
further feature extraction.

3.1.2 Benefits of Filter Pruning.
Figure 2 illustrates the details of filter pruning. Let Θj−1 ∈

Rw j−1×hj−1×mj−1 denote the input feature maps of the jth con-
volutional layer convj of a CNN, where w j−1 and hj−1 are
the width and height of each of the input feature maps; and
mj−1 is the total number of the input feature maps. The
convolutional layer convj consists ofmj 3D filters with size
k × k ×mj−1 (k × k is the 2D kernel). It applies these filters
onto the input feature maps Θj−1 to generate the output
feature maps Θj ∈ R

w j×hj×mj , where one 3D filter gener-
ates one output feature map. This process involves a total of
mjk

2mj−1w jhj floating point operations (i.e., FLOPs).
Since one 3D filter generates one output feature map, prun-

ing one 3D filter in convj (marked in green in convj) results
in removing one output feature map in Θj (marked in green
in Θj), which leads to k2mj−1 parameter and k2mj−1w jhj
FLOPs reduction. Subsequently,mj+1 2D kernels applied onto
that removed output feature map in the convolutional layer
convj+1 (marked in green in convj+1) are also removed. This
leads to an additional k2mj+1 parameter and k2mj+1w j+1hj+1
FLOPs reduction. Therefore, by pruning filters, both model
size (i.e., model parameters) and computational cost (i.e.,
FLOPs) are reduced [23].

3.1.3 Filter Importance Ranking.
The key to filter pruning is identifying less important filters.
By pruning those filters, the size and computational cost of
a CNN model can be effectively reduced.
To this end, we propose a filter importance ranking ap-

proach named Triplet Response Residual (TRR) to measure
the importance of filters and rank filters based on their rela-
tive importance. Our TRR approach is inspired by one key
intuition: since a filter plays the role of “feature extractor”,
a filter is important if it is able to extract feature maps that
are useful to differentiate images belonging to different classes.

𝑚𝑗

𝑚𝑗−1

𝑚𝑗+1

𝑚𝑗

𝑤𝑗−1

ℎ𝑗−1

𝚯𝑗−1

𝑤𝑗

ℎ𝑗

𝚯𝑗 𝚯𝑗+1

𝑤𝑗+1

ℎ𝑗+1

𝑐𝑜𝑛𝑣𝑗
Filters

𝑐𝑜𝑛𝑣𝑗+1
Filters

2𝐷
kernel

Feature Maps Feature Maps

Figure 2: Illustration of filter pruning [23]. By pruning fil-
ters, both model size and computational cost are reduced.

In other words, a filter is important if the feature maps it
extracts from images belonging to the same class are more
similar than the ones extracted from images belonging to
different classes.
Let {anc , pos , neд} denote a triplet that consists of an an-

chor image (anc), a positive image (pos), and a negative im-
age (neд) where the anchor image and the positive image
are from the same class, while the negative image is from a
different class. By following the key intuition, TRR of filter i
is defined as:

TRRi =
∑

(∥Fi (anc)−Fi (neд)∥
2
2−∥Fi (anc)−Fi (pos)∥

2
2)

(1)
where F (·) denotes the generated feature map. Essentially,
TRR calculates the L2 distances of feature maps between
(anc , neд) and between (anc , pos), and measures the residual
between the two distances. By summing up the residuals of
all the triplets from the training dataset, the value of TRR
of a particular filter reflects its capability of differentiating
images belonging to different classes, acting as a measure of
importance of the filter within the CNN model.

3.1.4 Performance of Filter Importance Ranking.
Figure 3(a) illustrates the filter importance profiling perfor-
mance of our TRR approach on VGG-16 [33] trained on the
CIFAR-10 dataset [18]. The vanilla VGG-16 model contains
13 convolutional layers. Each of the 13 curves in the figure
depicts the top-1 accuracies when filters of one particular
convolutional layer are pruned while the other convolutional
layers remain unmodified. Each marker on the curve corre-
sponds to the top-1 accuracy when a particular percentage
of filters is pruned. As an example, the topmost curve (blue
dotted line with blue triangle markers) shows the accuracies
are 89.75%, 89.72% and 87.40% when 0% (i.e., vanilla model),
50% and 90% of the filters in the 13th convolutional layer
conv13 are pruned, respectively.

We have two key observations from the filter importance
profiling result. First, we observe that our TRR approach
is able to effectively identify redundant filters within each
convolutional layer. In particular, the accuracy remains the
same when 59.96% of the filters in conv13 are pruned. This
indicates that these pruned filters, identified by TRR, are
redundant. By pruning these redundant filters, the vanilla

(a) TRR (b) ℒ1-norm

Figure 3: Filter importance profiling performance of (a) TRR
and (b) L1-norm on VGG-16 trained on CIFAR-10.

VGG-16 model can be effectively compressed without any
accuracy degradation. Second, we observe that our TRR ap-
proach is able to effectively identify convolutional layers
that are more sensitive to filter pruning. This is reflected by
the differences in accuracy drops when the same percentage
of filters are pruned at different convolutional layers. This
sensitivity difference across convolutional layers has been
taken into account in the iterative filter pruning process.

To demonstrate the superiority of our TRR approach, we
have compared it with the state-of-the-art filter pruning ap-
proach. The state-of-the-art filter pruning approach uses L1-
norm of a filter to measure its importance [23]. Figure 3(b)
illustrates the filter importance profiling performance of
L1-norm on the same vanilla VGG-16 model trained on the
CIFAR-10 dataset. By comparing Figure 3(a) to Figure 3(b), we
observe that TRR achieves better accuracy than L1-norm at
almost every pruned filter percentage across all 13 curves. As
a concrete example, TRR achieves an accuracy of 89.72% and
87.40% when 50% and 90% of the filters at conv13 are pruned
respectively, while L1-norm only achieves an accuracy of
75.45% and 42.65% correspondingly. This result indicates that
the filters pruned by TRR have much less impact on accuracy
than the ones pruned by L1-norm, demonstrating that TRR
outperforms L1-norm at identifying less important filters.

3.1.5 Filter Pruning Roadmap.
By following the filter importance ranking provided by TRR,
we iteratively prune the filters in a CNN model. During each
iteration, less important filters across convolutional layers
are pruned, and the pruned model is retrained to compensate
the accuracy degradation (if there is any) caused by filter
pruning. The iteration endswhen the prunedmodel could not
meet the minimum accuracy goal set by the user. As a result,
a filter pruning roadmap is created where each footprint on
the roadmap is a pruned model with its filter pruning record.
The smallest pruned model on the roadmap is called seed
model. This filter pruning roadmap is used to guide the model
recovery process described below.

𝑚𝑗

𝑚𝑗−1

𝑤𝑗−1

ℎ𝑗−1

𝚯𝑗−1

𝑤𝑗

ℎ𝑗

𝚯𝑗 𝚯𝑗+1

𝑤𝑗+1

ℎ𝑗+1

𝑐𝑜𝑛𝑣𝑗
Filters

Pruned Model Filters Grown Filters

Feature Maps Feature Maps

𝑚𝑗

𝑚𝑗−1

𝑤𝑗

ℎ𝑗

𝚯𝑗 𝚯𝑗+1

𝑤𝑗+1

ℎ𝑗+1

𝑐𝑜𝑛𝑣𝑗
Filters

𝑐𝑜𝑛𝑣𝑗+1
Filters

Filters of Previous Descendant Model Grown Filters

Feature Maps Feature Maps

𝑚𝑗+1

𝑚𝑗

𝑚𝑗+1

𝑚𝑗

𝑐𝑜𝑛𝑣𝑗+1
Filters

Frozen Filters Grown Filters

Grown Filters with Retrained Parameters

Seed
Model

Model
Freezing

Filter
Growing

Multi-Capacity
Model

Re-
Training

Capacity #1

Capacity #2

Figure 4: Illustration of model freezing and filter growing.

3.2 Freeze-&-Grow based Model Recovery
3.2.1 Motivation and Key Idea.

The filter pruning process generates a series of pruned mod-
els, each of which acting as a model variant of the vanilla
model with a unique resource-accuracy trade-off. However,
due to the retraining stepwithin each pruning iteration, these
pruned models have different model parameters, and thus
are independent of each other. Therefore, although these
pruned models provide different resource-accuracy trade-
offs, keeping all of them locally in resource-limited mobile
systems is practically infeasible.
To address this problem, we propose to generate a sin-

gle multi-capacity model that acts equivalently as the se-
ries of pruned models to provide various resource-accuracy
trade-offs but has a model size that is much smaller than
the accumulated model size of all the pruned models. This is
achieved by an innovative model freezing and filter growing
(i.e., freeze-&-grow) approach.

In the remainder of this section, we describe the details
of the freeze-&-grow approach and how the multi-capacity
model is iteratively generated.

3.2.2 Model Freezing and Filter Growing.
The generation of the multi-capacity model starts from the
seed model derived from the filter pruning process. By fol-
lowing the filter pruning roadmap and the freeze-&-grow
approach, the multi-capacity model is iteratively created.

Figure 4 illustrates the details of model freezing and filter
growing during the first iteration. For illustration purpose,
only one convolutional layer is depicted. As shown, given
the seed model, we first applymodel freezing to freeze the pa-
rameters of all its filters (marked as blue squares). Next, since
each footprint on the roadmap has its filter pruning record,
we follow the filter pruning roadmap in the reverse order and
apply filter growing to add the pruned filters back (marked
as green stripe squares). With the added filters, the capacity
of this descendant model is increased. Lastly, we retrain this
descendant model to regain accuracy. It is important to note
that during retraining, since the seed model is frozen, its pa-
rameters are not changed; only the parameters of the added
filters are changed (marked as green solid squares to indicate
the parameters are changed). As such, we have generated

a single model that not only has the capacity of the seed
model but also has the capacity of the descendant model.
Moreover, the seed model shares all its model parameters
with the descendant model, making itself nested inside the
descendant model without taking extra memory space.
By repeating the iteration, a new descendant model is

grown upon the previous one. As such, the final descen-
dant model has the capacities of all the previous descendant
models and is thus named multi-capacity model.

3.2.3 Superiority of Multi-Capacity Model.
The generated multi-capacity model has three advantages.
One Compact Model with Multiple Capabilities. The
generated multi-capacity model is able to provide multi-
ple capacities nested in a single model. This eliminates the
need of installing potentially a large number of indepen-
dent model variants with different capacities. Moreover, by
sharing parameters among descendant models, the multi-
capacity model is able to save a large amount of memory
space to significantly reduce its memory footprint.
Optimized Resource-Accuracy Trade-offs. Each capac-
ity provided by the multi-capacity model has a unique opti-
mized resource-accuracy trade-off. Our TRR approach is able
to provide state-of-the-art performance at identifying and
pruning less important filters. As a result, the multi-capacity
model delivers state-of-the-art inference accuracy under a
given resource budget.
Efficient Model Switching. Because of parameter sharing,
the multi-capacity model is able to switch models with lit-
tle overhead. Switching independent deep learning models
causes significant overhead. This is because it requires to
page in and page out the entire deep learning models. Multi-
capacity model alleviates this problem in an elegant manner
by only requiring to page in and page out a very small portion
of deep learning models.

Figure 5 illustrates the details of model switching of multi-
capacity model. For illustration purpose, only one convolu-
tional layer is depicted. As shown, since each descendant
model is grown upon its previous descendant models, when
the multi-capacity model is switching to a descendant model
with larger capability (i.e., model upgrade), it incurs zero
page-out overhead, and only needs to page in the extra fil-
ters included in the descendant model with larger capability
(marked as green squares). When the multi-capacity model is
switching to a descendant model with smaller capability (i.e.,
model downgrade), it incurs zero page-in overhead, and only
needs to page out the filters that the descendant model with
smaller capability does not have (marked as gray squares).
As a result, the multi-capacity model significantly reduces
the overhead of model page in and page out, making model
switching extremely efficient.

Seed Model Filters

Grown Filters Shed Filters

Model
Upgrade

Capacity #2

Downgrade

Upgrade

Seed Model

Paged-in (Grown) Filters

Fully-Connected Layer

Paged-out Filters

Capacity #1

Model Switching:

Inference ResultInference Result

Descendant w/
Larger Capacity

Model
Downgrade

Descendant w/
Smaller Capacity

Model
Downgrade

Model
Upgrade

Descendant Model
w/ Smaller Capacity

Descendant Model
w/ Larger Capacity

Paged-in Filters Paged-out Filters

Figure 5: Illustration of model switching (model upgrade vs.
model downgrade) of multi-capacity model.

3.3 Resource-Aware Scheduler
3.3.1 Motivation and Key Idea.

The creation of the multi-capacity model enables NestDNN
to jointly maximize the performance of vision applications
that are concurrently running on a mobile vision system.
This possibility comes from two key insights. First, while
a certain amount of runtime resources can be traded for
an accuracy gain in some application, the same amount of
runtime resources may be traded for a larger accuracy gain in
some other application. Second, for applications that do not
need real-time response and thus can tolerate a relatively
large processing latency, we can reallocate some runtime
resources from those latency-tolerant applications to other
applications that need more runtime resources to meet their
real-time goals. NestDNN exploits these two key insights by
encoding the inference accuracy and processing latency into
a cost function for each vision application, which serves as
the foundation for resource-aware scheduling.

3.3.2 Cost Function.
Let V denote the set of vision applications that are concur-
rently running on a mobile vision system, and let Amin (v)
and Lmax (v) denote the minimum inference accuracy and
the maximum processing latency goals set by the user for
application v ∈ V . Additionally, let Mv denote the multi-
capacity model generated for application v , and letmv de-
note a descendant modelmv ∈ Mv . The cost function of the
descendant modelmv for application v is defined as follows:

C (mv ,uv ,v) = (Amin (v) −A(mv))+

α ·max(0, L(mv)

uv
− Lmax (v))

(2)

where A(mv) is the inference accuracy of mv , uv ∈ (0, 1]
is the computing resource percentage allocated to v , and
L(mv) is the processing latency ofmv when 100% computing
resources are allocated to v .

Essentially, the first term in the cost function promotes se-
lecting the descendant modelmv whose inference accuracy
is as high as possible. The second term in the cost function
penalizes selecting the descendant modelmv that has a pro-
cessing latency higher than the maximum processing latency
goal. Since the video input is streamed at a dedicated frame

rate, there is no reward for achieving a processing latency
lower than Lmax (v). α ∈ [0, 1] is a knob set by the user to
determine the latency-accuracy trade-off preference. A large
α weights more on the penalty for latency while a small α
favors higher accuracy.

3.3.3 Scheduling Schemes.
Given the cost function of each descendant model of each
concurrently running application, the resource-aware sched-
uler incorporates two widely used scheduling schemes to
jointly maximize the performance of concurrent vision ap-
plications for two different optimization objectives.
MinTotalCost. The MinTotalCost (i.e., minimize the total
cost) scheduling scheme aims to minimize the total cost of
all concurrent applications. This optimization problem can
be formulated as follows:

min
uv ,mv ∈Mv

∑
v ∈V

C (mv ,uv ,v) (3)

s .t .
∑
v ∈V

S (mv) ≤ Smax ,
∑
v ∈V

uv ≤ 1

where S (mv) denotes the runtime memory footprint of the
descendant model mv . The total memory footprint of all
the concurrent applications cannot exceed the maximum
memory space of the mobile vision system denoted as Smax .

Under the MinTotalCost scheduling scheme, the resource-
aware scheduler favors applications with lower costs and
thus is optimized to allocate more runtime resources to them.
MinMaxCost. The MinMaxCost (i.e., minimize the maxi-
mum cost) scheduling scheme aims to minimize the cost of
the application that has the highest cost. This optimization
problem can be formulated as follows:

min
uv ,mv ∈Mv

k (4)

s .t . ∀v : C (mv ,uv ,v) ≤ k,∑
v ∈V

S (mv) ≤ Smax ,
∑
v ∈V

uv ≤ 1

where the cost of any of the concurrently running applica-
tions must be smaller than k where k is minimized.

Under the MinMaxCost scheduling scheme, the resource-
aware scheduler is optimized to fairly allocate runtime re-
sources to all the concurrent applications to balance their
performance.

3.3.4 Cached Greedy Heuristic Approximation.
Solving the nonlinear optimization problems involved in
MinTotalCost and MinMaxCost scheduling schemes is com-
putationally hard. To enable real-time online scheduling in
mobile systems, we utilize a greedy heuristic inspired by [39]
to obtain approximate solutions.

Specifically, we define a minimum indivisible runtime re-
source unit ∆u (e.g., 1% of the total computing resources in a
mobile vision system) and start allocating the computing re-
sources from scratch. ForMinTotalCost, we allocate∆u to the
descendent modelmv of applicationv such thatC (mv ,∆u,v)
has the smallest cost increase among other concurrent appli-
cations. For MinMaxCost, we select application v with the
highest cost C (mv ,uv ,v), and allocate ∆u to v and choose
the optimal descendent modelmv = argminmv C (mv ,uv ,v)
for v . For both MinTotalCost and MinMaxCost, the runtime
resources are iteratively allocated until exhausted.

The runtime of executing the greedy heuristic can be fur-
ther shortened via the caching technique. This is particularly
attractive to mobile systems with very limited resources.
Specifically, when allocating the computing resources, in-
stead of starting from scratch, we start from the point where
a certain amount of computing resources has already been
allocated. For example, we can cache the unfinished running
scheme where 70% of the computing resources have been
allocated during optimization. In the next optimization iter-
ation, we directly start from the unfinished running scheme
and allocate the remaining 30% computing resources, thus
saving 70% of the optimization time. To prevent from falling
into a local minimum over time, a complete execution of
the greedy heuristic is performed periodically to enforce the
cached solution to be close to the optimal one.

4 EVALUATION
4.1 Datasets, DNNs and Applications

4.1.1 Datasets.
To evaluate the generalization capability of NestDNN on
different vision tasks, we select two types of tasks that are
among the most important tasks for mobile vision systems.
Generic-Category Object Recognition. This type of vi-
sion tasks aims to recognize the generic category of an object
(e.g., a road sign, a person, or an indoor place). Without loss
of generality, we select 3 commonly used computer vision
datasets, each containing a small, a medium, and a large num-
ber of object categories respectively, representing an easy, a
moderate, and a difficult vision task correspondingly.
• CIFAR-10 [18]. This dataset contains 50K training im-
ages and 10K testing images belonging to 10 generic
categories of objects.
• ImageNet-50 [32]. This dataset is a subset of the ILSVRC

ImageNet. It contains 63K training images and 2K testing
images belonging to top 50 most popular object cate-
gories based on the popularity ranking provided by the
official ImageNet website.
• ImageNet-100 [32]. Similar to ImageNet-50, this dataset
is a subset of the ILSVRC ImageNet. It contains 121K

Type Dataset DNN Model Mobile Vision Application

Generic
Category

CIFAR-10 VGG-16 VC
ImageNet-50 ResNet-50 RI-50
ImageNet-100 ResNet-50 RI-100

Class
Specific

GTSRB VGG-16 VS
Adience-Gender VGG-16 VG

Places-32 ResNet-50 RP

Table 2: Summary of datasets, DNN models, and mobile vi-
sion applications used in this work.

training images and 5K testing images belonging to top
100 most popular object categories based on the popular-
ity ranking provided by the official ImageNet website.

Class-Specific Object Recognition. This type of vision
tasks aims to recognize the specific class of an object within
a generic category (e.g., a stop sign, a female person, or
a kitchen). Without loss of generality, we select 3 object
categories: 1) road signs, 2) people, and 3) places, which are
commonly seen in mobile settings.
• GTSRB [34]. This dataset contains over 50K images be-
longing to 43 classes of road signs such as speed limit
signs and stop signs.
• Adience-Gender [22]. This dataset contains over 14K
images of human faces of two genders.
• Places-32 [40]. This dataset is a subset of the Places365-

Standard dataset. Places365-Standard contains 1.8 million
images of 365 scene classes belonging to 16 higher-level
categories. We select two representative scene classes
(e.g., parking lot and kitchen) from each of the 16 higher-
level categories and obtain a 32-class dataset that includes
over 158K images.

4.1.2 DNN Models.
To evaluate the generalization capability of NestDNN on
different DNN models, we select two representative DNN
models: 1) VGG-16 and 2) ResNet-50. VGG-16 [33] is con-
sidered as one of the most straightforward DNN models to
implement, and thus gains considerable popularity in both
academia and industry. ResNet-50 [13] is considered as one
of the top-performing DNN models in computer vision due
to its superior recognition accuracy.

4.1.3 Mobile Vision Applications.
Without loss of generality, we randomly assign CIFAR-10, GT-
SRB and Adience-Gender to VGG-16; and assign ImageNet-
50, ImageNet-100 and Places-32 to ResNet-50 to create six
mobile vision applications labeled as VC (i.e., VGG-16 trained
on the CIFAR-10 dataset), RI-50, RI-100, VS, VG, and RP, re-
spectively. We train and test all the vanilla DNN models and
all the descendant models generated by NestDNN by strictly
following the protocol provided by each of the six datasets
described above.

The datasets, DNN models, and mobile vision applications
are summarized in Table 2.

4.2 Performance of Multi-Capacity Model
In this section, we evaluate the performance ofmulti-capacity
model to demonstrate its superiority listed in §3.2.3.

4.2.1 Experimental Setup.
Selection of Descendant Models. Without loss of gener-
ality, for each mobile vision application, we generate a multi-
capacity model that contains five descendant models. These
descendant models are designed to have diverse resource-
accuracy trade-offs. We select these descendant models with
the purpose to demonstrate that our multi-capacity model
enables applications to run even when available resources
are very limited. It should be noted that a multi-capacity
model is neither limited to one particular set of resource-
accuracy trade-offs nor limited to one particular number
of descendant models. NestDNN provides the flexibility to
design a multi-capacity model based on users’ preferences.
Baseline. To make a fair comparison, we use the same ar-
chitecture of descendant models for baseline models such
that their model sizes and computational costs are identical.
In addition, we pre-trained baseline models on ImageNet
dataset and then fine-tuned them on each of the six datasets.
Pre-training is an effective way to boost accuracy, and thus is
adopted as a routine in machine learning community [16, 30].
We also trained baseline models without pre-training, and
observed that baseline models with pre-training consistently
outperform those without pre-training. Therefore, we only
report accuracies of baseline models with pre-training.

4.2.2 Optimized Resource-Accuracy Trade-offs.
Figure 6 illustrates the comparison between descendent mod-
els and baseline models across six mobile vision applications.
For each application, we show the top-1 accuracies of both
descendant models and baseline models as a function of
model size. For better illustration purpose, the horizontal
axis is plotted using the logarithmic scale.
We have two key observations from the result. First, we

observe that descendant models consistently achieve higher
accuracies than baseline models at every model size across all
the six applications. On average, descendant models achieve
4.98% higher accuracy than baseline models. This indicates
that our descendant model at each capacity is able to deliver
state-of-the-art inference accuracy under a given memory
budget. Second, we observe that smaller descendant models
outperform baseline models more than larger descendant
models. On average, the two smallest descendant models
achieve 6.68% higher accuracy while the two largest descen-
dant models achieve 3.72% higher accuracy compared to their
corresponding baseline models. This is because our TRR ap-
proach is able to preserve important filters while pruning
less important ones. Despite having a small capacity, a small
descendant model benefits from these important filters while
the corresponding baseline model does not.

(b) VS (c) VG(a) VC

(e) RI-100 (f) RP(d) RI-50

Figure 6: Top-1 accuracy vs. model size comparison between descendent models and baseline models.

(b) VS (c) VG(a) VC (e) RI-100 (f) RP(d) RI-50

Descendant
Model

1 2 3 4 5
Vanilla
Model

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.04 0.06

Descendant
Model

Vanilla
Model

Descendant
Model

Vanilla
Model

Descendant
Model

Vanilla
Model

Descendant
Model

Vanilla
Model

Descendant
Model

Vanilla
Model

Figure 7: Computational cost comparison between descendant models and vanilla models.

Figure 7 shows the computational costs of five descen-
dant models and the corresponding vanilla models of the six
applications in GFLOPs (i.e., GigaFLOPs). As shown, all de-
scendant models have less GFLOPs than the corresponding
vanilla models. This result indicates that our filter pruning
approach is able to effectively reduce the computational costs
across six applications, demonstrating the generalization of
our filter pruning approach on different deep learningmodels
trained on different datasets.

4.2.3 Reduction on Memory Footprint.
Another key feature of multi-capacity model is sharing pa-
rameters among its descendant models. To quantify the ben-
efit of parameter sharing on reducing memory footprint, we
compare the model size of multi-capacity model with the ac-
cumulated model size of the five descendant models as if they
were independent. This mimics traditional model variants
that are used in existing mobile deep learning systems.
Table 3 lists the comparison results across the six mo-

bile vision applications. Obviously, the model size of the
multi-capacity model is smaller than the corresponding ac-
cumulated model size for each application. Moreover, deep
learning model with larger model size benefits more from

Application Multi-Capacity
Model Size (MB)

Accumulated
Model Size (MB)

Reduced Memory
Footprint (MB)

VC 196.0 437.5 241.5
VS 12.9 19.8 6.9
VG 123.8 256.0 132.2
RI-50 42.4 58.1 15.7
RI-100 87.1 243.5 156.4
RP 62.4 97.1 34.7

All Included 524.6 1112.0 587.4

Table 3: Benefit of multi-capacity model on memory foot-
print reduction.

parameter sharing. For example, VC has the largest model
size across the six applications. With parameter sharing, it
achieves a reduced memory footprint of 241.5 MB. Finally,
if we consider running all the six applications concurrently,
the multi-capacity model achieves a reduced memory foot-
print of 587.4 MB, demonstrating the enormous benefit of
multi-capacity model on memory footprint reduction.

4.2.4 Reduction on Model Switching Overhead.
Another benefit of parameter sharing is reducing the over-
head of model switching when the set of concurrent applica-
tions changes. To quantify this benefit, we consider all the
possible model switching cases among all the five descen-
dant models of each multi-capacity model, and calculate the

(b) VS (c) VG(a) VC (e) RI-100 (f) RP(d) RI-50

Figure 8: Model switching energy consumption comparison between multi-capacity models and independent models. The
energy consumption is measured on a Samsung Galaxy S8 smartphone.

average page-in and page-out overhead for model upgrade
and model downgrade, respectively. We compare it with the
case where descendant models are treated as if they were
independent, which again mimics traditional model variants.
Table 4 lists the comparison results of all six mobile vi-

sion applications for model upgrade in terms of memory
usage. As expected, the average page-in and page-out mem-
ory usage of independent models during model switching
is larger than multi-capacity models for every application.
This is because during model switching, independent models
need to page in and page out the entire models while multi-
capacity models only need to page in a very small portion of
the models. It should be noted that the page-out overhead of
multi-capacity model during model upgrade is zero. This is
because the descendant model with smaller capability is part
of the descendant model with larger capability, and thus it
does not need to be paged out.

Table 5 lists the comparison results of all six applications
for model downgrade. Similar results are observed. The only
difference is that during model downgrade, the page-in over-
head of multi-capacity model is zero.
Besides memory usage, we also quantify the benefit on

reducing the overhead of model switching in terms of energy
consumption. Specifically, we measured energy consumed by
randomly switching models for 250, 500, 750, and 1,000 times
using descendant models and independent models, respec-
tively. Figure 8 shows the comparison results across all six
mobile vision applications. As expected, energy consumed
by switching multi-capacity model is lower than switching
independent models for every application. This benefit be-
comes more prominent when the model size is large. For
example, the size of the largest descendant model of VC and
VS is 196.0 MB and 12.9 MB, respectively. The correspond-
ing energy consumption reduction for every 1,000 model
switches is 602.1 J and 4.0 J, respectively.

Taken together, the generated multi-capacity model is able
to significantly reduce the overhead of model switching in
terms of both memory usage and energy consumption. The
benefit becomes more prominent when model switching fre-
quency increases. This is particularly important for memory
and battery constrained mobile systems.

Application
Multi-Capacity Model
Upgrade Overhead (MB)

Independent Models
Upgrade Overhead (MB)

Page-In Page-Out Page-In Page-Out
VC 81.4 0 128.2 46.8
VS 1.3 0 1.7 0.3
VG 50.0 0 76.2 26.2
RI-50 19.2 0 21.2 2.0
RI-100 38.3 0 67.9 29.5
RP 26.4 0 34.9 4.6

Table 4: Benefit ofmulti-capacitymodel onmodel switching
(model upgrade) in terms of memory usage.

Application
Multi-Capacity Model

Downgrade Overhead (MB)
Independent Models

Downgrade Overhead (MB)
Page-In Page-Out Page-In Page-Out

VC 0 81.4 46.8 128.2
VS 0 1.3 0.3 1.7
VG 0 50.0 26.2 76.2
RI-50 0 19.2 2.0 21.2
RI-100 0 38.3 29.5 67.9
RP 0 26.4 4.6 34.9

Table 5: Benefit ofmulti-capacitymodel onmodel switching
(model downgrade) in terms of memory usage.

4.3 Performance of Resource-Aware
Scheduler

4.3.1 Experimental Setup.
Deployment Platforms. We implemented NestDNN and
the six mobile vision applications on three smartphones:
Samsung Galaxy S8, Samsung Galaxy S7, and LG Nexus 5,
all running Android OS 7.0. We used Monsoon power moni-
tor [1] to measure the power consumption.We have achieved
consistent results across all three smartphones. Here we only
report the best results obtained from Samsung Galaxy S8.
Baseline. We used the status quo approach (i.e., resource-
agnostic) which uses fixed resource-accuracy trade-off as
the baseline. It uses the model located at the “knee” of every
yellow curve in Figure 6. This is the one that achieves the best
resource-accuracy trade-off among all the model variants.
Benchmark Design. To compare the performance between
our resource-aware approach and the resource-agnostic sta-
tus quo approach, we have designed a benchmark that emu-
lates runtime application queries in diverse scenarios. Specif-
ically, our benchmark creates a new application or kills a

(a) Time Distribution of Different
Numbers of Concurrent Applications

2 3 4 5 6
Number of Concurrent Applications

VC VS VG RI-50 RP
Mobile Vision Applications

RI-100

(b) Time Distribution of
Individual Applications

Figure 9: Benchmark profile.

running application with certain probabilities at every sec-
ond. The number of concurrently running applications is
from 2 to 6. The maximum available memory to run concur-
rent applications is set to 400MB. Each simulation generated
by our benchmark lasts for 60 seconds. We repeat the simula-
tion 100 times and report the average runtime performance.
Figure 9 shows the profile of all accumulated simulation

traces generated by our benchmark. Figure 9(a) shows the
time distribution of different numbers of concurrent appli-
cations. As shown, the percentage of time when two, three,
four, five and six applications running concurrently is 9.8%,
12.7%, 18.6%, 24.5% and 34.3%, respectively. Figure 9(b) shows
the running time distribution of each individual application.
As shown, the running time of each application is approxi-
mately evenly distributed, indicating our benchmark ensures
a reasonably fair time share among all six applications.
Evaluation Metrics. We use the following two metrics to
evaluate the scheduling performance.
• Inference Accuracy Gain. Since the absolute top-1 ac-
curacies obtained by the six applications are not in the
same range, we thus use accuracy gain over the baseline
within each application as a more meaningful metric.
• FrameRate Speedup. Similarly, since the absolute frame
rate achieved depends on the number of concurrently
running applications, we thus use frame rate speedup
over the baseline as a more meaningful metric.

4.3.2 Improvement on Inference Accuracy and Frame Rate.
Figure 10(a) compares the runtime performance between
NestDNN and the baseline under the MinTotalCost schedul-
ing scheme. The yellow circle represents the runtime perfor-
mance of the baseline. Each blue diamond marker represents
the runtime performance obtained by scheduling with a par-
ticular α in the cost function defined in Equation (2).
We have two key observations from the result. First, by

adjusting the value of α , NestDNN is able to provide vari-
ous trade-offs between inference accuracy and frame rate,
which the status quo approach could not provide. Second,
the vertical and horizontal dotted lines altogether partition
the figure into four quadrants. The upper right quadrant
represents a region where NestDNN achieves both higher
top-1 accuracy and frame rate than the status quo approach.

(b) MinMaxCost

Knee

(a) MinTotalCost

Knee

(b) MinMaxCost(a) MinTotalCost

Knee Knee

(b) MinMaxCost(a) MinTotalCost

Figure 10: Runtime performance comparison between
NestDNN (resource-aware) and status quo (resource-
agnostic) under (a) MinTotalCost and (b) MinMaxCost.

(b) MinMaxCost

Knee

(a) MinTotalCost

Knee

(b) MinMaxCost(a) MinTotalCost

Knee Knee

(b) MinMaxCost(a) MinTotalCost

Total Number of Inferences Total Number of Inferences

Figure 11: Energy consumption comparison between
NestDNN (resource-aware) and status quo (resource-
agnostic) under (a) MinTotalCost and (b) MinMaxCost.

In particular, we select 3 blue diamond markers within the
upper right quadrant to demonstrate the runtime perfor-
mance improvement achieved by NestDNN. Specifically,
when NestDNN has the same average top-1 accuracy as
the baseline, NestDNN achieves 2.0× average frame rate
speedup compared to the baseline. When NestDNN has the
same average frame rate as the baseline, NestDNN achieves
4.1% average accuracy gain compared to the baseline. Finally,
we select the “knee” of the blue diamond curve, which offers
the best accuracy-frame rate trade-off among all the α . At the
“knee”, NestDNN achieves 1.5× average frame rate speedup
and 2.6% average accuracy gain compared to the baseline.

Figure 10(b) compares the runtime performance between
NestDNN and the baseline under the MinMaxCost sched-
uling scheme. When NestDNN has the same average top-1
accuracy gain as the baseline, NestDNN achieves 1.9× av-
erage frame rate speedup compared to the baseline. When
NestDNN has the same average frame rate as the baseline,
NestDNN achieves 4.2% average accuracy gain compared
to the baseline. At the “knee”, NestDNN achieves 1.5× av-
erage frame rate speedup and 2.1% average accuracy gain
compared to the baseline.

4.3.3 Reduction on Energy Consumption.
Besides improvement on inference accuracy and frame rate,
NestDNN also consumes less energy. Figure 11(a) compares

the energy consumption between NestDNN at the “knee”
and the baseline under the MinTotalCost scheduling scheme.
Across different numbers of inferences, NestDNN achieves
an average 1.7× energy consumption reduction compared to
the baseline. Similarly, Figure 11(b) shows the comparison
under the MinMaxCost scheduling scheme. NestDNN is able
to achieve an average 1.5× energy consumption reduction
compared to the baseline.

5 DISCUSSION
Impact on Mobile Vision Systems. NestDNN represents
the first framework that supports resource-awaremulti-tenant
on-device deep learning for mobile vision systems. This is
achieved by replacing fixed resource-accuracy trade-offs
with flexible ones and dynamically selecting the optimal
trade-off at runtime to deliver the maximum performance
subject to resource constraint. We envision NestDNN could
become a useful framework for future mobile vision systems.
Generality of NestDNN. In this work, we selected VGG
Net and ResNet as two representative deep learning models
to implement and evaluate NestDNN. However, NestDNN
can be generalized to support many other popular deep learn-
ing models such as GoogLeNet [36], MobileNets [14], and
BinaryNet [7]. NestDNN can also be generalized to support
other computing tasks beyond computer vision tasks. In
this sense, NestDNN is a generic framework for achieving
resource-aware multi-tenant on-device deep learning.
Limitation. NestDNN in the current form has some limita-
tion. Although our TRR approach outperforms the L1-norm
approach in filter pruning, its computational cost is much
higher than L1-norm. This significantly increases the cost
of the multi-capacity model generation process, even though
the process is only performed once. We will find ways to
reduce the cost and leave it as our future work.

6 RELATEDWORK
Deep Neural Network Model Compression.Model com-
pression for deep neural networks has attracted a lot of
attentions in recent years due to the imperative demand on
running deep learning models on mobile systems. One of
the most prevalent methods for compressing deep neural
networks is pruning. Most widely used pruning approaches
focus on pruning model parameters [10, 11]. Although prun-
ing parameters is effective at reducing model sizes, it does
not necessarily reduce computational costs [23, 26, 28], mak-
ing it less useful for mobile systems which need to provide
real-time services. To overcome this problem, Li et al. [23]
proposed a filter pruning method that has achieved up to
38% reduction in computational cost. Our work also focuses
on compressing deep neural networks via filter pruning.
Our proposed filter pruning approach outperforms the state-
of-the-art. Moreover, unlike existing model compression

methods which produce pruned models with fixed resource-
accuracy trade-offs, our proposed multi-capacity model is
able to provide dynamic resource-accuracy trade-offs. This
is similar to the concept of dynamic neural networks in the
deep learning literature [9, 15, 25].
Continuous Mobile Vision. The concept of continuous
mobile vision was first advanced by Bahl et al. [6]. The last
few years have witnessed many efforts towards realizing
the vision of continuous mobile vision [12, 17, 24, 27]. In
particular, in [24], LiKamWa et al. proposed a framework
named Starfish, which enables efficient running concurrent
vision applications on mobile devices by sharing common
computation and memory objects across applications. Our
work is inspired by Starfish in terms of sharing. By sharing
parameters among descendent models, our proposed multi-
capacity model has a compact memory footprint and incurs
little model switching overhead. Our work is also inspired
by [12]. In [12], Han et al. proposed a framework named
MCDNN, which applies various model compression tech-
niques to generate a catalog of model variants to provide
different resource-accuracy trade-offs. However, inMCDNN,
the generated model variants are independent of each other,
and it relies on cloud connectivity to retrieve the desired
model variant. In contrast, our work focuses on develop-
ing an on-device deep learning framework which does not
rely on cloud connectivity. Moreover,MCDNN focuses on
model sharing across concurrently running applications. In
contrast, NestDNN treats each of the concurrently running
applications independently, and focuses on model sharing
across different model variants within each application.

7 CONCLUSION
In this paper, we presented the design, implementation and
evaluation of NestDNN, a framework that enables resource-
awaremulti-tenant on-device deep learning for mobile vision
systems. NestDNN takes the dynamics of runtime resources
in a mobile vision system into consideration, and dynami-
cally selects the optimal resource-accuracy trade-off and re-
source allocation for each of the concurrently running deep
learning models to jointly maximize their performance. We
evaluatedNestDNN using six mobile vision applications that
target some of the most important vision tasks for mobile
vision systems. Our results show thatNestDNN outperforms
the resource-agnostic status quo approach in inference accu-
racy, video frame processing rate, and energy consumption.
We believe NestDNN represents a significant step towards
turning the envisioned continuous mobile vision into reality.

8 ACKNOWLEDGEMENT
We thank the anonymous shepherd and reviewers for their
valuable feedback. This work was partially supported by NSF
Awards CNS-1617627, IIS-1565604, and PFI:BIC-1632051.

REFERENCES
[1] 2016. Monsoon Power Monitor. https://www.msoon.com/

LabEquipment/PowerMonitor/.
[2] 2016. This Powerful Wearable Is a Life-Changer for

the Blind. https://blogs.nvidia.com/blog/2016/10/27/
wearable-device-for-blind-visually-impaired/.

[3] 2017. An On-device Deep Neural Network for Face Detection. https:
//machinelearning.apple.com/2017/11/16/face-detection.html.

[4] 2018. Amazon DeepLens. https://aws.amazon.com/deeplens/.
[5] 2018. Google Clips. https://store.google.com/us/product/google_clips.
[6] Paramvir Bahl, Matthai Philipose, and Lin Zhong. 2012. Vision: cloud-

powered sight for all: showing the cloud what you see. In ACM work-
shop on Mobile cloud computing and services. 53–60.

[7] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. 2016. Binarized neural networks: Training deep neural
networks with weights and activations constrained to+ 1 or-1. arXiv
preprint arXiv:1602.02830 (2016).

[8] Biyi Fang, Jillian Co, and Mi Zhang. 2017. DeepASL: Enabling Ubiq-
uitous and Non-Intrusive Word and Sentence-Level Sign Language
Translation. In ACM SenSys. Delft, The Netherlands.

[9] Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dynamic network
surgery for efficient dnns. In NIPS. 1379–1387.

[10] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding. arXiv preprint arXiv:1510.00149 (2015).

[11] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning
both weights and connections for efficient neural network. In NIPS.
1135–1143.

[12] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agar-
wal, Alec Wolman, and Arvind Krishnamurthy. 2016. MCDNN: An
Approximation-Based Execution Framework for Deep Stream Process-
ing Under Resource Constraints. In ACM MobiSys. 123–136.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 770–778.

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017).

[15] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der
Maaten. 2017. Densely connected convolutional networks. In IEEE
conference on computer vision and pattern recognition, Vol. 1. 3.

[16] Minyoung Huh, Pulkit Agrawal, and Alexei A Efros. 2016. What makes
ImageNet good for transfer learning? arXiv:1608.08614 (2016).

[17] Loc N. Huynh, Youngki Lee, and Rajesh Krishna Balan. 2017. DeepMon:
Mobile GPU-based Deep Learning Framework for Continuous Vision
Applications. In ACM MobiSys. 82–95.

[18] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers
of features from tiny images. Technical Report. Citeseer.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey EHinton. 2012. Imagenet
classification with deep convolutional neural networks. In NIPS. 1097–
1105.

[20] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio For-
livesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. 2016. DeepX: A
software accelerator for low-power deep learning inference on mobile
devices. In ACM/IEEE IPSN. 1–12.

[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning.
Nature 521, 7553 (2015), 436–444.

[22] Gil Levi and Tal Hassner. 2015. Age and gender classification using
convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops. 34–42.

[23] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Pe-
ter Graf. 2016. Pruning filters for efficient convnets. arXiv preprint
arXiv:1608.08710 (2016).

[24] Robert LiKamWa and Lin Zhong. 2015. Starfish: Efficient concurrency
support for computer vision applications. In ACM MobiSys. 213–226.

[25] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. 2017. Runtime neural
pruning. In NIPS. 2181–2191.

[26] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017. Thinet: A filter level
pruning method for deep neural network compression. arXiv preprint
arXiv:1707.06342 (2017).

[27] Akhil Mathur, Nicholas D Lane, Sourav Bhattacharya, Aidan Boran,
Claudio Forlivesi, and Fahim Kawsar. 2017. Deepeye: Resource effi-
cient local execution of multiple deep vision models using wearable
commodity hardware. In ACM MobiSys. 68–81.

[28] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan
Kautz. 2016. Pruning convolutional neural networks for resource
efficient transfer learning. arXiv preprint arXiv:1611.06440 (2016).

[29] Saman Naderiparizi, Pengyu Zhang, Matthai Philipose, Bodhi Priyan-
tha, Jie Liu, and Deepak Ganesan. 2017. Glimpse: A Programmable
Early-Discard Camera Architecture for Continuous Mobile Vision. In
ACM MobiSys. 292–305.

[30] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. 2014. Learn-
ing and transferring mid-level image representations using convolu-
tional neural networks. In IEEE CVPR. 1717–1724.

[31] Anuj Puri. 2005. A survey of unmanned aerial vehicles (UAV) for
traffic surveillance. Department of computer science and engineering,
University of South Florida (2005), 1–29.

[32] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. 2015. Imagenet large scale visual recogni-
tion challenge. International Journal of Computer Vision 115, 3 (2015),
211–252.

[33] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[34] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel.
2012. Man vs. computer: Benchmarking machine learning algorithms
for traffic sign recognition. Neural networks 32 (2012), 323–332.

[35] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017.
Efficient processing of deep neural networks: A tutorial and survey.
Proc. IEEE 105, 12 (2017), 2295–2329.

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. 2015. Going deeper with convolutions. In IEEE Conference
on Computer Vision and Pattern Recognition. 1–9.

[37] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014.
Deepface: Closing the gap to human-level performance in face verifi-
cation. In IEEE CVPR. 1701–1708.

[38] Xiao Zeng, Kai Cao, and Mi Zhang. 2017. MobileDeepPill: A small-
footprint mobile deep learning system for recognizing unconstrained
pill images. In ACM MobiSys. 56–67.

[39] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-
pose, Paramvir Bahl, and Michael J Freedman. 2017. Live Video Ana-
lytics at Scale with Approximation and Delay-Tolerance.. In NSDI.

[40] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio
Torralba. 2017. Places: A 10 million Image Database for Scene Recog-
nition. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2017).

[41] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and
Aude Oliva. 2014. Learning deep features for scene recognition using
places database. In NIPS. 487–495.

https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
https://blogs.nvidia.com/blog/2016/10/27/wearable-device-for-blind-visually-impaired/
https://blogs.nvidia.com/blog/2016/10/27/wearable-device-for-blind-visually-impaired/
https://machinelearning.apple.com/2017/11/16/face-detection.html
https://machinelearning.apple.com/2017/11/16/face-detection.html
https://aws.amazon.com/deeplens/
https://store.google.com/us/product/google_clips

	Abstract
	1 Introduction
	2 NestDNN Overview
	3 Design of NestDNN
	3.1 Filter based Model Pruning
	3.2 Freeze-&-Grow based Model Recovery
	3.3 Resource-Aware Scheduler

	4 Evaluation
	4.1 Datasets, DNNs and Applications
	4.2 Performance of Multi-Capacity Model
	4.3 Performance of Resource-Aware Scheduler

	5 Discussion
	6 Related Work
	7 Conclusion
	8 Acknowledgement
	References

