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Abstract

Sensors in everyday devices, such as our phones, wearables, and computers,
leave a stream of digital traces. Personal sensing refers to collecting and ana-
lyzing data from sensors embedded in the context of daily life with the aim of
identifying human behaviors, thoughts, feelings, and traits. This article pro-
vides a critical review of personal sensing research related to mental health,
focused principally on smartphones, but also including studies of wearables,
social media, and computers. We provide a layered, hierarchical model for
translating raw sensor data into markers of behaviors and states related to
mental health. Also discussed are research methods as well as challenges, in-
cluding privacy and problems of dimensionality. Although personal sensing
is still in its infancy, it holds great promise as a method for conducting men-
tal health research and as a clinical tool for monitoring at-risk populations
and providing the foundation for the next generation of mobile health (or
mHealth) interventions.
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Ubiquitous sensing:
use of networked
sensors weaved into
everyday life to
capture information
about humans,
environments, and
their interactions
anytime and
everywhere

Sensor: a device that
measures a physical
property and produces
a corresponding
output
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1. INTRODUCTION

This article is the story of the collision of several innovations—ubiquitous sensing, big data, and
mobile health (or mHealth)—and their potential to revolutionize mental health research and
treatment. A sensor is any device that detects and measures a physical property. Sensors are as old
as civilization itself. The Sumerians developed scales, which are essentially weight sensors, some
9,000 years ago, and we have continued to develop new sensors ever since. The use of sensors to
measure physical properties for the purpose of understanding psychological states, or psychophys-
iology, has long been a core discipline within psychology. Advances in sensor technology have
accelerated throughout the past decades, with sensors becoming smaller, lighter, and more accu-
rate. Furthermore, they have become increasingly ubiquitous and embedded into networks such
that they can provide vast amounts of data almost anywhere and nearly instantaneously.

Today, people are measured continuously by sensors. Many sensors are embedded in mobile
phones, measuring location, movement, communication or social interaction, light, sound, digital
devices in the area, and more. Smartwatches and wearable devices containing onboard sensors that
track activity and physiological functions are increasingly popular. People leave digital traces when
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Wearable:
a computing
technology designed to
be worn; many contain
embedded sensors for
specific purposes, most
commonly for
monitoring health or
fitness

Behavioral marker:
behaviors, thoughts,
feelings, traits, or
states identified using
personal sensing

Feature:
a measureable
property of a
phenomenon, which is
proximal to, and
constructed from,
sensor data

Machine learning:
a subdiscipline of
artificial intelligence
that builds algorithms
that have the ability to
learn without explicitly
programmed
instructions

they make credit card purchases, send a tweet, or visit a website. This digital exhaust produced
by sensors has rich information about people’s behavior, and, potentially, about their beliefs,
emotions, and, ultimately, mental health.

Various terms have been used to describe the utilization of ubiquitous sensor data to estimate
behaviors, such as reality mining (Eagle & Pentland 2006), personal informatics (Li et al. 2010),
digital phenotyping ( Jain et al. 2015, Torous et al. 2016), and personal sensing (Klasnja et al.
2009). We use the term personal sensing because it is easily understood and conveys the intimacy
of the information. In this article, we provide an overarching model of personal sensing, review
the literature on using sensors to detect mental health conditions and related behavioral markers,
provide an overview of methods, and describe some of the grand challenges and opportunities in
this emerging field.

2. FROM DATA TO KNOWLEDGE: A HIERARCHICAL MODEL

The goal of applying personal sensing to mental health is to convert the potentially large amount
of raw sensor data into meaningful information related to behaviors, thoughts, emotions (for sim-
plicity, in this article we refer to these collectively as behavioral markers), and clinical states and
disorders. Although there are many approaches to sensemaking, we present a layered, hierarchical
sensemaking framework, as this illustrates a number of processes and issues. In this framework, raw
sensor data are captured and converted into features that contain information. These features can
then be used to define behavioral markers, often through machine learning. In the end, the entire
set of features and behavioral markers can be used to identify clinical states, similar to diagnosing a
disorder. Although some methods, such as deep learning (discussed in Section 4.4), do not necessar-
ily require these steps, we believe this framework is useful both because it is more likely to be viable
in most academic research contexts and because it illustrates several important issues in sensemak-
ing. We use a simplified version of a mobile-phone sensing platform for detecting common mental
health problems as an example (Figure 1); however, platforms could include data from any source.

2.1. Raw Sensor Data

The boxes at the bottom of the figure represent the inputs to the sensing platform in the form of
raw phone sensor data. For the most part, unprocessed, raw sensor data do not contain sufficient
information for the inferences we aim to make.

2.2. Feature Extraction: Data to Information

To add information, raw sensor data must be transformed into features. Features are constructs
measured by, and proximal to, the sensor data. In Figure 1, features are depicted in the layer
above the inputs. This is, arguably, the most important step in sensemaking (Bengio et al. 2013).
There are a number of ways to construct and extract features. One common approach is to
use domain expertise or brainstorming to inject human intelligence for feature construction.
For example, raw data about phone usage may be of minimal value. If you are interested in in-
phone communication, relevant features might be the number and duration of incoming calls or
short message service (SMS) text messages, the number and duration of outgoing calls and SMS
messages, the number of missed calls, and the ratios of these features. In addition, features can also
be extracted statistically using algorithms, such as slow feature analysis and stacked autoencoders
(Vincent et al. 2010, Wiskott & Sejnowski 2002), that can automatically discover new feature
representations. Finally, some features estimate observable states using machine learning. For
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Depression

Location type
(e.g., home,

work, or café)

Activity type
(e.g., walk,

run, or drive)

Movement
intensity

Phone
usage

Bedtime/
waketime

Paralinguistic
information
(e.g., volume,

intonation,
or speed)

Acoustic
environment

(e.g., noisy
or quiet)

In-phone
social

activity

Location
(e.g., GPS
or Wi-Fi)

Movement
(e.g., gyroscope

or accelerometer)

Phone
screen

(on/off)

Phone
apps

Ambient
light

In-phone
communication
(e.g., voice call

or SMS)

Hedonic
activity

Psychomotor
activity Fatigue

Microphone

Concentration/
distractibility

Depressed
mood

Sleep
disruption
(duration,
circadian
rhythm)

Social
avoidance

CLINICAL
STATE

HIGH-LEVEL
BEHAVIORAL
MARKERS

LOW-LEVEL
FEATURES

SENSORS

Anxiety Other clinical constructs

Many other
behavioral

markers

Many other
features

Many other
sensors

Stress

Figure 1
Example of a layered, hierarchical sensemaking framework. Green boxes at the bottom of the figure represent inputs to the sensing
platform. Yellow boxes represent features. Blue boxes represent high-level behavioral markers. Abbreviations: GPS, global positioning
system; SMS, short message service.

example, bedtime or waketime can be estimated using a number of sensors and features related to
light, sound, and phone use (Zhenyu et al. 2013).

2.3. Behavioral Markers: Information to Knowledge

Behavioral markers are higher-level features, reflecting behaviors, cognitions, and emotions, that
are measured using low-level features and sensor data. This is similar to the notion of latent con-
structs in psychological methodology. Some examples of potential high-level behavioral markers
are represented in Figure 1. Behavioral markers are most commonly developed using machine-
learning and data-mining methods to uncover which features and sensor data are useful in detecting
the marker. For example, a behavioral marker for circadian sleep rhythm might include features
such as bedtime and waketime, sleep duration, and phone usage. Markers of sleep quality might
include ambient sound features, but may also include bedtime and wake time (Abdullah et al.
2014). Furthermore, the accuracy of such features may be enriched by including additional helper
features, such as age (older people use phones differently from younger people) or whether it is a
workday or non-workday.

2.4. Clinical Targets

One would not attempt to diagnose a mental health disorder on the basis of one or two questions
about symptoms (although one might use them for screening purposes). Similarly, as discussed in
Section 3, limited sets of features have been only modestly successful at predicting clinical targets.
We expect that clinical targets will be better predicted by applying machine-learning methods to
a larger number of behavioral markers and features. However, these may not have a one-to-one
correspondence to symptoms used to diagnose disorders. Some symptoms may simply not be
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Social media:
technological tools
that allow people,
companies, and
organizations to share
user-generated
information and
connect with other
users through
networks

detectable, and personal sensing may uncover other predictors that have not been considered to
date.

3. REVIEW OF PERSONAL SENSING RESEARCH

Most work on personal sensing for mental health has used mobile phone sensors. Therefore, we
review this work before reviewing work from other areas, including wearables, social media, and
computers.

3.1. Mobile Phones

Mobile phones are commonly used for research because they are widely owned: 72% of Americans
own a smartphone, up from 35% in 2011 (Poushter 2016). Furthermore, people keep their phones
on or near them and use them frequently. On average, people check their phones 46 times per day,
and for younger people that figure is 85 times per day (Andrews et al. 2015, Eadicicco 2015). The
phone also has an increasingly large number of embedded sensors. Here, we focus on behavioral
markers in three areas related to mental health: sleep and social context, which are potentially
more observable, and mood and stress, which are internal states.

3.1.1. Behavioral markers. Although a growing literature examines detection of an increasingly
broad range of behavioral markers using mobile phone sensors, we describe the work on detection
of sleep, social context, mood, and stress as examples because these markers have received the
most attention.

3.1.1.1. Sleep. Sleep disturbance is a common symptom, occurring across many mental health
conditions (Sivertsen et al. 2009, Taylor et al. 2005). Those disturbances can be reflected by
patients’ sleep periods (i.e., when and how long a person sleeps) and sleep quality (i.e., how well a
person sleeps). By leveraging built-in sensors, a number of smartphone-based sensing systems have
been developed to passively monitor sleep periods. Several groups have shown that sleep duration
can be estimated with approximately 90% accuracy, without asking the user to do anything special
with the phone, by using data from a number of sensors, such as the accelerometer, microphone,
ambient light sensor, screen proximity sensor, running process, battery state, and display screen
state (Chen et al. 2013, Min et al. 2014). Among heavy phone users, such as undergraduate students,
sleep periods can be detected simply by observing phone screen lock and unlock events, which
is less of a drain on the phone battery than other methods (Abdullah et al. 2014). Sleep period
markers can then be used to create circadian-aware systems. For example, non-workday sleep
duration can be used to estimate a person’s chronotype (e.g., morning lark versus night owl), and
changes in sleep patterns across workdays and non-workdays can identify social jet lag, which is
the difference between a person’s biological sleep rhythm and external requirements (Abdullah
et al. 2014, Murnane et al. 2015). Such sleep period markers have also been correlated with the
severity of depressive symptoms (Wang et al. 2014).

Sleep quality can also be effectively inferred by using smartphone sensors. For example, com-
mon events that interfere with sleep quality, such as body movement, coughing and snoring, and
ambient noise, can be reliably detected using a smartphone’s microphone when the phone is kept
in the user’s room. Acoustic features have been associated with both short-term (i.e., 1-night) and
long-term sleep quality measured using actigraphy and self-report (Hao et al. 2013). A number of
studies have used multimodal sensing schemes—including the accelerometer, microphone, light

www.annualreviews.org • Personal Sensing for Mental Health 27

A
nn

u.
 R

ev
. C

lin
. P

sy
ch

ol
. 2

01
7.

13
:2

3-
47

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
M

ic
hi

ga
n 

St
at

e 
U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

07
/0

9/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



CP13CH02-Mohr ARI 4 April 2017 15:40

sensor, screen proximity sensor, running process, battery state, and display screen state—to infer
sleep stages and sleep quality (Gu et al. 2014, Min et al. 2014).

3.1.1.2. Social context. Here, we focus on phone-based research; we discuss work using social
media networks in Section 3.2.2. Large population-based phone datasets can provide dynamic
information about individual movement and proximity to others that can be used to calculate
people’s proximity in a social network. Patterns of movement and of colocation can be used to
infer relationships and predict new social ties (Hsieh & Li 2014, Pham et al. 2013, Wang et al.
2011).

On a smaller scale, in a classic study, Eagle and colleagues (Eagle & Pentland 2006, Eagle
et al. 2009) were able to identify friends and non-friends with a high degree of accuracy using
Bluetooth sensors, which can detect other Bluetooth-enabled devices up to 15 meters away. People
in proximity to one another only during work hours were more likely to be colleagues than friends,
but proximity during the evening or weekends was an indicator of friendship. Relational status
can then be used to identify other psychological targets. For example, calling friends during work
hours was associated with lower job satisfaction (Eagle et al. 2009). Although such methods hold
promise, their application is limited by the small percentage of people who leave their Bluetooth
sensors in discoverable mode. Nevertheless, this work (Eagle & Pentland 2006, Eagle et al. 2009)
underscores the utility of colocation and time as important features that indicate the nature of
relationships.

Other forms of social sensing have used remote communication tools within the phone, in-
cluding calls and SMS messages. Contact lists (address books) within a person’s phone can contain
information about relationships. For example, contact fields sometimes include family role (e.g.,
Aunt Julie), relationship context [e.g., Kaitlyn (Peg’s friend)], phone type (e.g., Mom at home),
or an honorific (e.g., Mrs., Mr., or Dr.), which can be mined to infer relationships (Wiese et al.
2014). However, contact lists are vulnerable to idiosyncratic labeling methods and tell us little
about the frequency of contact.

Patterns of time and frequency and the regularity of incoming and outgoing calls and SMS
messages have also been have been used to classify a person’s contacts into a relationship do-
main (family, friend, or work colleague), with more than 90% accuracy (Min et al. 2013). For
example, longer calls were associated with family; the work domain was characterized by fewer
weekend calls and a lower likelihood of SMS messages; and friends and social contacts were char-
acterized by more SMS messages sent during the week. The strength of social ties can also be
estimated to some degree, with higher levels of in-phone communication frequency, call duration,
and communication initiated by the phone owner being associated with a stronger relationship
(Wiese et al. 2015). However, this signal is noisy because low levels of communication do not
necessarily mean weak ties (we speak infrequently with some people who are very close to us), as
much communication may occur outside of the phone, such as face to face or using other media,
and, increasingly, other applications (or apps) such as Snapchat and WhatsApp.

3.1.1.3. Mood and stress. Mood and stress are internal states that are likely to be more distal from
the sensors and features normally used in personal sensing. A number of studies have attempted
to leverage a broad array of built-in mobile phone sensors to predict mood (LiKamWa et al.
2013, Ma et al. 2012, Madan et al. 2010). In the earliest study, Madan et al. (2010) found that
decreases in calls, SMS messaging, Bluetooth-detected contacts, and location entropy (a measure
of the temporal dispersion of locations) were strongly related to feeling sad and stressed among
students, as measured by daily ecological momentary assessments (EMAs). Moodscope (LiKamWa
et al. 2013) was used to infer mood, labeled by daily EMAs, from data from 32 participants over
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Global positioning
system (GPS):
sometimes refers to
location services that
fuse GPS with other
signals, such as Wi-Fi,
to obtain greater
accuracy with less
battery drain

2 months. The number and length of communications (calls, SMS text messages, and emails),
the number of apps used and usage patterns, web browser history, and a person’s location could
be used to estimate a user’s daily mood average with an initial accuracy of 66%, which gradually
improved to 93% after a 2-month personalized training period. Similarly, using location, motion
detectors, light, and ambient sound, Ma et al. (2012) achieved approximately 50% accuracy for daily
moods during a 30-day period with 15 participants. A recent attempt to replicate the Moodscope
findings with a cohort of 27 students failed to perform better than chance (Asselbergs et al. 2016).
The varying results and failure to replicate suggest that although a number of small studies have
demonstrated the technical feasibility of sensing mood, these findings do not appear to generalize.

At least one study has attempted to detect stress using the swipe, scroll, and text-input interac-
tions with a phone (Ciman et al. 2015). This work, based in part on literature showing that stress
can be detected through computer mouse and keyboard interactions (see Section 3.2.3), found that
under laboratory conditions, features derived from a person’s scroll, swipe, touch, and text-input
interactions with a phone could differentiate a laboratory-induced stressful state from a normal
state. It remains an open question whether real-world instances of these interactions provide a
strong enough signal of stress.

A large body of literature has demonstrated that affect and mood can be detected through
the paralinguistic features of speech (Calvo & D’Mello 2010). StressSense (Lu et al. 2012) is a
smartphone sensing system that uses the phone’s built-in microphone to capture human speech
during social interactions to infer a user’s level of perceived stressed by analyzing paralinguistic
information, such as pitch and speaking rate. Under quasi-experimental conditions using a mock
job interview and a marketing task, StressSense achieved 76–81% accuracy in identifying stress.
These findings were then extended to a real-world evaluation. Following 7 participants over
10 days, the sensed stress marker correlated with self-reported stress at r = 0.59 (Adams et al.
2014). Another example, Emotion Sense (Rachuri et al. 2010) proposed that audio-based emotion
recognition could identify up to 14 different emotions clustered into five broader emotion groups
(happy, sad, fear, anger, and neutral). In an initial proof-of-principle 10-day study involving 18
participants, the distribution of the emotions detected through Emotion Sense generally reflected
the self-reports of the participants.

Detecting mood or subjective stress is likely a challenge for many commonly available sensors
in smartphones. Given the history of paralinguistic voice features predicting mood, using a built-
in microphone would seem promising from an analytical perspective, but it may pose challenges
from logistical and ethical perspectives for acquiring samples of sufficient quantity and quality. This
illustrates a disconnect that sometimes occurs between technical and laboratory proof-of-concept
and real-world feasibility.

3.1.2. Clinical disorders. Some studies have examined the possibility of using smartphone sensor
data to detect the presence and severity of mental health disorders, including depression, bipolar
disorder, and schizophrenia.

3.1.2.1. Depression. Early work using smartphones for personal sensing began by examining
depression. Madan et al. (2010) followed 70 undergraduates living in a residence hall and found that
decreases in total communication were associated with greater depression. Depression, however,
was assessed using only a single item. A second study, StudentLife, used the Patient Health
Questionnaire-9 (PHQ-9) to assess depression among 48 students over 10 weeks (Wang et al.
2014). Similar to the study by Madan et al. (2010), conversation frequency and duration, measured
using the microphone, as well as colocation with other students, detected using a global positioning
system (GPS) and Bluetooth, were significantly related to depression. In addition, depression was
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associated with a previously developed sleep-duration classifier (Chen et al. 2013). The relationship
between sensed social contact and depression was also observed in a nonstudent population using
elderly people living in a retirement community (Berke et al. 2011).

These relationships are perhaps unsurprising, given that sleep disruption is a symptom of
depression and social withdrawal and avoidance are factors significantly related to common mental
health problems, such as depression and anxiety (Hames et al. 2013). The fact that sleep, social
withdrawal, and anxiety were inferred through smartphone sensors demonstrates the utility of the
hierarchical model displayed in Figure 1.

Although sensing has the potential to automate the detection of behaviors we know are related
to disease states, it also has the potential to uncover new information that may lead to new
understanding. A case in point is the emerging work on the relationship of GPS data to depression.
The first study in this area, using 2 weeks of data from 28 participants, found that a number of
GPS-derived location features were associated with depression (Saeb et al. 2015). The number of
places a person visited was not related to depression; however, location entropy (the variability in
time spent in different locations) was, such that the more time clustered around a few locations, the
more likely the person was to be depressed; more equal time distributions were related to lower
depression scores. A feature measuring periodicity, or the circadian rhythm of movement through
geographical space, was particularly strongly related to depression, suggesting that disruption in
the regularity of movement was associated with a greater severity of depressive symptoms. These
findings were then replicated in the StudentLife dataset described above (Saeb et al. 2016). A third
study, using somewhat different methods, similarly found that similar GPS features could estimate
depression (Canzian & Musolesi 2015).

This general relationship between mobility and depression has been explored in more detail.
For example, the relationship between GPS features and depression is stronger on non-workdays
than it is on workdays when much movement is driven by social expectations (Saeb et al. 2016). This
suggests that distinguishing between times when behaviors are more under the individual’s control
versus when they are not may identify features that can be used to increase the accuracy of models.
GPS features appear to predict depression many weeks in advance, although the relationship
between depression and subsequent GPS features degrades quickly over time, suggesting that a
lack of mobility may be an early warning signal of depression.

3.1.2.2. Bipolar disorder. The MONARCA project (MONitoring, treAtment and pRediCtion
of bipolAr Disorder Episodes) pioneered the use of smartphone-based behavior monitoring tech-
nologies for mental health (Gravenhorst et al. 2015). MONARCA leveraged a variety of phone
sensors to detect the mental states of patients, as well as changes in mental states. To validate
the effectiveness of their smartphone-based sensing system, the MONARCA team conducted a
series of real-world studies among bipolar patients from a rural psychiatric hospital in Austria.
Based on 12 patients followed for 12 weeks, accelerometry, location, or fused accelerometry–
location features produced clinical state (depression/mania) recognition accuracy of 72–81% and
state-change detection with a precision and recall of, respectively, 96% and 94% (Grünerbl et al.
2014). By fusing phone call features with paralinguistic information, a state-recognition accuracy
of 76%, as well as a precision and recall accuracy of, respectively, 97% and 97% for state-change
detection, were achieved (Grünerbl et al. 2015). Another analysis of 18 patients over 5 months
indicated that a smartphone app can be used to identify stress and mood (Alvarez-Lozano et al.
2014). For example, higher use of social and entertainment apps was associated with lower stress
and irritability.

Work has also examined the potential for GPS features, originally developed for depression
(Saeb et al. 2015), to detect depressive episodes among bipolar patients. The same features,
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including entropy and circadian rhythm, remain strongly related to the severity of depression
in this population (Palmius et al. 2016). Furthermore, when combined, these features could dis-
tinguish depressed from non-depressed states with 85% accuracy. This underscores the potential
utility of features across diagnoses when examining similar states.

3.1.2.3. Schizophrenia. Work on sensing in schizophrenia has begun just recently. A survey
of patients with schizophrenia suggested that most are comfortable using a smartphone with
sensing, and are interested in potentially receiving feedback and suggestions from such a system,
although a minority voiced concerns that it might upset them or were concerned about a loss
of privacy (Ben-Zeev et al. 2016). In a first study, 34 patients with schizophrenia were provided
with a smartphone for 2–8.5 months that collected a variety of sensor data. Personalized models
used a number of features to predict EMA responses. For example, changes in physical activity,
detected conversations, and later bedtimes were associated with self-reported worry that someone
was intending to harm the participant, and with self-reported auditory and visual hallucinations
(Wang et al. 2016).

3.2. Other Devices and Platforms

We have described personal sensing using mobile phones because this is the most ubiquitous
personal sensing platform, harnessing data from people’s lives with little to no ongoing effort or
actions on the part of the user. However, many other sources of data exist, which have their own
strengths and weaknesses. Below we review data from wearables, social media, and computers.

3.2.1. Wearables. Wearable devices (or wearables) are sensor-enabled technologies designed to
be worn for specific purposes, most commonly health and fitness. These devices, such as Fitbit
and Jawbone, track activities continuously, for example, how many steps people take, how many
miles they run, and how long they sleep. Wearables, which use sensors designed for their specific
targets, and that are intended to be worn in a specified and consistent manner (e.g., on the wrist or
clipped to the belt), may provide data that is of significantly higher quality than that provided by
smartphones, which are not designed specifically for health tracking. However, the increase in data
quality may be offset by other drawbacks. Wearables are less prevalent than smartphones, with
only 19% ownership among Americans (Ricker 2015). Their use is higher among those already
motivated to keep a watchful eye over their health, and many people abandon using them soon
after purchase (Piwek et al. 2016).

The most widely used sensor in wearables is the accelerometer. Accelerometer-based wearable
devices have been developed for tracking physical exercise (Choudhury et al. 2008), detecting falls
(Li et al. 2009), and monitoring activities of daily living (Spenkelink et al. 2002). In a large study of
2,862 participants, greater levels of accelerometer-based physical activity were strongly associated
with decreased rates of depression (Vallance et al. 2011).

Increasingly, wearable devices are including a broader range of sensors that can measure vari-
ables that are useful for mental health researchers, such as skin conductance and heart rate. For
example, investigators have noted that greater asymmetries in skin conductance amplitude on the
left and right sides of the body are an indicator of emotional arousal (Picard et al. 2016). Many
of these sensors are now available in smartwatches, which attempt to leverage a behavioral and
cultural pattern to avoid the problem of abandonment seen with other wearables. It remains to be
seen whether smartwatches will attain the ubiquity enjoyed by smartphones.

Wearables are being developed that are dedicated to behaviors that have been difficult to
sense. Eating and appetite, for example, are often disrupted in mental health conditions, but are
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difficult to detect through commonly available sensors. Two specific methods of detection, gestures
and sound, may be particularly useful for assessing these behaviors. Because eating and drinking
activities normally involve repetitive wrist movements and rotations, wrist-worn wearables that
include an accelerometer and gyroscope have shown promise in capturing these activities (Edison
et al. 2015, Sen et al. 2015). Eating and drinking may also produce idiosyncratic sounds through
chewing and swallowing. A microphone attached at the neck can classify sounds produced by
eating and drinking with reasonable accuracy (Kalantarian et al. 2015, Rahman et al. 2014, Yatani
& Truong 2012).

3.2.2. Social media. With 65% of Americans using social media in 2015 (Perrin 2015), platforms
such as Facebook and Twitter have become common places where people share their opinions,
feelings, and daily experiences. The field of psycholinguistics has long demonstrated that the lin-
guistic analysis of speech can be used for diagnostic classifications (Oxman et al. 1982, Rude et al.
2004). Thus, social media postings, which consist largely of language, are a potential source of in-
formation about mental health, as well as people’s thoughts and feelings related to those conditions.
Using a large dataset of more than 28,000 Facebook users who completed a personality survey,
Schwartz et al. (2014) found that features generated from posts were modestly related to depres-
sion severity. Themes related to depression include depressed mood, hopelessness, hopelessness
and helplessness, symptoms, relationships and loneliness, hostility, and suicidality. Similarly, De
Choudhury (2013b) found that depressed Twitter users can be distinguished from non-depressed
users based on later posting times, less frequent posting, greater use of first person pronouns, and
greater disclosure about symptoms, treatment, and relationships. Furthermore, the development
of a future depressive episode could be predicted with 70% accuracy. In a large sample of Twitter
users, rates of depression were consistent with geographical, demographic, and seasonal patterns
reported by the US Centers for Disease Control and Prevention (CDC) (De Choudhury et al.
2013a).

Social media likely will be helpful in identifying behavioral markers that are strongly related
to cognitive and motivational factors, which are difficult to evaluate through nonverbal sensors.
For example, language features from Facebook posts have shown modest but consistent correla-
tions with Big 5 personality factors (Park et al. 2015). Twitter-derived features related to suicidal
ideation have been shown to correlate strongly with rates of completed suicides from the CDC
( Jashinsky et al. 2014). Suicidal ideation has also been associated with language used in social me-
dia that shows heightened self-attention focus, poor linguistic coherence and coordination with
the community, reduced social engagement, and manifestations of hopelessness, anxiety, impul-
siveness, and loneliness (De Choudhury et al. 2016). Thus, language generated naturalistically
through social media may be a useful tool for sensing mental health conditions, and it may be
particularly well suited for behavioral markers that involve cognitive or motivational states that
are beyond the reach of nonverbal sensors.

3.2.3. Computers. Many people spend a considerable amount of their lives at computers and
many interactions still take place through the mouse and keyboard. A number of studies have
examined whether mouse movements and keyboard taps can provide information about a person’s
mental state. An early study explored a broad range of possible features derived from mouse
movements to predict experimentally induced emotions (Maehr 2008). Although most features
showed no relationships to emotions, motion breaks, or discontinuities in movement, were related
to overall arousal and discrete emotions, such as disgust and anger. Motion breaks resemble the
pause features observed in speech that have been related to stress, and it is possible that this is a

32 Mohr · Zhang · Schueller

A
nn

u.
 R

ev
. C

lin
. P

sy
ch

ol
. 2

01
7.

13
:2

3-
47

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
M

ic
hi

ga
n 

St
at

e 
U

ni
ve

rs
ity

 L
ib

ra
ry

 o
n 

07
/0

9/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



CP13CH02-Mohr ARI 4 April 2017 15:40

general behavioral pattern when one is stressed, observable across multiple channels. Another study
explored whether muscle tension would change the dynamics of the movement (resonant frequency
and damping ratio) and, thus, be an observable correlate of stress. Data collected in a laboratory
setting demonstrated that simple models of arm–hand dynamics applied to mouse motions were
strongly related to concurrently collected physiological measures of stress and arousal (Sun et al.
2014). This signal remained strong across a variety of mouse tasks, including clicking, dragging,
and steering.

Similar affective inferences have been made from keyboard activity. One study tracking ev-
eryday computer use for 1 month among 12 participants found promising accuracy (70–88%) for
self-reported emotion (Epp et al. 2011). Models were trained using a decision-tree classifier and
features derived from short key sequences, such as duration of and latency between keystrokes, to
predict common discrete emotional states. Although these results were encouraging, classification
rates represented only a modest gain over baseline classification.

3.2.4. Additional sources of data. Phones, wearables, social media, and computers are far from
the only technologies that produce digital traces. Other potential streams of data include purchas-
ing behavior, browsing history, or productivity apps, such as calendars and email. Furthermore,
social context could be better understood by making use of Google maps or other repositories of
images of environments. Such images can be mined to determine the environmental factors that
affect mental health and well-being (e.g., the amount of green space or number of trees in a neigh-
borhood, or cleanliness or number of surfaces tagged with graffiti). We have not discussed these,
primarily because they have not yet been investigated in relationship to mental health. Another
rapidly expanding area is ambient intelligence, in which sensors are installed on everyday objects
and in places where people live to sense people’s movements, gestures, habits, and intentions, and
respond to needs in a seamless and nonintrusive manner (Acampora et al. 2013). Indeed, such am-
bient systems have the potential to provide visibility into the most intimate spheres of a person’s
life.

4. METHODS

The field of personal sensing is young, with almost all of the research occurring during the past few
years. Most of the studies have been conducted by computer science and engineering groups using
research models that are very different from those commonly used in the clinical and behavioral
sciences (Intille 2013). As we in the behavioral sciences begin work in this area, it is important
to understand the fundamental differences between the methods used by computer scientists and
those with which we are more familiar.

First, engineering and computer science research is typically exploratory in nature, focused on
solving a problem. In the area of personal sensing, computer scientists tend to collect as much
data as possible, using data-mining methods to develop classification algorithms. Although these
analytical methods employ techniques such as cross-validation to avoid overfitting in the models,
these methods are, nonetheless, quite different from commonly used clinical methods, which come
from a positivist tradition and are hypothesis driven and confirmatory rather than exploratory.
Said in a different way, clinical scientists tend to design a study to test an answer to a question.
Engineers tend to design a study to find an answer to a question.

Second, engineers and computer scientists, in their quest for novel solutions, tend to have a
higher tolerance for risk and change in their research than do clinical scientists. Clinical scientists
place a much higher value on eliminating as many threats to internal validity as possible, and have
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Supervised learning:
a category of machine
learning that uses
labeled data provided
by a set of training
samples to construct
an algorithm

Unsupervised
learning: a category
of machine learning
that attempts to
uncover underlying
structure in data and
does not require
labeled data

Semisupervised
learning: a category
of machine learning
that combines aspects
of supervised and
unsupervised methods
by using samples with
both labeled and
unlabeled data

Label: in machine
learning, a label refers
to that which is being
predicted, similar to a
dependent variable in
statistics

a low tolerance for methods that might limit confidence in the results. As such, clinical scientists
aim to avoid type I errors or spurious positive findings, but engineers and computer scientists see
type II errors as a greater threat because they may lead to overlooking a potentially novel and
useful solution.

Finally, engineering and computer science are frequently focused on a proof of principle,
but clinical scientists value generalizability. It is perhaps only a slight exaggeration to say that
computer scientists in personal sensing are asking, “Does this work at all?”; clinical scientists want
to ask, “Will this work for a population under all circumstances?” Thus, most of the studies in
personal sensing have been small, generally with sample sizes of 7–30 participants, commonly using
convenience samples consisting of college students. (The social media studies are the exception,
using very large datasets.) It is not uncommon for comparatively large percentages of enrolled
participants, sometimes on the order of half the sample, to be excluded from analyses due to any
number of problems in data acquisition or data quality. Thus, a clinical scientist might see these as
offering little assurance that the findings might extend outside of the research context. However,
engineers and computer scientists have demonstrated that a novel solution may have value.

The main analytical method used for personal sensing is machine learning (Bishop 2006). The
goal of machine learning is to identify potentially complex relationships among data, and to use
the identified relationships to make predictions about new data. We review three commonly used
machine-learning analytical methods: supervised learning, unsupervised learning, and semisuper-
vised learning, as well as a new trend in machine learning called deep learning.

4.1. Supervised Learning

Supervised learning is a category of algorithms in machine learning that aims to learn a function
that maps data to labels provided by a set of training samples. A label in machine learning refers
to that which is being predicted, similar to a dependent variable in statistics. In personal sensing,
labels are often users’ self-reports. A training sample is a pair consisting of a data instance and
its label. Like a teacher supervising learning in a classroom, the labels supervise the learning
process, which occurs through training samples. The learned mapping function is then applied to
data in the absence of labels to predict their labels. If labels are categorical values, the supervised
learning algorithms are called classification algorithms, and the mapping function is referred to as
a classifier. Learning algorithms for continuous values are called regression algorithms, and the
mapping function is called a regression function.

Classification is the most commonly used supervised learning method. For example, activity
recognition can be formulated as a classification problem in which sensor data are mapped to
different activity labels, such as walking, running, or sleeping. There are two families of classi-
fication algorithms: generative algorithms and discriminative algorithms. Generative algorithms
learn a classifier of the joint probability of the data instances and their labels, and then calculate
the posterior probability by applying Bayes’ theorem to predict labels of new data instances (Ng
& Jordan 2002). Naive Bayes’ models, hidden Markov models, and Gaussian mixture models are
some of the most commonly used generative algorithms. In contrast, discriminative algorithms
build a model to describe the boundaries that separate different labels. Examples of discriminative
algorithms include logistic regression, support vector machine, and conditional random fields.
Generative and discriminative algorithms have unique strengths and weaknesses. In practice, the
classification performance of discriminative algorithms tends to be better than that of generative
algorithms (Bishop & Lasserre 2007). However, generative algorithms can identify data that come
from a new label that is not included in the training samples, for example, identifying the new
activities of a user (e.g., yoga) that are not included in the training samples.
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Curse of
dimensionality:
as the number of
dimensions expands,
the data in the space
become sparse, which
prevents machine-
learning methods from
being efficient

Active learning:
subset of
semisupervised
learning; an algorithm
queries a user for
additional labels when
it is uncertain how to
classify a set of data

4.2. Unsupervised Learning

The goal of unsupervised learning is to find hidden structure within the data. In unsupervised learn-
ing, the training samples do not have labels and contain only data instances. There are three families
of unsupervised learning algorithms: clustering, anomaly detection, and dimensionality reduction,
each aiming to identify different structures within the data. Clustering algorithms (such as K-means
and hierarchical clustering) aim to divide data instances into separate clusters such that data in the
same cluster are similar but they are dissimilar from data in different clusters. Anomaly detection
algorithms (such as one-class support vector machines) aim to identify the few instances that are
very different from the majority of the data. Finally, dimensionality reduction algorithms (such
as feature selection and principal component analysis) aim to remove multicollinearity and retain
the most important information about the data to avoid the effects of the curse of dimensionality
(Bishop 2006), thereby improving the generalization performance of machine-learning models.

In personal sensing, unsupervised learning algorithms are often used to preprocess sensor data
before using supervised methods for further processing. For example, clustering algorithms have
been applied to GPS data (i.e., pairs of latitudes and longitudes) to create a heat map and to
find points of interests to the user (e.g., home, workplace) (Saeb et al. 2015). Anomaly detection
algorithms have been used to detect changes in the mental states of bipolar patients so that just-
in-time interventions can be delivered (Grünerbl et al. 2014). Finally, dimensionality reduction
algorithms have been applied to identify the most important behavioral markers to best predict
the mental states of depressive patients (Saeb et al. 2015).

4.3. Semisupervised Learning

As its name implies, semisupervised learning is in between supervised and unsupervised learning.
It uses training samples that contain both labeled and unlabeled data to achieve better perfor-
mance than could be achieved by simply using supervised learning trained on the labeled data
(Zhu & Goldberg 2009). Semisupervised learning is practical for personal sensing, in which there
is a large ratio of unlabeled to labeled data. For example, it would be burdensome, expensive, and
time-consuming, if not impossible, to label every minute of GPS or accelerometry data collected
throughout a day (Chapelle et al. 2006). Semisupervised learning addresses this problem by lever-
aging the intrinsic structure of the unlabeled data taken together with information provided by
the labeled data.

4.4. Active Learning

Active learning is a special case of semisupervised learning. Active learning algorithms query a
user to provide additional labels when the algorithm detects that a user’s behavior or state deviates
from what it has been trained to before and, thus, the algorithm is uncertain how to classify it.
Therefore, in contrast to supervised learning models, which are static and cannot be updated
after the training period, active learning algorithms are able to update users’ models after getting
additional labels. In this way, they can provide evolving models that adapt to users’ changing
behaviors and states.

Active learning is especially useful in generating personalized models from group models.
Group models are algorithms that, once developed, are intended to run passively, with no input
from the user (much like activity-tracking devices). Personalized models require user labeling to
create a model that is specific to the individual. Personalized models tend to perform better than
group models, but they incur labeling burden. However, this labeling burden may be somewhat
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mitigated with hybrid models that are initiated with group models and optimized through user
labeling via active learning. In particular, active learning can help derive personalized models with
less labeling, as the algorithm requests labels only when they are needed (Settles 2010).

4.5. Deep Learning

During the past decade, deep learning, a new trend in machine learning, has emerged (Schmid-
huber 2015). Methods developed based on deep learning have dramatically improved the state of
the art, and have beaten other machine-learning methods in a wide range of applications, such
as identifying objects in images (Krizhevsky et al. 2012), recognizing speech (Hinton et al. 2012),
translating languages (Sutskever et al. 2014), understanding the genetic determinants of diseases
(Xiong et al. 2015), and predicting health status using electronic health records (Miotto et al. 2016).

The success of deep learning is rooted in a revolutionary way of extracting features from data.
It is well understood that the performance of machine-learning methods largely depends on the
features chosen (Bengio et al. 2013), which traditionally has required considerable human effort
and domain knowledge. Although these hand-engineered features exhibit great performance in
small datasets, they do not generalize well to challenging problems involving large-scale datasets
(LeCun et al. 2015). In contrast, deep learning adopts a data-driven approach in which a general-
purpose procedure automatically learns features from data, with no prior domain knowledge
needed. These self-learned features are organized in a multilevel hierarchy in which higher-
level features are defined from lower-level ones, similar to the layered, hierarchical sensemaking
framework illustrated in Figure 1.

Deep learning may be vulnerable to overfitting at smaller sample sizes, thus often making
traditional machine-learning methods a better fit. However, once an adequate sample size has been
obtained, deep learning exhibits superior capability at capturing the intricate characteristics of data
that traditional machine-learning methods fail to capture. Therefore, deep learning achieves much
better performance than other methods as the sample size increases. Furthermore, although self-
learned, multilevel features generated purely by machines may not be well understood by humans,
it is possible that these features may uncover new understanding about the constructs we are
measuring, but may do so by increasing the complexity beyond human understanding.

5. CURRENT CHALLENGES IN PERSONAL SENSING

5.1. Study Quality and Reproducibility

A growing number of studies appears to replicate the findings of other studies (albeit using small,
narrow samples) using machine-learning methods that estimate behavioral markers, such as mood,
stress (LiKamWa et al. 2013, Ma et al. 2012, Madan et al. 2010), and sleep (Abdullah et al. 2014,
Chen et al. 2013, Min et al. 2014), by using a combination of phone sensor data and features.
However, because computer science and engineering tend to value technical novelty over gener-
alizability, studies that appear to address the same behavioral marker usually use different sensors,
different sets of features, different methods of measuring the behavioral markers, and varying
research designs (e.g., giving people phones versus having them use their own, studying them
for varying periods of time, or having varying numbers of participants excluded). The machine-
learning methods used vary, and the results or weightings, particularly for group models, are
not necessarily comparable across studies. In addition, it is unclear how many attempts have not
been published due to failure. The one replication study we are aware of that used nearly iden-
tical methods to the original research was unable to reproduce the very strong findings in the
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original paper on prediction of mood (Asselbergs et al. 2016). Thus, studies examining the use of
machine-learning methods to estimate behavioral markers indicate that it is feasible under narrow
conditions; however, the reliability needed for clinical use has not been demonstrated.

Furthermore, the availability of easy-to-use tools for machine learning is expanding faster than
the expertise, resulting in a growing number of publications using questionable methods. A recent
review of papers that used sensor data to detect disease states found that half used inappropriate
cross-validation techniques, which greatly overestimated prediction accuracy (Saeb et al. 2016).
Furthermore, papers that used these inappropriate techniques were cited just as often as papers
using proper techniques, suggesting that poor-quality information is having the same impact as
high-quality information. Although the papers cited in this review did not evidence these types of
methodological problems, it would behoove interested scientists to explore the field with a healthy
mix of excitement and skepticism.

5.2. The Curse of Variability

As we move from narrow proof-of-concept studies to testing in broader populations, the sources
of variability expand enormously, emanating from a variety of sources, including data types, char-
acteristics of people, and different environments. Sensors in smartphones vary from manufacturer
to manufacturer, model to model, and version to version, affecting the data collected. People’s
characteristics might impact the relationship between constructs or how they use the measure-
ment devices. For example, age may be related to the number of social contacts, with older people
having fewer contacts and wanting less contact, but it may also be related to how social activity
is measured with a phone (e.g., older people are more likely to call and less likely to send text
messages than younger people). Where people carry their smartphone (pocket, handbag, back-
pack) can profoundly affect the sensor data. Environment and seasonality represent additional
important dimensions. For example, GPS and accelerometer data in winter will look different in
Minneapolis relative to Miami.

When dimensionality is high, individual small studies are unlikely to be adequately powered to
create reliable and generalizable classifiers for use in larger populations. Efforts such as the Pre-
cision Medicine Initiative (Collins & Varmus 2015), which plans to enroll more than 1,000,000
people, may provide such opportunities, but it is unclear what data will be collected and how. An
approach used in other fields that have similar problems, such as genomics, is to pool data across
studies. A challenge in pooling data is to find a scientifically valid balance between identifying uni-
form variables, which makes data pooling straightforward (e.g., using the exact same questions) but
can be hard to implement, and using statistical methods to manage heterogeneity by providing sim-
ilar, if not identical, data points (Fortier et al. 2011). The field of personal sensing in mental health
is still young and small enough that some agreement on a core set of clinical assessment methods
(EMA or self-report) may be possible, thereby providing uniform anchors to which the broad
range of sensor data could be tied as it evolves and changes over time and across research projects.

5.3. The Unknown Expiration Date

Personal sensing algorithms will likely have shelf lives, which may be relatively short. As devices
and sensors are updated, the associated raw data will change over time. Additionally, the way we
use these devices and platforms will change as well. Just in the past few years, smartphone use
has changed dramatically. We spend more time reading and watching movies on our phones, and
communications have shifted away from calls and SMS texts to messaging apps and social media.
Social media are becoming increasingly more visual relative to being text based, and interfaces and
notification methods are changing when, how, and what people write. As people change how
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they use the devices that provide the data, machine-learning algorithms will become increasingly
inaccurate.

Google Flu Trends offers a high-profile, cautionary tale. Launched in 2008, it mined flu-related
search terms, producing results that closely matched the CDC’s surveillance data and provided the
information more rapidly (Butler 2013). The system was rolled out to 29 countries and extended
to other diseases. It performed remarkably well until it stopped working. How people conducted
searches changed over time, rendering the algorithms ineffective. The changes in people’s search
strategies were driven at least in part by Google’s own efforts to optimize search algorithms,
which also altered the search recommendations provided to users, thus changing people’s search
behaviors and, ultimately, undermining Google Flu Trends’ models.

5.4. Balancing Accuracy and Invisibility

A common goal in personal sensing is to make acquiring data and predicting behavioral markers as
unobtrusive or invisible to the user as possible. On the one hand, requiring user actions will likely
result in abandonment of the tool by some percentage of users. On the other hand, personalized,
active-learning models, which require user labeling, perform better than static group models.
Active-learning models also allow for recalibration over time, potentially eliminating the shelf-life
problem.

Thus, users who provide a little bit of data would enjoy substantially higher predictive accuracy
from the models. Rather than thinking of a sensing platform as a technology that autonomously
creates information, it may be more useful to think of the sensing platform as a social machine
in which the quality of prediction reflects a shared endeavor. The ability to accurately predict a
marker or phenotype depends upon using data, passively and actively collected, from many other
individuals who have come before. Returning labeled data back into the system can improve the
accuracy for that individual user, as well as for all subsequent users, thus harnessing the wisdom
of the crowd while contributing to the crowd.

5.5. The Certainty of Uncertainty

The output of any personal sensing system, even under the best of circumstances, will always have
some degree of error and uncertainty. This error is always user-facing, affecting the quality of the
experience. This raises several questions that can and should be considered from the early stages of
research. First, how much uncertainty is acceptable, and how much accuracy is good enough (Lim
& Dey 2011)? For example, if a system were designed to detect likely depression among general
internal medicine patients, how many false positives would be acceptable to clinic staff? What levels
of false negatives would be acceptable to a care system or to patients, and how could the effect
of false negatives be mitigated? In addition, error can be shifted between false positives and false
negatives, depending on where it can best be managed and produce the least harm. Or perhaps a
metric can be used in a way that minimizes the effect of inaccuracy. For example, step counts from
activity trackers may be inaccurate; however, to the degree that they are consistent within user,
they can be used for day-to-day comparisons. Early stage research can explore the understanding
and acceptability of error and uncertainty and how best to mitigate it (Kay et al. 2015).

5.6. Privacy, Ethics, and the Naked Truth

The use of passively collected digital data raises many issues of privacy and security, about which
there are disagreements within the community of researchers, and there is also a lack of guidelines
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(Shilton & Sayles 2016). We review some general themes and topics that are most relevant to
leveraging passively collected data for mental health purposes.

The principle of privacy refers to ensuring that people have choice and control over the use
of their own data and, some would argue, that they understand those choices (Shilton 2009).
Security refers to the protections put in place to ensure that people’s choices are followed. People’s
agreement to share their data usually revolves around two key concepts: trust and value. Trust refers
to the notion that the data will be used appropriately, given a person’s wishes and expectations.
Value refers to the benefit that is accrued to the user or society based on the use of data.

An important aspect of trust has traditionally been the severance of the identity of the individ-
ual from the data provided from that individual, or de-identification. This is challenging because
even a few pieces of information, such as sex, zip code, and birthdate, can identify most of the
US population (Sweeney 2000). The data collected from devices may pose even greater risks of
identification. GPS traces are the most personally identifying type of data; with only 4 spatiotem-
poral points, 95% of individuals can be identified (de Montjoye et al. 2013). Various methods can
help obfuscate location data; however, none of these successfully preserves privacy and retains the
usefulness of the data (Brush et al. 2010).

Privacy management needs to give participants as much control over their data as possible
(Shilton 2009). Participants should be informed what the data might reveal about them, for how
long the data will be used, who will be using it, and why. Data management tools can be designed
to help people manage their data, including the abilities to define acceptable use, limit data access,
delete data, or revoke consent altogether.

Encouraging greater openness, more transparency, and the development of better methods
to share data is desirable for several reasons, including improving the quality of the scientific
literature, providing opportunities to replicate findings, and creating tools that are valid, reliable,
and generalizable. As standards and best practices evolve to ensure participants’ privacy, the field
will be best served if those standards place the participant at the center, such that trust can be
established by providing clear understanding, choice, and control.

6. POTENTIAL APPLICATIONS OF PERSONAL SENSING

6.1. Integration into Existing Models of Care

A personal mental-health sensing platform with sufficient accuracy could enhance mental health
care by helping identify people in need of treatment, accelerating access to treatment, and moni-
toring functioning during or after treatment. The inability to identify patients in need of treatment
is a major failure point in our health-care system. In any given year, nearly 60% of all people with
a mental health condition receive no treatment. Our health-care system relies almost entirely on
people with mental health conditions presenting themselves for treatment. Thus, accessing care in
a timely manner relies primarily on the patient, whose condition may involve a loss of motivation,
stigmatization, a sense of hopelessness and helplessness, and, in some cases, impaired judgment,
all of which may interfere with seeking help.

Although personal mental-health sensing holds great promise for monitoring at-risk popula-
tions to deliver care more rapidly and effectively, developing accurate algorithms alone will not
solve these problems. This will require user-centric approaches to privacy and control, as well as
providing sufficient value to all end users (patients and providers) to promote use. Such systems
will also likely present situations for which there are no care guidelines. For example, if a mental-
health sensing system forecasts that a bipolar patient has a high likelihood of having a relapse
during the next 2 weeks, would clinic staff know what to do (Mayora et al. 2013)? Thus, the ability
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to detect potential mental health problems opens enormous potential to improve access to care,
but the solution will require considerable clinical and design research beyond the personal sensing
described in this article.

6.2. Behavioral Intervention Technologies

Behavioral intervention technologies for mental health, such as websites or mobile apps, consist
largely of psychoeducational content (as text or video) and interactive tools. The development of
sensing capacity for health behaviors, such as physical activity or sleep, has resulted in apps that
are less reliant on patients to log activities, presumably making apps easier to use and, therefore,
more effective. As attractive as that may sound, here too, previous efforts have demonstrated many
unknowns beyond personal sensing (Burns et al. 2011). Although research has discovered a lot
about behavioral and environmental factors that contribute to mental illness, it has produced little
granular knowledge about the wishes, goals, challenges, and aspirations of people on a moment-
to-moment, hour-to-hour basis. This information is critical to designing the next generation of
intervention technologies to fit into the fabric of people’s daily lives. Applications have tended to
be designed using a top-down approach, trying to get people to do what we think will help them.
But the technologies that are adopted and widely used are commonly those that make some aspect
of people’s lives easier, helping people do or achieve something they are motivated to do. Success
will be more likely if what is sensed, and how sensed data are used, speak to the user’s personal
goals, thus integrating treatment aims with making their goals and tasks easier on a daily basis,
and thereby fitting treatment activities into people’s common patterns and actions.

6.3. Epidemiology

Databases with genomic, epigenetic and other biological data are being integrated into clinical
databases to explore genetic influences on disease. Although there is growing recognition that
behavior is a critical factor, behavioral data have traditionally been collected using self-report
measures, which provide only a periodic subjective snapshot. Personal sensing platforms can
provide a continuous stream of objective data that can be used to explore interactions among
behavioral markers, genetic and biological factors, and disorders.

7. SUMMARY AND CONCLUSIONS

A growing cloud of digital exhaust is emitted from our daily activities and actions. Some of these
data are produced intentionally, such as through the use of wearables. But much of the data are a
by-product of our daily actions captured through our smartphones, computers, purchasing, and
the increasingly sensor-enabled objects in our lives. The promise for research into mental health,
as well as for clinical care, is enormous. But the challenges are also large and manifold. Although
the feasibility of personal sensing for mental health has been demonstrated, enormous challenges
remain to move from proof of concept to tools that are useful in broader populations. The ultimate
success of personal sensing in mental health will likely depend on the continued engagement of
users who supply both passively collected data and some measure of active labeling. This, we
believe, will require an infrastructure that is a social machine, sufficiently engaging to users to
prevent obsolescence. Creating trust in these systems will require a recognition of the primacy of
the user, instantiated by enabling people to understand, control, and own their data. Although the
tasks are considerable, the potential benefits are also game-changing. The ability to continuously
identify behaviors related to mental health has the potential to transform the delivery of care,
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speeding recognition of people who are at risk or in need of treatment, and ushering in a new
generation of highly personalized, contextualized, dynamic mobile health (or mHealth) tools that
can listen rather than ask, and that seamlessly interact, learn, and grow with users.

SUMMARY POINTS

1. Because we use sensors in our everyday lives, personal sensing offers the potential to
measure human behavior continuously, objectively, and with minimal effort from the
user.

2. Translating raw sensor data into knowledge can be achieved using a layered, hierarchical
approach in which sensor data are converted into features, and features are combined to
estimate behaviors, moods, and clinical states.

3. A growing number of studies have found that phone sensor data (e.g., from the GPS,
accelerometer, light or microphone) can, using machine learning, provide markers of
sleep (e.g., bedtime or waketime, duration), social context (e.g., who is in the vicinity,
relationship to in-phone contacts), mood, and stress.

4. Depression and mood states in bipolar disorder have been estimated using a variety
of phone sensor data. GPS features measuring entropy and the circadian rhythm of
movement have been correlated with depression.

5. Posts on social media (e.g., on Facebook or Twitter) can identify people who are depressed
or likely to become depressed.

6. Although the work on phone sensor data has been promising, most studies have been
small, on the order of 7–30 participants, who frequently are college students; there is
little evidence to support replicability.

7. Machine-learning methods vary, some relying on user-generated labels and others un-
covering patterns in unlabeled data. Labeling often improves and helps algorithms adapt
to new circumstances. Thus, rather than an autonomous prediction machine, it may be
more useful to think of a mental-health sensing platform as a social machine in which
the quality of prediction is ensured through a shared endeavor.

8. Research suggests that it is feasible to obtain data from personal sensing using everyday
sensors. However, numerous challenges must be overcome before it is viable for clinical
deployment.

FUTURE ISSUES

1. Because of the amount of variability coming from differences in hardware, device-usage
patterns, lifestyle, and the environment, personal sensing platforms will likely require a
large user base to have widespread applicability.

2. Some data, such as those generated from GPS tracking, are impossible to de-identify
while retaining utility. Thus, creating trust in these systems among participants will
require a recognition of the primacy of the user, instantiated by enabling people to
understand, control, and own their data.
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3. Personal sensing offers the potential to develop a new class of intervention technolo-
gies that can reduce users’ burden while creating highly tailored and contextualized
interactions.

4. No sensing system will be 100% accurate and, thus, researchers, developers, and users
must come to consensus about how much error is acceptable and how to better explain
and display error to relevant stakeholders.

5. Improving systems will likely require some action on the part of users, and discovering
ways to ensure that actions are directly associated with benefits will likely create more
engaging and empowering systems.

6. Personal sensing can help improve screening for disorders and access to treatment, but it
will require making advances in infrastructure and ensuring that it is integrated into the
workflow, as well as making improvements in the underlying technology and knowledge,
and improving algorithmic accuracy.

7. The field of personal sensing will likely continue to experience a tension between what
is possible and what is feasible, which is related to a trade-off that occurs between small
proof-of-concept studies demonstrating novelty and large studies demonstrating robust-
ness and generalizability.

8. Integrating personal sensing data with clinical and genomic databases will offer the
opportunity to deepen our understanding of the relationship between behavior and
gene × behavior interactions on health, wellness, and disease.
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