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ABSTRACT
In the U.S., people spend approximately 90 percent of their
time indoors. Unfortunately, indoor air quality (IAQ) may
be two to five times worse than the air outdoors, and is of-
ten overlooked. Existing IAQ monitoring technologies focus
on IAQ measurements and visualization. However, the lack
of information about the pollution sources as well as the se-
riousness of the pollution makes people feel powerless and
frustrated, resulting in the ignorance of the polluted air at
their homes. In this work, we fill this critical gap by present-
ing AirSense, an intelligent home-based IAQ sensing system
that is able to automatically detect pollution events, identify
pollution sources, estimate personal exposure to indoor air
pollution, and provide actionable suggestions to help people
improve IAQ. We have deployed AirSense at five homes to
evaluate its performance and investigate how users interact
with it. We demonstrate that AirSense can accurately de-
tect pollution events, identify pollution sources, and forecast
IAQ information within five minutes in both controlled and
real-world settings. We further show the great potential of
AirSense in increasing users’ awareness of IAQ and helping
them better manage IAQ at their homes.
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INTRODUCTION
Indoor air quality (IAQ) plays a significant role in our daily
lives. In the United States, people spend approximately 90
percent of their time indoors, consuming about 3400 gallons
of air on average every day [24]. Unfortunately, according
to Environmental Protection Agency (EPA), indoor air pollu-
tion may be two to five times – and on occasion more than 100
times – worse than the air outdoors. Poor IAQ could pose sig-
nificant risks to people’s health and is the leading cause of res-
piratory infections, chronic lung diseases, and cancers [17].
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A majority of indoor air pollution is caused by people’s daily
household activities. For example, oil-based cooking could
generate remarkable amounts of harmful airborne particulate
matter (PM) with a diameter of 2.5 micrometers or less (PM
2.5) [15]. Tobacco smoking produces more than 4000 types
of chemicals (with many of them identified as carcinogens)
in the form of PM 2.5 and gases including volatile organic
compounds (VOCs) [6, 12]. Many household products for
cleaning and maintenance such as disinfectants and pesticides
contain and release PM 2.5 and numerous VOCs more or less
that lead to long-term health concerns such as child develop-
mental and hormonal issues [9, 13].

Although we are potentially exposed to such a variety of
air pollution at home, IAQ is often overlooked for two rea-
sons. First, although some of the indoor air pollutants like
formaldehyde have irritating odor, the majority of them is col-
orless, odorless, or too tiny to be seen. This makes indoor air
pollutants almost impossible to be detected by human beings.
Second, many adverse health conditions caused by indoor air
pollution such as cancer have no severe symptoms until years
after long period of exposure [23]. For immediate adverse
health effects, some of them such as coughs and headaches
are very similar to symptoms of colds or other viral diseases.
Therefore, it is very difficult to determine whether the symp-
toms are results of exposure to indoor air pollutants.

Due to its critical role in health and wellbeing, IAQ has at-
tracted considerable attentions in the ubiquitous computing
community in recent years. Pioneer work focused on devel-
oping IAQ monitoring systems for measuring and visualizing
indoor air pollution levels [8, 16, 18, 26]. Although these
systems could increase users’ awareness of IAQ, the lack of
information about the pollution sources, the seriousness of
the pollution, and the actionable suggestions to help users
reduce the pollution makes people feel powerless and frus-
trated, leading to the ignorance of the indoor air pollution
levels provided by the IAQ monitoring systems.

In this work, we bridge this critical gap by developing
AirSense, an intelligent home-based IAQ monitoring and ana-
lytics system that is capable of automatically detecting indoor
air pollution events, identifying pollution sources, forecasting
pollution levels to estimate the seriousness of the pollution,
and providing actionable suggestions to help people improve
IAQ in a timely manner. Specifically, AirSense is developed
upon commercial off-the-shelf air quality sensors that con-
tinuously monitor the ambient temperature and humidity as
well as the concentrations of PM 2.5 and VOCs, which are
two of the most common air pollutants in the indoor environ-
ment [23]. To detect the occurrence of air pollution event,
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Figure 1: The (a) PM 2.5, (b) humidity, and (c) VOCs sensor measurements of indoor air pollution generated by cooking, smoking, and spraying pesticide.

AirSense uses a normalized standard deviation based scheme
to detect the sharp increase of the pollution level at the be-
ginning of air pollution event in real-time. To identify the
source of the pollution event, AirSense extracts a set of fea-
tures from sensor data that are able to discriminate different
pollution sources. Based on the identified pollution source,
AirSense uses a non-parametric regression scheme to predict
the pollution levels in the near future to estimate the serious-
ness of the pollution. Finally, AirSense provides suggestions
tailored to the identified pollution source to guide people to
taking appropriate actions to minimize their exposure to in-
door air pollution. It also provides a detailed weekly IAQ
profiling report that helps people better understand how their
household activities impact IAQ and pinpoint household ac-
tivities that pollute their indoor air the most.

Summary of Experimental Results: We focus on three of
the most common household activities that generate signifi-
cant indoor air pollution – cooking, smoking, and spraying
pesticide – to examine the feasibility of AirSense. We have
evaluated the performance of AirSense by conducting experi-
ments at two homes for ten weeks for controlled evaluation as
well as at three homes for nine weeks for uncontrolled real-
world deployment. The results of our experiments show that:

• In controlled settings, AirSense can accurately detect the
pollution events and identify cooking, smoking, spraying
pesticide and their combinations as pollution sources with
an average accuracy of 95.8%. It can forecast pollution
levels with an average error of less than or equal to 8.1%
within five minutes after occurrences of pollution events.

• Through controlled experiments, we have also demon-
strated that AirSense is robust to different deployment lo-
cations as well as diverse pollution source subcategories.

• When deployed in the real world, AirSense shows the great
potential in increasing users’ awareness of IAQ and helping
them better manage IAQ at their homes.

Summary of Contributions: We introduce AirSense as the
first IAQ monitoring and analytics system that is able to iden-
tify pollution sources, estimate the seriousness of pollution,
and provide early warnings to users and assist them to reduce
indoor air pollution. Equipped with both monitoring and ana-
lytics capabilities, AirSense would be very helpful for people
who are sensitive to air quality. Although currently designed
for home uses, AirSense can be extended and find its appli-
cations in public buildings such as office rooms, shopping
malls and subway stations. Therefore, we believe AirSense
has tremendous potential to be widely adopted in real world.

MOTIVATING OBSERVATIONS
Figure 1 illustrates the PM 2.5, humidity and VOCs sensor
measurements of indoor air pollution generated by cooking,
smoking and spraying pesticide. The design of AirSense is
motivated by two key observations from Figure 1. First, these
three household activities all cause changes in PM 2.5, hu-
midity, and VOCs levels. This motivates us to use PM 2.5,
humidity, and VOCs sensors to detect indoor air pollution
caused by them. For example, it is known from the litera-
ture that cooking, smoking and spraying pesticide all gener-
ate PM 2.5 [15, 12, 9]. As shown in Figure 1(a), there is a
sharp increase in PM 2.5 measurements at the beginning of
these three household activities. This indicates that PM 2.5
sensor could be helpful in detecting them. Second, there are
unique patterns embedded in the sensor measurements which
can be leveraged to differentiate these three household activ-
ities. This motivates us to develop pattern recognition and
classification algorithms to recognize these household activi-
ties as pollution sources from sensor measurements. For ex-
ample, in Figure 1(b), the humidity level changes only 1% for
smoking while it increases about 7% for cooking. As another
example, in Figure 1(a), the decreasing rate after the peak
value of cooking is slower than the ones of both smoking and
spraying pesticide. We can extract features to capture these
patterns to help identify pollution sources.

AIRSENSE OVERVIEW
Figure 2 provides an overview of the system architecture of
AirSense. As illustrated, AirSense consists of three compo-
nents: an IAQ sensing platform, a cloud server and a smart-
phone application. The IAQ Sensing Platform is the host of
four air quality sensors including temperature, humidity, PM
2.5 and VOCs sensors. It continuously samples these sen-
sors and uploads the sensor data onto the cloud server. The
cloud server stores the sensor data into the cloud database.
It also runs an Analytics Engine that analyzes the collected
sensor data. In particular, the analytics engine is able to de-
tect the occurrences of indoor air pollution events, identify
the sources of the pollution events, and forecast the pollution
levels in the near future to estimate the expected personal ex-
posure to indoor air pollution. AirSense will generate sug-
gestions that are specific to the identified pollution sources.
It will then deliver the suggestions to users via a Smartphone
Application to assist them to reduce the pollution. Finally,
a weekly IAQ profiling report is generated which summa-
rizes the amount of indoor air pollution produced within each
week. In the following sections, we describe all the three
components of AirSense in details.
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Figure 2: The overview of the system architecture of AirSense.
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Figure 3: The IAQ sensing platform (left), the 3D printed case (middle), and
the PM sensor (right).

IAQ SENSING PLATFORM
The IAQ sensing platform is developed on top of the Ar-
duino Uno Ethernet board [2]. The platform has three on-
board sensors including temperature, humidity and VOCs
sensors (Figure 3 (left)) and is enclosed in a 3D printed case
(Figure 3 (middle)). The sampled sensor data are trans-
mitted to the cloud server via the onboard Ethernet port.
Besides the onboard sensors, AirSense also incorporates a
standalone consumer-grade Particulate Matter (PM) sensor
DC1700 from Dylos to measure the concentration of indoor
PM 2.5 [4] (Figure 3 (right)). We connect DC1700 to a mini
laptop and use the Processing software [5] to retrieve PM 2.5
measurements from DC1700. The sampled sensor data are
transmitted to the cloud server via WiFi. The sampling rate
of all the sensors is set to one sample per five seconds. Ta-
ble 1 summarizes the air quality sensors included in AirSense.
It should be noted that all these sensors are factory calibrated
with ensured measurement accuracy, repeatability and sensi-
tivity. The measurement ranges of these sensors all meet the
requirements of the national standards for IAQ monitoring.

Air Quality Sensor Manufacturer
Particulate Matter (PM 2.5) Dylos DC1700
Volatile Organic Compounds (VOCs) AppliedSensor iAQ-engine
Humidity Sensirion SHT15
Temperature Sensirion SHT15

Table 1: Air quality sensors included in AirSense.

ANALYTICS ENGINE FOR IAQ ANALYSIS

Pollution Event Detection
Given the streaming air quality sensor data, the first stage of
the analytics engine is to detect the occurrence of air pollution
event. Indoor air pollution generated by pollution events usu-
ally stays in the air for a very long time. People might have
already inhaled a large amount of polluted air before the end
of events. To reduce the negative impact of indoor air pollu-
tion to people’s health, it is critical to detect the occurrence of
the pollution event as soon as possible.

Detection

Window

Figure 4: The illustration of the principle of the pollution event detection
algorithm. The upper plot shows the PM 2.5 sensor data of the pesticide
spray pollution event. The lower plot shows the corresponding NSTD values.

To achieve this goal, we adopt a normalized standard devia-
tion (NSTD) based scheme to detect the beginning of the air
pollution event in real time. As an illustration of our scheme,
Figure 4 presents an example of the PM 2.5 sensor data of
pesticide spray and its corresponding NSTD values. The key
intuition behind our scheme is the observation that the be-
ginning of an air pollution event is characterized by a sharp
increase of sensor data. To capture this sharp increase, we
first use a sliding window of size β and a step size of one data
point to segment the sensor data stream. We then compute the
NSTD of the data points inside the window. Specifically, let
w be a window with β data points s1, s2, . . . , sβ . The NSTD
of window w is calculated as

NSTD(w) =
1

max(w)

√√√√ 1

β

β∑
j=1

(sj − μ)2 (1)

where μ is the average of β data points and max(w) is the
maximum sj in window w. As shown in Figure 4, the NSTD
value is low before the window reaches the sharp increase.
As the window slides forward and gradually covers the sharp
increase, the NSTD value increases until it reaches the maxi-
mum. As the window keeps sliding forward, the NSTD value
decreases and goes back to the low value in the end. Given
this observation, we define the left end of the sliding window
as the detection point of the event when the right end of the
sliding window reaches the maximum NSTD value.

There are two key parameters in our pollution event detection
scheme. The first parameter is the window size β. We have
empirically tested a number of window sizes and have found
that β equal to three minutes works robustly across all the
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Figure 5: The normalized histogram of maxi-
mum NSTD values of pollution events vs. non-
pollution events.

Figure 6: The illustration of the principle of
the IAQ forecast algorithm.

prediction

Figure 7: The illustration of the IAQ forecast
algorithm in the context of predicting the PM
2.5 sensor values of a trial of pesticide spray.

PM 2.5 and VOCs Features
Increase Rate 2 The increasing rate bewteen the peak and the first data point of the window
Increase Magnitude 2 The difference bewteen the peak and the first data point of the window
Decrease Rate 2 The decreasing rate bewteen the peak and the last data point of the window
Decrease Magnitude 2 The difference bewteen the peak and the last data point of the window
Standard Deviation 2 The standard deviation of all data points in the window

Humidity Features
Change Magnitude 1 The difference between the maximum and minimum data points in the window
Standard Deviation 1 The standard deviation of all data points in the window

Cross-Sensor Features
Change Magnitude Ratio 3 The change magnitude ratio among the three sensors
Standard Deviation Ratio 3 The standard deviation ratio among the three sensors

Table 2: List of features for pollution source identification. These include single-sensor features extracted from PM 2.5, VOCs and humidity sensor individually
as well as cross-sensor features extracted from more than one sensors. The table lists the counts of features as well as the name and definition of each feature.

targeted pollution events. This is because air pollutants dis-
perse very fast in the ambient atmosphere such that the peak
of the concentrations of the air pollutants exhibits shortly af-
ter the occurrence of the air pollution event [22]. As such,
this result indicates that AirSense could detect the air pollu-
tion event within three minutes after the event occurs. The
second parameter is the threshold of the maximum NSTD
value γ which we use to determine whether there is a pollu-
tion event or not. Moreover, this threshold is also used to filter
out non-pollution events including confounding events (e.g.
vacuuming, walking on the carpet) and cases where nothing
happens. Figure 5 shows the normalized histogram of maxi-
mum NSTD values of the three targeted pollution events and
the non-pollution events. As illustrated, all the trials of the
three pollution events have the maximum NSTD values larger
than 0.3 while all the trials of non-pollution events have the
maximum NSTD values less than 0.24. Based on this result,
we set the threshold γ to be 0.27.

Pollution Source Identification
After detecting the occurrence of the air pollution event, the
second stage of the analytics engine is to identify the source
of the pollution event. We frame the pollution source identi-
fication problem as a classification problem. As the first step,
we need to extract features that are able to discriminate dif-
ferent types of pollution events. As illustrated in Figure 1, the
key intuition behind feature extraction is the observation that
air pollution sensor data within the window starting from the
beginning of the pollution event to two minutes after the peak
value contains enough information that captures the unique
characteristics of the pollution events. This is also due to the
fact that air pollutants (i.e., PM 2.5, VOCs) disperse very fast
in the ambient atmosphere [22]. In the meantime, although
humidity sensor data within the same window may not ex-
hibit peak values, they contain distinctive patterns that, com-

bined with the characteristics captured by PM 2.5 and VOCs
sensors, can be used to identify pollution sources.

Based on our observations, we have carefully designed a to-
tal of 18 features that capture the unique characteristics of
the targeted pollution events. These include single-sensor
features extracted from PM 2.5, VOCs, and humidity sensor
individually as well as cross-sensor features extracted from
more than one sensors. Table 2 lists the features and their
definitions. We then extract those features from a window of
five minutes starting from the beginning of the air pollution
event. Finally, we stack the extracted features into a feature
vector and import the feature vector into a linear kernel-based
Support Vector Machine (SVM) for classification.

It is worthwhile to note that our identification algorithm could
identify pollution sources within five minutes after the occur-
rence of the pollution event. Considering the fact that it may
take six to seven hours for the PM 2.5 and VOCs levels to
drop back to the healthy levels, AirSense can notify people
about the identified pollution sources at a much earlier time
so that they can take immediate actions to reduce pollution.

IAQ Forecast
The final stage of the analytics engine is to forecast the air
quality sensor values of the detected air pollution events.
Based on the IAQ forecast, AirSense can estimate the seri-
ousness of the pollution so as to increase people’s awareness
of the potential harm of the pollution. To forecast IAQ, one
straightforward scheme is to build a parametric regression
model for each type of the air pollution events. However,
such scheme is unsuitable for AirSense because air pollution
events have high within-class variances. As such, it is very
challenging to build one parametric model that can make pre-
dictions reasonably well for all possible trials of the same type
of the pollution events.
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Figure 8: The AirSense smartphone application screenshots: (a) dashboard screen, (b) IAQ data visualization screen, (c) IAQ analytics result screen, and (d)
weekly IAQ report screen.

To resolve the issue of high within-class variances, AirSense
adopts a non-parametric regression model to forecast future
air quality sensor values of air pollution events. The key in-
tuition behind our non-parametric scheme is the observation
that different trials of the same air pollution event have very
similar shapes if their peak values are similar. As an exam-
ple, Figure 6 illustrates the PM 2.5 sensor data of three trials
of smoking. As shown, trial 1 and 2 have similar peak values
of about 380ug/m3 and they exhibit very similar shapes. For
trial 3, its peak value is about 250ug/m3, and it has a very
different shape compared to trial 1 and 2.

Based on this observation, our non-parametric IAQ forecast
algorithm first identifies q (q = 3 in our implementation) near-
est historical trials of the same pollution event whose peak
values are within a threshold of η (η = 10% in our implemen-
tation) difference from the peak value of the current trial. It
then calculates the squared error between the current trial and
its q nearest historical trials respectively, with a sliding win-
dow of n (n = 10 in our implementation) data points starting
right after the peak value. Mathematically, let the current trial
in the sliding window be Mc = {m1,m2,m3, . . . ,mn}, and
the corresponding data points of the historical trial j be Mhj

=
{
mhj ,1,mhj ,2,mhj ,3, . . . ,mhj ,n

}
. The squared error be-

tween these two trials is calculated as:

SEj =

n∑
i=1

(mi −mhj ,i)
2 (2)

We define a similarity metric sj based on the squared error
to measure the similarity between the current trial and the
historical trial j among its q nearest historical trials:

sj =
1

q − 1
(1− SEj

q∑
i=1

SEi

) (3)

where sj is normalized and
q∑

i=1

sj = 1. The higher the sj , the

more similar between current trial and the historical trial j.
Based on the q nearest historical trials and their correspond-
ing similarity metrics, we can predict the future air quality

sensor values of the current trial for a prediction length l:

Mpredict =

⎡
⎢⎢⎣
s1
s2
...
sq

⎤
⎥⎥⎦
T ⎡
⎢⎢⎣
mh1,n+1 mh1,n+2 · · · mh1,n+l

mh2,n+1 mh2,n+2 · · · mh2,n+l

...
...

. . .
...

mhq,n+1 mhq,n+2 · · · mhq,n+l

⎤
⎥⎥⎦
(4)

where Mpredict = {mn+1,mn+2,mn+3, . . . ,mn+l} is
the predicted sensor values of the current trial and{
mhj ,n+1,mhj ,n+2,mhj ,n+3, . . . ,mhj ,n+l

}
is the sensor

values of the historical trial j.

Figure 7 illustrates an example of the performance of our IAQ
prediction algorithm in the context of predicting PM 2.5 sen-
sor values of a trial of pesticide spray. The two dotted lines
represent the two nearest historical trials of the current trial.
The peak values of the two historical trials and the current
trial are 224, 229 and 215ug/m3 respectively. The prediction
starts at the 11th data point after the peak value. As illus-
trated, the predicted sensor values match the real sensor data
very well from the prediction starting point to 250 mins.

SMARTPHONE APPLICATION
The design goal of the smartphone application is to increase
users’ awareness of IAQ, help users understand how their
household activities impact IAQ, and assist users to take
proper actions to reduce indoor air pollution in a timely man-
ner. To achieve this goal, the smartphone application pro-
vides four different screens: (1) dashboard screen, (2) IAQ
data visualization screen, (3) IAQ analytics result screen, and
(4) weekly IAQ report screen. The screenshots of these four
screens are illustrated in Figure 8.

Dashboard Screen: A dashboard screen is accessible by ex-
ecuting the application manually (Figure 8(a)). There are
four icons each representing one air quality sensor included
in AirSense. The number below each icon is the real-time
measurement from each sensor. By pressing each icon, the
IAQ data visualization page will be displayed. At the bottom
of this screen, users can check their weekly IAQ reports by
pressing the weekly IAQ report icon.
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IAQ Data Visualization Screen: The IAQ data visualization
screen (Figure 8(b)) provides a detailed visualization of the
air quality sensor data in the past as well as IAQ forecast data
generated by the IAQ forecast scheme described before. By
zooming in and out on the visualization, users can examine
the sensor data in great details. Furthermore, to draw users’
attention when the air quality degrades, we map the sensor
data to the official air quality index (AQI) from EPA based on
a standard lookup table [3]. We use the same color codes of
AQI to visualize the sensor data in different colors [1]. At the
bottom of this screen, a web link on the background knowl-
edge of the air pollutant from EPA is also provided.

IAQ Analytics Result Screen: Once an indoor air pollution
event is detected and its source is identified, the analytics en-
gine on the cloud server immediately sends a notification to
the smartphone application, which provides a link to the IAQ
analytics result screen (Figure 8(c)). The screen lists the air
pollution sources identified by the source identification algo-
rithm. Moreover, based on the result of the IAQ forecast al-
gorithm, it also shows the estimated duration until IAQ will
return back to healthy level to let users understand how se-
rious the indoor air pollution is. This design is based on the
previous observation that proper use of simulations is known
to be effective in persuading people to change their attitudes
or behaviors by enabling them to observe immediately the
link between cause (e.g., no action) and effect (e.g., exposure
to pollution for 30 minutes) [11]. Finally, to guide users to
taking appropriate actions to cope with the detected indoor air
pollution event, detailed pollution source-specific suggestions
are provided on the screen. These suggestions are adopted
from the authoritative guidance provided by EPA [23]. Ta-
ble 3 lists the pollution sources considered in this work and
the corresponding suggestions.

Pollution Source Suggestion
Cook Please turn on the range hood when cooking and

ventilate your home.
Smoke Please smoke outside to minimize indoor pollution

and ventilate your home.
Spray Pesticide Please ventilate your home after spraying pesticide.

Table 3: Pollution sources and the corresponding suggestions.

Weekly IAQ Report Screen: The analytics engine gener-
ates a weekly IAQ report which summarizes the amount of
indoor air pollution caused by pollution events every week
(Figure 8(d)). This screen is designed for self-monitoring,
which is known to be beneficial for people in understanding
how well they are performing the target behavior, increasing
the likelihood that they will continue to produce the behav-
ior [11]. The weekly IAQ report is illustrated using a pie
chart, which shows the percentage of time during one week
for IAQ being either healthy or polluted by the three pollution
source categories. We followed the AQI standard from EPA
to group the AQI categories of good and moderate as healthy
and group the other four AQI categories as unhealthy [1]. Fig-
ure 8(d) shows a sample weekly IAQ report, illustrating that
the PM 2.5 is at healthy level for 32% of the week while the
PM 2.5 is at unhealthy level for 19%, 15%, and 34% of the
week due to smoking, spraying pesticide, and cooking.

SYSTEM PERFORMANCE EVALUATION
As the first part of the evaluation, we conduct experiments to
benchmark the performance of AirSense on pollution event
detection, pollution source identification, and IAQ forecast.
We also conduct another two experiments to examine the im-
pact of deployment location and diversity of pollution sources
on the performance of AirSense.

Experimental Setup
Participants: We recruited two families who volunteered to
help collect data and conduct evaluation experiments at their
home. Family 1 has three members: 1) P11 is a 32-year-old
male; 2) P12 is a 31-year-old female; and 3) P13 is a 59-year-
old female. Family 2 only consists of one member, P21, a
25-year-old male.

Deployment Site: We deployed AirSense in the living room
at each home. The approximate size of the living room of
two homes is 56 m2 and 25 m2, respectively. Figure 13 illus-
trates the deployment of AirSense at one home. We choose
living room as the deployment site of AirSense because it is
the central place that is close to kitchen, bedrooms, restrooms
as well as windows for ventilation.

Data Collection: We deployed AirSense at each home for a
duration of ten weeks. To collect IAQ data, two families were
instructed to regularly cook in the kitchen as well as smoke
and spray pesticide in the living room. It should be empha-
sized that the occupants were allowed to conduct multiple
pollution activities simultaneously (e.g., P11 is smoking while
P12 is cooking). Therefore, there are in total seven types of
pollution events (individuals plus combinations). Table 4 lists
these seven types of pollution events and their abbreviations.
For ground truth collection, the participants were asked to
label the pollution events and record the timestamps of the
events using Google Sheets. The time periods other than pol-
lution events during the ten-week deployment are categorized
as non-pollution/null events. Table 5 lists the number of pol-
lution events and their corresponding time durations collected
during the ten-week deployment.

Event Cook Smoke Spray Cook+Smoke Smoke+Spray Cook+Spray All
Abbreviation C S P CS SP CP CSP

Table 4: The list of seven types of pollution events and their abbreviations.

Event C S P CS SP CP CSP Total
Family No. of Sample 23 22 24 18 18 19 15 139

1 Duration (h) 140 112 101 84 89 93 69 688
Family No. of Sample 25 25 25 20 20 20 15 150

2 Duration (h) 180 146 164 112 122 108 78 910

Table 5: Summary of data collected from two families during the ten-week
deployment (see Table 4 for pollution event abbreviations).

Evaluation Results
Performance of Pollution Event Detection
Table 6 presents the confusion matrices for detecting the pol-
lution events at two families. We observe that the pollution
event detection rates at both families are very high, which
demonstrates our algorithm is very accurate at detecting pol-
lution events regardless of the differences in floor plans of the
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Figure 9: Performance of IAQ forecast algorithm
on PM 2.5 prediction at two families.

Figure 10: Performance of IAQ forecast algo-
rithm on VOCs prediction at two families.

Figure 11: Pollution source identification accu-
racy at five deployment locations (see Figure 14
for deployment location information).

Actual/Predicted Event Null
Family Event 99.8% 0.2%

1 Null 1.1% 98.9%
Family Event 100.0% 0.0%

2 Null 0.5% 99.5%

Table 6: Confusion matrices of pollution event detection at two families.

homes as well as living styles of occupants at two families. In
addition, we also observe that the false positive rates at both
families are very low. This result indicates that our algorithm
is very robust to noises caused by environmental changes and
other human behaviors.

C S P CS SP CP CSP Recall (%)
C 23 0 0 0 0 0 0 100.0
S 0 22 0 0 0 0 0 100.0
P 0 0 24 0 0 0 0 100.0

CS 0 1 0 17 0 0 0 94.1
SP 2 0 0 0 16 0 0 88.9
CP 0 1 0 1 0 17 0 89.5

CSP 0 1 0 1 0 1 12 80.0
Precision (%) 92.0 88.0 100.0 89.5 100.0 94.4 100.0

Table 7: Confusion matrix of pollution source identification at Family 1 (see
Table 4 for pollution event abbreviations).

C S P CS SP CP CSP Recall (%)
C 25 0 0 0 0 0 0 100.0
S 0 25 0 0 0 0 0 100.0
P 0 0 25 0 0 0 0 100.0

CS 0 0 0 20 0 0 0 100.0
SP 0 0 1 0 19 0 0 95.0
CP 1 0 0 0 0 19 0 95.0

CSP 0 0 0 0 1 1 13 86.7
Precision (%) 96.1 100.0 96.1 100.0 95.0 95.0 100.0

Table 8: Confusion matrix of pollution source identification at Family 2 (see
Table 4 for pollution event abbreviations).

Performance of Pollution Source Identification
Next, we evaluate the performance of our pollution source
identification scheme using leave-one-trail-out cross valida-
tion strategy. Table 7 and Table 8 show the confusion matrices
for the source identification of pollution events at two fami-
lies. Each row denotes the actual pollution event conducted
and each column represents the pollution source identified by
AirSense. Overall, the average pollution source identifica-
tion accuracy is 94.2% for Family 1 and 97.3% for Family
2. This result demonstrates that our scheme can accurately
identify sources of the pollution events across different fam-
ilies because of the highly discriminative features we care-
fully designed. By taking a closer look at the identification
accuracies of different events, we observe that the pollution
events that involve more than one pollution sources have rel-
atively lower identification accuracies than pollution events

that involve only one pollution source. This is because when
multiple pollution sources exhibit at the same time, the air
pollutants generated by different sources are mixed together,
making the source identification problem more challenging.

Performance of IAQ Forecast
To examine the performance of our IAQ forecast scheme, we
use the normalized root mean square deviation (NRMSD) as
the evaluation metric. Formally, NRMSD is defined as

NRMSD =

√
1
l (

l∑
i=1

(m̂i −mi)2)

m̂max − m̂min
(5)

where m̂i and mi are the observed value and predicted value
respectively, l is the prediction length, and m̂max and m̂min

are the maximum and minimum of the observed values over
the prediction length l. NRMSD is often expressed as a per-
centage, where lower values indicate better performance.

We evaluate our IAQ forecast algorithm on every trial of the
pollution events based on leave-one-trial-out cross validation
strategy. For each trial, we set the ending point of our predic-
tion at the point where the air quality data reaches the healthy
level provided by the EPA standard [23]. The prediction start-
ing point is defined as the time duration after PM 2.5 or VOCs
reaches the peak value. The prediction length l is the distance
between the ending point and the starting point.

Figure 9 illustrates the performance of our IAQ forecast al-
gorithm on PM 2.5 prediction across seven pollution events
at two families. The horizontal axis represents the predic-
tion starting point. The vertical axis represents the NRMSD
value calculated over the prediction length. As illustrated,
the NRMSD values decrease as the prediction starting point
moves forward. This result indicates that IAQ information
can be forecasted more accurately when time elapses. More-
over, we observe that our IAQ forecast algorithm performs
very well even if we start predicting the future PM 2.5 sen-
sor values at two minutes after the peak value, achieving an
average NRMSD of 6.8% for Family 1 and 6.5% for Family
2. This forecast is accurate enough to capture the trend and
severity of the PM 2.5 pollution. Similar results are observed
in Figure 10 for forecasting the VOCs sensor values, with an
average NRMSD of 8.1% for Family 1 and 8.0% for Family
2. In all, our results demonstrate that our IAQ forecast algo-
rithm can provide a reasonably accurate prediction on future
IAQ within a very short time after the occurrences of the pol-
lution events.
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Figure 12: Pollution source identification la-
tency at five deployment locations (see Figure
14 for deployment location information).
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Figure 13: The deployment of AirSense in the
living room at one home.
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Figure 14: The illustration of the floor plan of
the living room and the deployment locations
of AirSense (measure unit: meter).

In-depth Analysis: Impact of Variation of Deployment Location
In this experiment, we examine the impact of system deploy-
ment location on the performance of AirSense. In particular,
we examine the pollution source identification accuracy as
well as the pollution source identification latency when de-
ploying AirSense at different room locations. Specifically,
we conducted the experiment in the living room at Family
1. Figure 14 illustrates the floor plan of the living room and
the deployment locations of AirSense in the experiment. As
shown, AirSense was deployed at five different locations with
1.4 meters apart. The occupants in Family 1 were instructed
to cook at the stove as well as smoke and spray pesticide at
the location marked as a star. Each of the seven types of pol-
lution events listed in Table 4 was conducted ten times while
AirSense was placed at each deployment location.

Figure 11 presents the average pollution source identification
accuracies across ten trials at five deployment locations. We
observe that although the accuracies at different deployment
locations vary, the differences among the five deployment lo-
cations are not significant. Figure 12 presents the average
pollution source identification latencies across ten trials at
five deployment locations. The latency is defined as the dura-
tion starting from the occurrence of the pollution event to the
time when the pollution source is identified. We observe that
the longest latency among all five deployment locations is 4.1
mins. This result indicates that even if the living room is large
(56 m2), AirSense is able to identify the pollution source in
a timely manner. Moreover, we observe that although the la-
tencies at different deployment locations vary, the differences
among the five deployment locations are not significant. In
all, our results indicate that the impact of variation of deploy-
ment location on the accuracy and latency of pollution source
identification is minor.

In-depth Analysis: Impact of Diversity of Pollution Sources
Finally, we examine the impact of the diversity of pollution
sources on the performance of AirSense. In particular, we ex-
amine the pollution source identification accuracy on differ-
ent cooking styles, numbers of cigarettes being smoked and
brands of pesticide. Table 9 summarizes the subcategories
within each pollution source. To examine the impact, the oc-
cupant at Family 2 was instructed to perform ten trials for
each pollution event for all the subcategories. We use these
trials as the test set and test them using the pollution source
identification models we built from the data in Table 5. As
shown in Table 9, AirSense is able to accurately identify pol-
lution sources across diverse subcategories.

Source Subcategory Accuracy
Grill 100.0%

Barbecue 90.0%
Cook Fry 100.0%

Steam 100.0%
Stew 80.0%

2 Cigarettes SI 100.0%
2 Cigarettes CO 100.0%

Smoke 3 Cigarettes SI 90.0%
3 Cigarettes CO 100.0%

2 (SI) + 1 (CO) Cigarettes 100.0%
Pesticide brand one 100.0%

Spray Pesticide brand two 100.0%
Pesticide brand three 90.0%

Table 9: Subcategories within each pollution source and their performance.
Abbreviation: SI – simultaneously; CO – consecutively.

REAL-WORLD DEPLOYMENT STUDY
As the second part of the evaluation, we conduct a real-world
deployment study to 1) evaluate the system performance of
AirSense in uncontrolled, daily life settings and 2) examine
the potential of AirSense in increasing users’ awareness of
IAQ and promoting behavioral changes to improve their IAQ.

Method
Participants: We recruited additional three families who vol-
unteered to participate in the study. Family 3 has two mem-
bers: 1) P31 is a 56-year-old female and 2) P32 is a 58-year-
old male. Family 4 also has two members: 1) P41 is a 29-
year-old female and 2) P42 is a 30-year-old male. Family 5
has one member: P51 is a 23-year-old male. Before recruit,
we have conducted a survey to make sure that the three fam-
ilies met the criteria: 1) at least one member of each family
is a smoker; 2) they have habits of spraying pesticide; and 3)
they cook at home frequently.

Study Design: The real-world deployment study consists of
two phases. In phase one, AirSense without the smartphone
application was deployed to continuously collect the IAQ data
at three families in their living rooms (size: 31, 44 and 19 m2

respectively) for six weeks. The occupants at three families

Event C S P CS SP CP CSP Total
Family No. of Sample 80 23 12 3 4 1 0 123

3 Duration (h) 480 128 70 19 23 6 0 726
Family No. of Sample 120 17 25 4 4 1 0 171

4 Duration (h) 710 80 140 21 29 6 0 986
Family No. of Sample 28 53 16 3 0 3 0 103

5 Duration (h) 150 270 93 19 0 15 0 547

Table 10: Summary of data collected from three families in the real-world
deployment study (see Table 4 for pollution event abbreviations).
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Figure 15: Pollution source identification accu-
racy in daily life settings (no SP event from Fam-
ily 5 and no CSP event from all three families).

Family
43 5

Figure 16: The weekly PM 2.5 profiling of in-
door air pollution at three families.

Family
43 5

Figure 17: The weekly VOCs profiling of in-
door air pollution at three families.

were asked to log the ground truth of the pollution events us-
ing Google Sheets. The collected IAQ data and the ground
truth were used to build models for pollution event detection,
pollution source identification and IAQ forecast. In phase
two, we installed the smartphone app on the participants’
smartphones and deployed AirSense at the same three fam-
ilies for another three weeks. The occupants could use the
app to check IAQ information and get notifications about the
detected pollution events, identified pollution sources, IAQ
forecast and the suggestions. In this phase, the occupants
were encouraged to think aloud [25] about their experiences
with AirSense and take a memo. Table 10 lists the number
of pollution events and the corresponding time durations col-
lected from the three families in this real-world study.

Analysis: To examine the potential of AirSense, a semi-
structured interview was conducted at the end of phase two.
During the interview, we asked the participants about their
overall experiences of AirSense, including their behavioral
changes related to IAQ at their homes. All think-aloud and
interview data were transcribed and analyzed using open cod-
ing [21] to examine emerging themes. We then created an
affinity diagram [14] for axial coding to understand common
themes and patterns across the codes that were generated. We
used SaturateApp and MemoSort, online collaboration tools
for open coding and affinity diagramming, respectively.

Findings

System Performance in Daily Life Settings
We evaluate the system performance of AirSense in daily life
settings at the recruited three families. In terms of pollution
event detection, the average true positive and true negative
rates across the three families are 99.0% and 99.5%. In terms
of pollution source identification, as illustrated in Figure 15,
we have achieved an average source identification accuracy of
87.0%, 90.7% and 92.2% across all pollution events at three
families respectively. It should be noted that there was no
CSP event performed by all three families during the deploy-
ment. Moreover, there was no SP event performed by Family
5. In terms of IAQ forecast, the average NRMSD when start-
ing prediction at two minutes after the peak value is 7.3% for
Family 3, 7.9% for Family 4, and 7.5% for Family 5.

IAQ Changes between Two Phases
Figure 16 and Figure 17 present the weekly profiling of in-
door air pollution caused by cooking, smoking and spraying
pesticide at three families in terms of PM 2.5 and VOCs, re-
spectively. In order to make a clear comparison between the

two phases of our real-world deployment study, we put the 3-
week profiling of phase one (the last 3 weeks of the total six
weeks) and the 3-week profiling of phase two into the same
figure, with phase one on the left and phase two on the right.
The three-stack bars represent the time percentages of indoor
air polluted by one of the three pollution sources, with the re-
maining percentage representing time of having healthy air.
As shown in both figures, the pollution time percentage of
phase one is much higher than that of phase two. This result
demonstrates the significant potential of AirSense in leading
to better IAQ.

At last, we describe our findings from the semi-structured
user interview in the remaining of this section.

Increase in Awareness of IAQ
Participants first talked about how much they were unaware of
IAQ or pollution sources before trying AirSense. They were
able to notice the air quality was not good without the system,
but did not have concrete idea on how bad the air quality was:
“Sometimes, I don’t feel very well, and I guess it’s related to
the air quality at home, but I don’t know how exactly (it was).”
(P41); “It feels good to see actual numbers [...] rather than
just guessing (the quality).” (P32) This finding agrees with
prior studies in that lack of detailed information can lead to
lower level of awareness or even overlooking [18].

Visual and quantified representations of air quality were rec-
ognized as contributing factors toward increased awareness
of the participants, which is consistent to the prior study of
IAQ visualizer [18]: “The graphs with waves of numbers are
pretty intuitive. [...] (it was) good to see the actual numbers
that can tell me how good air quality is at my home.” (P32)

Building Personalized Mapping
Participants noted that they were curious about which pollu-
tion source leads to specific subjective feeling or sense: “I
often asked myself what were the reasons for the changes”
(P32). Detailed information of pollution source provided by
AirSense helped them in mapping specific feeling or sense
with corresponding air pollution source: “When I was brows-
ing those data, I really enjoyed thinking about which aspect
of air quality might be related to my bad feeling. [...] it gave
me lots of useful hints.” (P41)

AirSense as a Motivational Trigger
The participants shared opinions about the role of AirSense
as a trigger for their actions toward better IAQ. P51 talked
that the timely notification of AirSense reminded him to cope
with bad air quality condition which can be easily overlooked:

117

SESSION: LIVING IN SMART HOMES



“When I was cooking steak, the air quality plumped greatly
and AirSense gave me a warning and asked me to turn on the
range hood.” Also, pollution notifications motivated users to
follow the suggestions of AirSense: “Whenever I saw the red
dots that tell me something was not good, I always checked
the suggestions on the mobile app.” (P42)

Increased Competence in IAQ Control
For IAQ control, participants also talked about their increased
competence [20, 10], which is one key factor of intrinsic
motivation from the viewpoint of Self-Determination The-
ory [10], due to accurate and timely feedback of IAQ changes
provided by AirSense. The system actually helped them have
air quality in control: “it told me to open the window, which
really helped to bring the numbers back to the normal range.”
(P42); “when I cooked, AirSense can detect my cooking activ-
ities and I found that range hood really helped to lower down
both gas and particle pollutants.” (P31) Also, once they real-
ize their actions can make meaningful changes of IAQ, they
became more engaged in the active behavior for IAQ control:
“But since I found it’s useful to bring me better air, I wouldn’t
mind doing it, and it’s becoming something that is on the top
of my head now.” (P42).

DISCUSSION
The evaluation results demonstrate AirSense is a very promis-
ing ubiquitous computing technology for IAQ monitoring and
analytics. However, we made a few restrictions in our exper-
imental setup which reveal some limitations of our work. We
discuss these limitations and future work in this section.

Limitation on Detectable Air Pollution Sources: In this
work, we focus on three of the most common indoor air pol-
lution events – cooking, smoking, and spraying pesticide –
to demonstrate the feasibility of AirSense. In the future, we
plan to expand the capability of AirSense on identifying more
pollution sources. For example, burning wood in wood stoves
or fireplaces could generate a significant amount of CO2. By
adding a CO2 sensor, AirSense would be able to detect this
pollution source according to the changes of CO2 levels. As
another example, during ventilation, contaminants from out-
doors could also be brought into homes to cause indoor air
pollution. We plan to expand AirSense to detect air pollutions
from outdoors and warn users to close doors or windows.

Limitation on IAQ Analytics Algorithms: There are also a
few limitations on our IAQ analytics algorithms. First, our
pollution event detection algorithm relies on the sharp in-
crease of sensor data at the beginning of the pollution event.
Although the sharp increase is a robust signature for cooking,
smoking, and spraying pesticide which generate heavy pol-
lution, it may not apply to mild pollution sources that cause
slow and gradual increase of sensor data. Second, our IAQ
forecast algorithm is developed by only taking into consid-
eration the historical data from similar indoor air pollution
events. A more accurate model can be developed by includ-
ing other information such as weather and outdoor air pollu-
tion report from the local meteorology department. We will
keep improving our IAQ analytics algorithms in the future to
make them capable of detecting mild pollution sources and
more accurate on IAQ forecast.

RELATED WORK
There are a number of work on IAQ in the ubiquitous comput-
ing community. These work mainly focus on measuring and
visualizing the measurements of indoor air pollution. In [19],
Kobayashi et al. developed a wearable system that senses
scent in the air. In [16], Jiang et al. developed a mobile sens-
ing system that measures the concentrations of CO2 in work-
places and classrooms to provide personalized CO2 informa-
tion. The system incorporates a participatory sensing strat-
egy to share concentrations of CO2 at different rooms. In [7],
Chen et al. developed a cloud-based PM 2.5 monitoring sys-
tem in office buildings. The system collects both indoor PM
2.5 from an off-the-shelf PM 2.5 monitor as well as outdoor
PM 2.5 from public websites. A computational model is de-
veloped to automatically turn on HVAC systems inside office
buildings a few hours earlier before working hours when air
is heavily polluted. In [8], Cheng et al. also developed a
cloud-based PM 2.5 monitoring system but with a different
goal. The work mainly focuses on designing a low-cost PM
2.5 sensor and developing analytics algorithms running on the
cloud to calibrate the low-cost PM 2.5 sensors and to infer
PM 2.5 concentrations at locations where PM 2.5 sensors are
not available. Finally, in [18], Kim et al. developed a home-
based system using an off-the-shelf PM 2.5 monitor and an
iPod Touch to visualize IAQ information. Results from the
user study indicate that visualizing the IAQ information is ef-
fective in increasing people’ awareness of IAQ.

Different from all these existing systems, AirSense goes be-
yond IAQ measurements and visualization. It represents the
first effort of developing an intelligent IAQ analytics system
that is able to identify pollution sources, estimate how long
the pollution will stay, and provide actionable suggestions to
help people reduce indoor air pollution.

CONCLUSION
In the paper, we present the design, implementation and eval-
uation of AirSense, an intelligent IAQ sensing system that
continuously monitors and analyzes IAQ at homes. AirSense
bridges the gap of existing IAQ monitoring systems by lever-
aging machine learning-based algorithms to identify pollu-
tion sources of the detected pollution events as well as fore-
cast future IAQ changes to estimate the personal exposure to
indoor air pollution. Experiments in both controlled and un-
controlled daily life settings have been conducted to evaluate
the performance of AirSense. Our results show that AirSense
can identify cooking, smoking, spraying pesticide pollution
events and their combinations, which are among the most
common household activities that generate significant indoor
air pollution. It can also forecast future air quality sensor
values with a high accuracy. Finally, our deployment study
shows the potential of AirSense in increasing users’ aware-
ness of IAQ and helping them reduce air pollution at homes.
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