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Abstract—The popularity of wearables continues to rise. How-
ever, possible applications, and even their raw functionality are
constrained by the types of sensors that are currently available.
Accelerometers and gyroscopes struggle to capture complex user
activities. Microphones and image sensors are more powerful but
capture privacy sensitive information. Physiological sensors are
obtrusive to users as they often require skin contact and must
be placed at certain body positions to function.

In contrast, radio-based sensing uses wireless radio signals to
capture movements of different parts of the body, and therefore
provides a contactless and privacy-preserving approach to detect
and monitor human activities. In this paper, we contribute to
the search for new sensing modalities for the next generation
of wearable devices by exploring the feasibility of mobile radio-
based human activity recognition. We believe radio-based sensing
has the potential to fundamentally transform wearables as we
currently know them. As the first step to achieve our vision,
we have designed and developed HeadScan, a first-of-its-kind
wearable for radio-based sensing of a number of human activities
that involve head and mouth movements. HeadScan only requires
a pair of small antennas placed on the shoulder and collar and
one wearable unit worn on the arm or the belt of the user. Head-
Scan uses the fine-grained CSI measurements extracted from
radio signals and incorporates a novel signal processing pipeline
that converts the raw CSI measurements into the targeted
human activities. To examine the feasibility and performance of
HeadScan, we have collected approximate 50.5 hours data from
seven users. Our wide-ranging experiments include comparisons
to a conventional skin-contact audio-based sensing approach to
tracking the same set of head and mouth-related activities. Our
experimental results highlight the enormous potential of our
radio-based mobile sensing approach and provide guidance to
future explorations.

I. INTRODUCTION

Wearable devices with various embedded sensors are in-
creasingly becoming mainstream. Millions of people now wear
commercial wearable devices, such as those from Fitbit and
Jawbone, on a daily basis to track how many steps they take,
how far they jog and how long they sleep. However, for
wearables to have a much broader impact on our lives, the
next generation of wearables must expand beyond the narrow
set of predominately exercise-related physical activities and
sleep behaviors currently being monitored.

We believe that a key bottleneck preventing a wider set
of activities from being tracked is caused by the limitations
of sensors present in existing wearable devices. For example,
accelerometers and gyroscopes are constrained to only track-
ing the motion and rotation of the body parts to which they
are attached. Microphones and cameras are rich in sensing
capabilities but come with severe privacy concerns. Many

physiological sensors such as respiration and electrocardio-
gram (ECG) sensors must be positioned at certain locations on
the body (e.g., chest, neck, head), with some even requiring
tight skin contact. The intrusiveness of these contact-based
sensors makes people resistant to use them in practice.

Recently, radio-based sensing technologies have drawn sig-
nificant attention as they provide a contactless and privacy-
preserving approach to detect and monitor human activities
[1], [2], [3], [4], [5], [6]. These technologies use radio trans-
mitters and receivers deployed in the ambient environment
to capture human activities that occur in the monitored area.
Furthermore, many of them exploit the fine-grained PHY layer
Channel State Information (CSI) extracted from the radio
signals to infer the specific human activity. Compared to
the traditional MAC layer Received Signal Strength Indicator
(RSSI), that only provides a single power measurement of the
received signal averaged over the entire channel bandwidth,
CSI provides both the amplitude and phase measurements
of the received signal for all the OFDM subcarriers within
the channel bandwidth [7]. As such, by taking advantage
of the fine-grained CSI measurements, radio-based sensing
technologies have shown superior capabilities of capturing
and recognizing not only activities that involve intense full
body movements, such as walking [2] and falling down [3],
but also activities that involve minute movements such as
speaking (i.e., mouth movements) [4], typing on keyboards
(i.e., hand/finger movements) [5], and even breathing and
heartbeat (i.e., chest movements) [6].

Inspired by the contactless and privacy-preserving charac-
teristics provided by radio-based infrastructure sensing, as well
as the wide range of human activities that can be captured by
the fine-grained CSI measurements, we aim to contribute to the
search for new sensing modalities for the next generation of
wearable devices by exploring the feasibility of mobile radio-
based human activity recognition. We envision that wearable
devices equipped with radio-based sensing could provide a
comprehensive understanding of a wide range of human ac-
tivities in a non-intrusive and privacy-preserving manner and
thus have the significant potential to be widely adopted.

As the first step to achieve our vision, in this paper,
we present HeadScan, a wearable system for radio-based
sensing of a number of human activities that involve head and
mouth movements. These activities include eating, drinking,
coughing, and speaking. We target these four activities for two
reasons. First, the continuous monitoring of these activities
has considerable value for a wide variety of applications,
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such as those related to health and wellbeing [8] and social
computing. Second, state-of-the-art wearable technologies for
sensing these activities use microphones [9], [10], cameras
[11], [12], [13], or capacitive sensors [14] and thus are either
intrusive or have privacy concerns. In contrast, HeadScan
uses wireless radio signals to sense the targeted activities
and therefore provides a non-intrusive and privacy-preserving
solution that overcomes the drawbacks of the existing wearable
technologies. Specifically, HeadScan consists of two small
unobtrusive commercial off-the-shelf (COTS) 5GHz antennas
placed on the shoulder and collar of the user respectively, as
well as one wearable unit that can be worn on the arm or the
belt of the user. One antenna acts as a radio transmitter that
continuously sends radio signals, while the other antenna acts
as a radio receiver that continuously receives radio signals. The
radio signals captured at the receiver are then forwarded to the
wearable unit for storage and processing. The underpinning
principle behind HeadScan is that movements of head and
mouth caused by different targeted human activities generate
different changes on the received radio signals. By analyzing
those changes, the activity that causes the changes can be
recognized. Based on this principle, HeadScan first extracts
the CSI measurements from the received radio signals. It then
incorporates a radio signal processing pipeline that converts
the raw CSI measurements into the targeted human activities.
To examine the feasibility and performance of HeadScan,
we have conducted extensive experiments. Our experimental
results show, for the first time, that radio as a sensing modality
is feasible to sense and recognize the targeted eating, drinking,
coughing, and speaking activities in the wearable setting with
an overall recognition accuracy of 86.3%. Furthermore, we
also highlight there remain a number of limitations of this
approach. In this respect, our results not only demonstrate
the feasibility and performance of radio-based sensing on
wearable devices but also serve to guide future explorations
by highlighting the areas of difficulty.

In sum, our work makes the following contributions:
∙ We introduce a first-of-its-kind wearable device that uses

radio as a new sensing modality to detect and recognize
human daily activities that involve head and mouth move-
ments including eating, drinking, coughing, and speaking.

∙ We have designed a novel radio signal processing pipeline
that converts raw CSI measurements into targeted human
activities. The pipeline blends techniques from activity
recognition (i.e., sliding window-based segmentation), CSI-
based radio signal processing (i.e., PCA-based dimension
reduction) and sparse representation-based classifier towards
enabling radio-based human activity sensing to be noise-
resistant in the challenging scenario of wearables.

∙ We have built a proof-of-concept wearable prototype that
incorporates radio-based sensing using CSI measurements
via a COTS radio chipset.

∙ We have conducted comprehensive experiments to examine
the feasibility and performance of HeadScan on sensing
and recognizing the four head and mouth-related activities.

These include a quantitative comparison between our radio-
based sensing approach with a conventional skin-contact
audio-based sensing method, as well as experiments that
examine the impact of a number of key factors on the
activity recognition performance of radio-based sensing.

II. DESIGN CONSIDERATIONS

In this section, we first list the design goals that HeadScan
aims to achieve. We then describe the unique characteristics
of radio-based human activity sensing in a wearable setting.

A. Design Goals

The design of our HeadScan wearable aims to achieve the
following goals:

∙ Automated Tracking of Head and Mouth-related Human
Activities: HeadScan is designed to be able to automatically
tracking a set of head and mouth-related human daily ac-
tivities including eating, drinking, coughing, and speaking.
Automatically tracking these activities has significant value
for applications related to healthcare and wellbeing [8], as
well as social computing. Current practice requires users
to self-report those activities via either journaling or taking
pictures of their food. HeadScan aims to automatically track
those activities without user involvement using a wearable
system.

∙ Enabling Contactless and Non-intrusive Sensing: Head-
Scan is designed to be able to provide a contactless and non-
intrusive solution to capture the movements of the head and
mouth caused by the targeted human activities. Accelerome-
ter and gyroscope-based solutions require users to wear two
wearables (i.e., one on each wrist) to capture eating and
drinking activities [15]. Microphone-based solutions such
as [9], [10] suffer if they do not maintain close contact
with the skin. Capacitive sensor-based solutions such as [14]
require users to wear the capacitive sensor around the neck.
HeadScan aims to examine radio-based sensing that neither
relies on skin contact nor requires the radio sensor to be
placed at a specific location on the body, thus providing a
truly contactless and non-intrusive solution.

∙ Protection of Privacy: HeadScan is designed to be able
to protect privacy while still being able to provide rich
information about the targeted human activities. Micro-
phones and cameras are the most commonly used sensing
modalities in existing wearables to track the targeted specific
activites we target [11], [9], [10], [12], [13]. However, these
powerful sensors also bring unwanted negative privacy side
effects (e.g. capturing speech and images of surrounding
people). HeadScan aims to examine radio-based sensing that
is unable to reconstruct speech (e.g., [16]) or images yet still
has the resolution to capture and recognize eating, drinking,
coughing, and speaking activities.

To the best of our knowledge, no currently used wearable
technology can satisfy all of the above criteria. This motivates
us to design and develop HeadScan to fill this critical gap.



B. Unique Characteristics of Wearable Radio-based Sensing

Most of the existing research on radio-based human activity
sensing considers monitoring users from radio antennas de-
ployed in the ambient indoor environments. Performing radio-
based human activity sensing from wearable devices with
antennas located on the human body presents a number of
unique characteristics that are different from the infrastructure-
based scenarios. We summarize these differences below:

∙ Sensing Distance: In infrastructure-based scenarios, radio
transmitters and receivers are placed at a distance (typically
a few meters) from the user being monitored. In a wearable
setting, the antennas are placed directly on the body of the
user. As such, the radio signals are much more sensitive
to the movements caused by human activities due to the
short sensing distances. This high sensitivity amplifies the
movements of interests as well as unwanted noise.

∙ Radio Transmitter and Receiver Location: The deploy-
ment locations of radio transmitters and receivers, under
infrastructure-based scenarios, have a significant impact on
the activity sensing and recognition performance due to
the variability of indoor conditions (e.g., fittings, furniture)
found in different locations [1]. In a wearable setting,
although the antennas are placed on the body, they can be
placed at different on-body locations as needed. The choice
of on-body location plays a key role in determining what
type of body movement, or more broadly activity, can be
recognized and at what level of accuracy.

∙ Non-user Interference: In infrastructure-based scenarios,
radio signals can be contaminated by radio frequency inter-
ference (RFI) as well as interference caused by other people
in the monitored area. In a wearable setting, although both
sources of interferences exist, those interferences are often
dwarfed by the activity performed by the user since the
antennas are worn on the body of the user.

Examining the unique characteristics of radio-based sensing
under a wearable scenario, such as those listed above, are
at the heart of this work. We have developed radio signal
processing techniques at different stages of the pipeline to filter
out unwanted wearable-centric noise. We have also adopted
empirical methods through extensive experiments to identify
the best on-body locations to wear antennas as well as quantify
the impact of non-user interference on activity sensing and
recognition performance.

III. WEARABLE PROTOTYPE

Our HeadScan wearable prototype consists of two small (21
x 21 mm; 5 g) unobtrusive commercial off-the-shelf (COTS)
5GHz antennas, that can be worn on the shoulder and the
collar respectively, as well as one wearable unit (85.0 x 60.0
x 36.0 mm; 390 g) that can be worn on the arm or the belt
of the user. The two antennas are wired to the wearable unit.
Figure 1 provides a conceptual illustration of how HeadScan
is worn while it tracks the movements of head and mouth of
the user.

Tx Rx

Radio
Signal 

Wearable
Unit

Fig. 1: The illustration of HeadScan in operation.
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Fig. 2: Our HeadScan wearable prototype consists of: 1) one trans-
mitter antenna (Tx), 2) one receiver antenna (Rx) and 3) one wearable
unit that contains two HummingBoard Pro (HMB) mini-computers
(Left). Each HMB is connected with one Intel WiFi Link 5300 card
for measuring CSI (Right).

The wearable unit consists of two HummingBoard Pro
(HMB) devices [17], each powered by one 3000 mAH bat-
tery. The HMB is a low-cost ARM-based mini-computer that
contains an on-board 1.2 GHz ARM Cortex-A9 processor and
1GB RAM. Each HMB is connected with an antenna as well
as an Intel WiFi Link 5300 card [18] via the micro PCIe
socket for measuring CSI (Figure 2). In our prototype, two
HMB are needed because a single HMB can not support two
Intel WiFi Link 5300 cards at the same time. One HMB acts
as the radio transmitter that sends packets periodically and the
other HMB acts as the radio receiver that continuously receives
the packets. We installed the modified firmware released by
the CSI measurement tool [19] through the Debian Cubox-i
Linux OS running on the receiver HMB, enabling the Intel
WiFi Link 5300 card to extract CSI measurements from the
received packets on the receiver HMB. During operation, we
used a custom case to hold the wearable unit and attach it to
the arm of the user with an elastic armband for data collection.
The collected CSI measurements are exported to a desktop
computer for offline processing.

IV. RADIO SIGNAL PROCESSING PIPELINE

In this section, we first provide the background knowledge
of Channel State Information (CSI). We then describe the
details of our radio signal processing pipeline that converts
the raw CSI measurements into the targeted human activities.

A. Background of Channel State Information (CSI)

Modern wireless devices that support IEEE 802.11a/g/n/ac
standards use Orthogonal Frequency Division Multiplexing
(OFDM) in the PHY layer [7]. OFDM divides the entire wire-
less channel into multiple narrowband subcarriers, with each
subcarrier having a different carrier frequency. The Channel
State Information (CSI) contains both the amplitude frequency
response and phase frequency response at the granularity of



Fig. 3: Overview of the radio signal processing pipeline of HeadScan.

each subcarrier [20]. Head and mouth movements affect the
propagation of radio signals via reflections, diffractions and
scattering, and thus cause different amplitude and phase fre-
quency responses at each subcarrier. Such fine-grained differ-
ences at the subcarrier level are captured in the CSI measure-
ments, but are smoothed out by the RSSI measurement which
is a single measurement averaged over the entire channel
[21]. As such, analyzing the fine-grained CSI measurements
at each subcarrier provides a great opportunity to capture the
minute head and mouth movements caused by eating, drinking,
coughing and speaking activities. Therefore, HeadScan takes
advantage of the fine-grained CSI measurements provided by
commercial wireless devices to sense and recognize those
activities. It should be noted that the CSI phase measurements
are reported to be unreliable due to the low-cost hardware
components used in commercial wireless devices [22]. As
such, HeadScan only uses the CSI amplitude measurements
at all the subcarriers.

B. Radio Signal Processing Pipeline Overview

Figure 3 provides an overview of the radio signal processing
pipeline of HeadScan. As illustrated, the pipeline consists
of six stages to convert the raw CSI measurements into the
targeted activities. Specifically, in stage one, a sliding window
is used to segment the streaming raw CSI measurements
extracted from the PHY layer radio signals into a sequence
of fixed-length windows. In this work, the window is set to be
five seconds long. The window is long enough so that all the
important information of each targeted activity is contained
inside each window. In stage two, a low-pass filter is applied
to the raw CSI measurements in each window to remove
noise that is not caused by head and mouth movements of
the targeted activities. In stage three, Principal Component
Analysis (PCA) is performed on the filtered CSI measure-
ments of all subcarriers to extract the most sensitive changes
caused by head and mouth movements. In stage four, features
that capture the unique characteristics of each activity are
extracted. In stage five, the noise-robust sparse representation
framework is used to train an overcomplete dictionary [23].
Finally, in stage six, the sparse coefficient vector extracted
from the sparse representation framework is used to build a
classifier to recognize the targeted activity. We use the sparse
representation framework because it has been proved to be
robust to the noise caused by radio frequency interference
(RFI) in radio signal processing [2].

(a) Raw CSI measurements (b) Filtered CSI measurements

Fig. 4: Raw and low-pass filtered CSI measurements.

C. Noise Removal

The raw CSI measurements extracted from the PHY layer
radio signals are very noisy. To use CSI measurements for
recognizing head and mouth-related activities, it is necessary
to begin by eliminating as much of this noise as possible.
Since the changes of CSI measurements caused by head and
mouth movements lie at the lower end of the frequency
spectrum, HeadScan uses a Butterworth low-pass filter to
capture the changes caused by head and mouth movements
while discarding noise that lies at the higher end of the
frequency spectrum. Based on our experiments, we observed
that the changes caused by head and mouth movements of our
targeted activities are below 20Hz. Therefore, we set the cut-
off frequency of the Butterworth low-pass filter to 20Hz and
use it to filter out CSI measurement noise across all subcarriers
in the wireless channel. Figure 4(a) and Figure 4(b) show
the raw and filtered CSI measurements of subcarrier #12 for
the eating activity respectively. As illustrated, the Butterworth
low-pass filter successfully filters out high-frequency noise
while preserving the head and mouth movement information
of the eating activity.

D. PCA-Based Dimension Reduction

Changes of CSI measurements caused by head and mouth
movements occur across all the subcarriers in the wireless
channel. As an illustration, Figure 5 plots the CSI measure-
ments of four subcarriers. From these plots, we have two
key observations. First, we observed that changes of CSI
measurements are highly correlated among all the subcarriers.
Second, we observed that different subcarriers have different

(a) Subcarrier #1 (b) Subcarrier #12

(c) Subcarrier #20 (d) Subcarrier #24

Fig. 5: Correlations and sensitivity differences among different
subcarriers.



(a) Coughing (b) Drinking (c) Eating (d) Speaking (e) Idle

Fig. 6: The first principal component (PC) of the four targeted activities, as well as the idle activity, performed by two subjects.

sensitivity to head and mouth movements. Based on these two
observations, in order to remove the redundant information
due to the high correlation while still capturing the most
sensitive changes caused by head and mouth movements,
HeadScan applies Principal Component Analysis (PCA) on the
filtered CSI measurements across all the subcarriers to extract
principal components (PCs) that capture the dominant changes
caused by head and mouth movements. The PCs extracted are
ranked by the magnitude of their variance. We select the top
two PCs because we empirically find the top two PCs already
contain the majority of the total variance and thus preserve
most of the information of the targeted activities.

E. Feature Extraction

To recognize our targeted activities, we need to extract
features that can capture the differences across them. Figure 6
illustrates the first PC of all four targeted activities as well
as the baseline idle activity (i.e., no activity) performed by
two subjects. As illustrated, different activities have distinctive
shapes and periodicities. Specifically, the shape of coughing
exhibits a sharp change in amplitude within a short period
of time, which reflects the captured head movement during
coughing. The shape of drinking exhibits a sharp increase at
the beginning, a plateau in the middle, and a sharp decrease in
the end. This is because our head moves up when we start to
drink and our head moves back after we finish drinking. For
both eating and speaking, we observe the waveforms exhibit
periodic changes that reflect the periodic mouth movements
when eating and speaking. Between these two periodic activi-
ties, eating exhibits a relatively lower frequency than speaking
because the speed of mouth movement when eating is slower
compare to that of speaking. Furthermore, the shape of idle
exhibits the least variance in amplitude and most randomness
in frequency due to little head and mouth movements. Finally,
we can see that the two samples of the same activity per-
formed by two subjects exhibit high similarity, indicating the
consistency across subjects.

Based on these observations, we extract features that charac-
terize the shape and periodicity of the waveforms. Specifically,
to capture the shape information, we extract features including
mean, median, standard deviation, range, skewness, kurtosis,
and interquartile range values of the waveforms. To capture
the periodicity information, we extract features including mean
crossing rate, dominant frequency, and spectral entropy values
of the waveforms. Table I summarizes the list of features.
All these features are extracted from the top two PCs and

are then concatenated into a single feature vector with the
dimensionality of 20.

Mean Median Standard Deviation
Range Skewness Kurtosis

Dominant Frequency Interquartile Range Mean Crossing Rate
Spectral Entropy

TABLE I: Head and mouth activity features.

F. Training via an Overcomplete Dictionary Construction

As the first step of the sparse representation framework, we
construct an overcomplete dictionary using training samples.
Let 𝑘 denote the number of activity classes (𝑘 equal to five in
this work) and 𝑛𝑖 denote the number of training samples from
class 𝑖, 𝑖 ∈ [1, 2, . . . 𝑘]. Each training sample is represented as
an 𝑚-dimensional feature vector (𝑚 equal to 20 in this work).
We arrange the 𝑛𝑖 training samples from class 𝑖 as columns
of a data matrix 𝑫𝒊 = [𝒙𝑖,1,𝒙𝑖,2, . . . ,𝒙𝑖,𝑛𝑖

] ∈ ℝ
𝑚×𝑛𝑖 . Next,

we define a new matrix 𝑨 which stacks the training samples
from all the activity classes as

𝑨 = [𝑫1,𝑫2, . . . ,𝑫𝒌] ∈ ℝ
𝑚×𝑛

= [𝒙1,1, . . . ,𝒙1,𝑛1
,𝒙2,1, . . . ,𝒙2,𝑛2

, . . . ,𝒙𝑘,1, . . . ,𝒙𝑘,𝑛𝑘
]

(1)

where 𝑛 = 𝑛1 + 𝑛2 + . . . + 𝑛𝑘. Given sufficient training
samples from each class, the matrix 𝑨 can be seen as an
overcomplete dictionary. As such, a test sample 𝒚 from class
𝑖 can be expressed using the overcomplete dictionary 𝑨 as

𝒚 = 𝑨𝜶+ 𝒆 (2)

where

𝜶 = [0, . . . , 0, 𝛼𝑖,1, 𝛼𝑖,2, . . . , 𝛼𝑖,𝑛𝑖
, 0, . . . , 0]

𝑇 (3)

is a sparse coefficient vector whose entries are zero except
those associated with class 𝑖, and 𝒆 is the noise term with
bounded energy ∥𝒆∥2 < 𝜖. Therefore, 𝜶 can be regarded
as a sparse representation of 𝒚 based on the overcomplete
dictionary 𝑨. More importantly, the entries of 𝜶 encode
the identity of 𝒚. In other words, we can infer the class
membership of 𝒚 by finding the solution of equation (2).

G. Classification via ℓ1 Minimization

The solution of equation (2) depends on the characteristic
of the matrix 𝑨. If 𝑚 > 𝑛, 𝒚 = 𝑨𝜶 + 𝒆 is overdetermined
and there is one unique solution. However, in most real world
applications, the number of prototypes in the overcomplete



Cough samples

(a) The sparse coefficient solution
recovered via ℓ1 minimization for
one test sample from Coughing.

(b) The residual values with respect
to the five activity classes. The
test sample is correctly classified
as Coughing (index 1). The ratio
between the two smallest residual
values is 1 : 2.62.

Eat samples

(c) The sparse coefficient solution
recovered via ℓ1 minimization for
one test sample from Eating.

(d) The residual values with respect
to the five activity classes. The
test sample is correctly classified as
Eating (index 3). The ratio between
the two smallest residual values is
1 : 11.9.

Fig. 7: Sparse representation solutions and the corresponding residual values of two test samples from Coughing and Eating.

dictionary is typically much larger than the dimensionality of
the feature representation (i.e., 𝑚 << 𝑛). In this scenario,
equation (2) is underdetermined and has no unique solution.

Recent research in the field of compressed sensing [24] [23]
has shown that if 𝜶 is sufficiently sparse, it can be recovered
by solving the ℓ1 minimization problem:

�̂� = argmin
𝜶

∥𝜶∥1 subject to ∥𝑨𝜶− 𝒚∥2 ≤ 𝜖. (4)

where ∥.∥1 denotes the ℓ1 norm. This optimization problem,
also known as Basis Pursuit (BP), is built on a solid theoretical
foundation and can be solved very efficiently with traditional
linear programming techniques whose computational complex-
ities are polynomial in 𝑛 [25].

Given a new test sample 𝒚 in the form of an 𝑚-dimensional
feature vector from one of the 𝑘 activity classes, we first
compute its sparse coefficient vector �̂� by solving (4). To
identify the class membership of 𝒚, we compare how well
the various parts of the coefficient vector �̂� associated with
different activity classes can reproduce 𝒚, where the reproduc-
tion error is measured by the residual value. Specifically, the
residual of class 𝑖 is defined as

𝑟𝑖(𝒚) = ∥𝒚 −𝑨𝛿𝑖(�̂�)∥2 (5)

where 𝛿𝑖(�̂�) is a characteristic function that selects only the
coefficients in �̂� associated with class 𝑖. Therefore, 𝑟𝑖(𝒚)
measures the difference between the true solution 𝒚 and the
approximation using only the components from class 𝑖. Using
the residual value as the classification criterion, the test sample
𝒚 is classified as the activity class 𝑐 that generates the smallest
residual value:

𝑐 = argmin
𝑖

𝑟𝑖(𝒚) (6)

Figure 7(a) and Figure 7(c) illustrate the two coefficient
vectors recovered by solving (4) with the noise tolerance
𝜖 = 0.02 for two test samples: one from coughing and the
other from eating. As shown, both of the recovered coefficient
vectors are sparse and the majority of the large coefficients
are associated with the training samples belonging to the
same activity class. Figure 7(b) and Figure 7(d) illustrate the

corresponding residual values with respect to the five targeted
activity classes. As shown, both test samples are correctly
classified since the smallest residual value is associated with
the true activity class. To examine the robustness of our
residual-based classifier, we calculate the ratios between the
two smallest residuals for each test sample. The classification
result is robust if the ratio value is large. In the examples
of Figure 7(b) and Figure 7(d), the ratios between the two
smallest residuals are 1 : 2.62 for coughing and 1 : 11.9 for
eating. We obtain similar results for the other three activities.

V. EVALUATION

A. Experimental Methodology

To examine the feasibility and performance of HeadScan,
we conduct extensive experiments. We breakdown the overall
evaluation into seven experiments and one usability study.
State-of-the-art wearable sensing systems use microphone to
sense and recognize eating, drinking, speaking, and coughing
[9], [10]. The objective of the first two experiments is to
examine the feasibility of radio-based activity sensing and
recognition in a wearable setting, as well as to make a quan-
titative comparison between radio- and audio-based sensing
approaches. To achieve this objective, we replicated one state-
of-the-art audio-based wearable system called BodyScope
from [9] (Figure 8). Since both BodyScope and HeadScan
target the same activities, we believe a fair comparison be-
tween radio- and audio-based sensing in the wearable setting
is achieved. To fully examine the performance in different

1

2

3

Fig. 8: The hardware for audio-based sensing. (1) A chestpiece of
a clinical Elite 4000 stethoscope. (2) A unidirectional condenser
microphone. (3) The chestpiece attached to skin using an elastic band.



Activity Radio (time) Audio (time)
Coughing (C) 52m 40s 28m 40s
Drinking (D) 52m 50s 29m 00s
Eating (E) 72m 30s 28m 30s
Speaking (S) 57m 10s 28m 10s
Idle (I) 54m 20s 28m 20s
Total Amount 289m 30s 142m 40s

TABLE II: List of activities (activity abbreviations) and the amount
of labeled radio and audio data.

wearable conditions, the first experiment is conducted in a
clean environment, and the second experiment is conducted in
a noisy (i.e., with the existence of interferences) environment.
Besides comparing performance to audio-based sensing, we
conduct another five experiments to examine the impact of
various factors on the activity recognition performance of our
radio-based sensing approach. These include classification per-
formance of a personalized model and the impact of: training
dataset size; radio signal transmission rates; on-body locations
of the radio transmitter and receiver; and, the interference
caused by nearby people.

B. Human Participants and Data Collection

We recruit seven participants (5 males and 2 females) who
volunteer to help collect data and conduct evaluation experi-
ments. The participants are university students and researchers
with an age ranging from 20 to 35 (𝜇 = 28.9; 𝜎 = 5.2), a
weight ranging from 49 kg to 82 kg (𝜇 = 74 kg; 𝜎 = 9.8 kg)
and are between 158 cm and 182 cm tall (𝜇 = 172 cm; 𝜎
= 7.0 cm). The experiments were conducted in a laboratory
environment. For experiments that aim to make quantitative
performance comparisons between radio and audio sensing
modalities, participants wear both HeadScan and the replicated
audio-based sensing system to collect both radio and audio
data simultaneously. As such, a fair comparison between these
two sensing modalities is possible. For experiments that aim
to solely examine the impact of various factors on the activity
recognition performance of radio-based sensing, participants
only wore HeadScan.

During data collection, the participants were instructed to
perform a sequence of the four targeted activities: coughing,
eating (potato chips), drinking (a cup of water), and speaking
(reading a book aloud); as well as being idle (no activity).
For radio data collection, by default, participants clip the
Tx antenna on one of the collars and the Rx antenna on
the shoulder of the other side. For audio data collection, we
followed the data collection procedure of the BodyScope study
[9] and ask the participants to attach the chestpiece to the skin
using an elastic band (Figure 8). In total, approximate 50.5
hours of data was collected. Since data labeling is very time
consuming, we labeled 7.2 hours of the collected data and use
the labeled data to evaluate HeadScan. Table II lists the five
activities and the amount of data labeled for each activity for
both radio and audio sensing modalities respectively.

C D E I S Recall
C 65 5 0 0 0 92.9%
D 15 48 7 0 0 68.6%
E 1 6 62 1 0 88.6%
I 1 2 8 59 0 84.3%
S 1 1 0 0 68 97.1%

Precision 78.3% 77.4% 80.5% 98.3% 100%

TABLE III: The confusion matrix of radio-based activity recognition
in a clean environment (see Table II for activity abbreviations).

C D E I S Recall
C 51 8 0 1 10 72.8%
D 19 48 2 1 0 68.5%
E 2 11 55 1 1 78.6%
I 1 6 0 63 0 90.0%
S 0 0 1 0 69 98.6%

Precision 69.8% 64.8% 94.8% 95.5% 86.2%

TABLE IV: The confusion matrix of audio-based activity recognition
in a clean environment (see Table II for activity abbreviations).

C. Performance Comparison between Radio- and Audio-based
Wearable Sensing in a Clean Environment

Objective: In this experiment, we evaluate the activity recog-
nition performance of our radio-based wearable sensing sys-
tem and compare it with a state-of-the-art audio-based ap-
proach in a clean environment.

Experimental Setup: We have created a clean environment
for participants to collect radio and audio data simultaneously.
To create a clean environment for radio data collection, all
other wireless devices in the environment are turned off and
only the participant was in the environment performing activi-
ties. To create a clean environment for audio data collection at
the same time, the environment was kept quiet as well. Each
participant performs 10 trials for each activity. We examine
the activity recognition performance of both radio- and audio-
based sensing using leave-one-subject-out validation.

Results and Implication: Figure 9 illustrates the activity
classification accuracy of both radio- and audio-based sensing
in a clean environment. The average classification accuracy
across all participants are 86.3% for radio- sensing and 81.7%
for audio-based sensing. To provide a more detailed view of
the results, the confusion matrices of radio-based and audio-
based sensing with data accumulated from all participants
are presented in Table III and Table IV respectively. This
result demonstrates that HeadScan is feasible of sensing and
recognizing the targeted four activities that involve head and
mouth movements. It also shows that our radio-based wearable
sensing system HeadScan is able to achieve very competitive
recognition performance compared to the audio-based wear-
able sensing system in a clean environment.

D. Performance Comparison between Radio- and Audio-
based Wearable Sensing in a Noisy Environment

Objective: In this experiment, we evaluate the activity recog-
nition performance of our radio-based wearable sensing sys-
tem and compare it with a state-of-the-art audio-based ap-
proach under a noisy environment.



Fig. 9: The activity classification accuracy
of radio- and audio-based sensing in a clean
environment.

Fig. 10: The activity classification accuracy
of a personalized model.

Fig. 11: The impact of the training dataset
size on activity classification accuracy.

Experimental Setup: We have created a noisy environment
for participants to collect the radio and audio data respectively.
To create a noisy environment for radio data collection, we
generate radio frequency interference (RFI) by collecting in
an environment where wireless communication was set up at
the same channel that HeadScan uses (channel #44) as well as
an adjacent channel (channel #40). We place the Tx and Rx
that generates RFI approximately one meter away from the
participants and configured the transmission rate at 2 packets
per second. To create a noisy environment for audio data
collection, we generated audio noise using a computer speaker
in the background such that the noise levels we measure at our
audio-based wearable sensing system are -18 dB and -13 dB
respectively (we use the Audacity software to perform noise
level measurements). The noise level at -18 dB is an average
measurement in the acoustic environment where students kept
talking to each other in a whisper-like voice. The noise level at
-13 dB is an average measurement in the acoustic environment
where students kept talking to each other at a more natural
volume. We examine the activity recognition performance of
both radio and audio-based sensing using leave-one-subject-
out validation.

Results and Implication: Figure 12(a) and Figure 12(b)
illustrate the activity classification accuracy of radio- and
audio-based sensing in a noisy environment. For illustrative
purposes, only results from the first two participants are shown,
with the other five participants having similar results. As
shown, both radio and audio sensing modalities are affected
by noise but with a different sensitivity. In particular, the
performance of radio-based sensing drops from an average
of 84% (clean) to 72.2% (channel #40) and 62% (channel
#44), a loss of 11.8% and 22% respectively. In comparison,
the performance of audio-based sensing drops from an average
of 95% (clean) to 59% (-18 dB) and 39.5% (-13 dB), with a
loss of 36% and 55.5% respectively.

E. Performance of Personalized Model

Objective: In this experiment, we evaluate the activity recog-
nition performance of a personalized classification model.

Experimental Setup: We use the data of each participant for
both training and testing. We examine the activity recognition
performance of the personalized model using leave-one-trial-
out validation.

(a) Radio (b) Audio

Fig. 12: The activity classification accuracy of radio- and audio-based
sensing in a noisy environment.

Results and Implication: Figure 10 illustrates the activity
classification accuracy of each personalized model. As il-
lustrated, among seven participants, Subject #2, #5, and #7
achieve slightly inferior performance compared to the general
model developed using leave-one-subject-out validation (see
Figure 9). This indicates the same activity can be performed
very differently even by the same participant. This within-
subject variance makes recognition very challenging. On the
other hand, in leave-one-subject-out, more training data is
used to build the overcomplete dictionary in the sparse rep-
resentation framework. This indicates that within the sparse
representation framework, the classification performance can
be improved if more training data is available, even if the
training data is collected from other participants.

F. Impact of Training Dataset Size

Objective: In this experiment, we examine the impact of the
training dataset size on the activity recognition performance.

Experimental Setup: We set up different training dataset sizes
by including data from different numbers of participants. Since
we have seven participants, we considered six different sizes
by including data from one, two, three, four, five, and six
participants. We examined the performance of each size using
leave-one-subject-out cross validation.

Results and Implication: Figure 11 illustrates the activity
classification accuracy of all six different sizes of training
dataset. As shown, the classification performance increases as
the size of the training set increases. This result again demon-
strates that within the sparse representation framework, the
classification performance can be improved if more training
data is included.



Fig. 13: The impact of radio signal trans-
mission rates on activity classification accu-
racy.

Fig. 14: The impact of radio transmitter
and receiver on-body locations on activity
classification accuracy.

Fig. 15: The impact of interference caused
by nearby people on activity classification
accuracy.

G. Impact of Radio Signal Transmission Rate

Objective: In this experiment, we examine the impact of
radio signal transmission rate on the activity recognition
performance. There is a trade-off between transmission rate
and the power consumption of the wearable system. In-
creasing the transmission rate provides higher resolution of
the captured head and mouth movements but also increases
power consumption. Another drawback of the increase of the
transmission rate is that it increases the traffic load of the
wireless channel and thus reduces the bandwidth for regular
data transmission. The objective of this experiment is to find
the optimal transmission rate that achieves a balance between
recognition performance and wireless bandwidth.

Experimental Setup: We examine five radio signal trans-
mission rates including 100Hz, 50Hz, 10Hz, 8Hz, and 5Hz.
We collect approximately 50 minutes of data at these five
transmission rates in total from one participant. For each
transmission rate, the participant performs 10 trials for each
activity. We examine the performance of each transmission
rate using leave-one-trial-out validation.

Results and Implication: Figure 13 illustrates the activity
classification accuracies of all five radio signal transmission
rates. The average classification accuracies across all five ac-
tivities for transmission rates at 100Hz, 50Hz, 10Hz, 8Hz, and
5Hz are 86.2%, 85.7%, 80.6%, 67.4%, and 63.7% respectively.
This result shows that as the transmission rate decreases,
the classification performance drops. This indicates higher
resolution provided by higher transmission rate improves
classification performance. Moreover, there is a significant
performance drop when the transmission rate decreases from
10Hz to 8Hz. This indicates that a minimum 10Hz of radio
signal transmission rate is needed to provide enough resolution
to capture the distinctive head and mouth movements across
different activities. Finally, it is worthwhile to note that 10Hz
only takes a tiny part of the overall wireless bandwidth, indi-
cating high performance activity recognition can be achieved
without sacrificing the regular wireless data transmission.

H. Impact of Radio Transmitter/Receiver On-body Locations

Objective: Under a wearable setting, the locations where
the radio transmitter antenna (Tx) and receiver antenna (Rx)
are placed on the human body have a significant impact on

the radio propagation. The objective of this experiment is to
examine the impact of the on-body locations of transmitter
and receiver antennas on the activity recognition performance
and then identify the best locations to wear each antennas.

Experimental Setup: We examine four different location
combinations to wear the radio Tx and Rx antennas: (1) Rx
on the shoulder, Tx on the collar (SC); (2) both Tx and
Rx on the collar (CC); (3) both Tx and Rx on shoulder
(SS); and (4) Rx on the collar, Tx on the shoulder (CS). We
select these location combinations because compared to other
candidate locations, they are less intrusive while still being
close to the head and mouth. As such, the movements of the
head and mouth are captured while the movements of other
parts of the human body have limited influence on the radio
signals. We collect approximately 35 minutes of data in four
location combinations in total from one participant. At each
location combination, the participant performs 10 trials for
each activity. We examine the performance of each location
combination using leave-one-trial-out validation.

Results and Implication: Figure 14 illustrates the activity
classification accuracy of all four location combinations. As
shown, the location combination SC performs the best among
all four locations, achieving an average classification accuracy
of 92% across all five activities. In contrast, the location
combination CS achieves the lowest average classification
accuracy (68%). This is because Rx is much more sensitive to
movements that occur at a closer location to Rx. As such, by
placing Rx on the shoulder which is farther from mouth and
head compared to collar, Rx is less sensitive to the movements
which act as noise that degrades the classification performance.

I. Impact of Interference Caused by Nearby People

Objective: In a wearable setting, there might be other people
nearby moving around. The movements of nearby people
may act as a source of interference to the radio signals. The
objective of this experiment is to examine the robustness of
HeadScan to the interference caused by nearby people.

Experimental Setup: We examine three scenarios where we
have zero, one, and two people moving nearby respectively.
During the experiment, people are instructed to stay within
a one meter range of the participant wearing HeadScan, per-
forming some common activities such as speaking, typing on



the keyboard, and walking around. We collected approximate
30 minutes of data for the three scenarios from one participant.
For each scenario, the participant performs 10 trials of each
activity. We examine the performance of each scenario using
leave-one-trial-out cross validation.

Results and Implication: Figure 15 illustrates the activity
classification accuracies when zero, one, and two people are
moving nearby. As shown, the classification performance,
on average, does not decrease when there are one and two
people moving nearby. This result indicates that our HeadScan
wearable system is robust to the interference caused by nearby
people. This is because in the wearable setting, although the
movements of nearby people may cause interferences, those
interferences are dwarfed by the activity performed by the user.

J. Usability Study

Objective: Finally, we conduct a user study on all seven
participants about the usability of our radio-based wearable
system HeadScan and the audio-based wearable system we
replicated based on BodyScope. The objective of the user
study is to understand whether HeadScan has the potential
to be widely adopted by users in real world applications.

Experimental Setup: After completing the evaluation exper-
iments, all the participants are asked to finish a survey which
includes six questions related to comfort, privacy, safety and
form-factor of the two wearable systems. We use a Likert Scale
to code the answers of the participants. This scale is one of the
most widely used approaches for scaling responses in survey
research [26]. It adopts a five point scale ranging between: -2
(strongly disagree), -1 (disagree), 0 (neutral), 1 (agree), and 2
(strongly agree).

Results and Implication: Table V lists the six questions and
the corresponding average point and standard deviation across
all seven participants. As listed in the table, the results of
this preliminary study show strong potential for our radio-
based wearable sensing system in all dimensions. In terms of
comfort, due to the tight skin contact of the stethoscope, most
participants do not enjoy wearing the audio-based system. In
contrast, most participants agree that they feel comfortable
with antennas worn on their bodies because they require no
tight skin contact. In terms of privacy, participants in general
have privacy concerns about the audio-based system although
their opinions vary significantly. In contrast, participants have
a consensus that privacy is not a concern for the radio-based
system. In terms of safety, participants also have a consensus
that radio exposure from the HeadScan system is not really
a concern. Finally, in terms of form-factor, participants in
general feel the current prototype is rather bulky for a wear-
able. This result indicates our radio-based sensing approach
exhibits significant advantages over the audio-based sensing
approach by providing a truly non-intrusive and privacy-
preserving solution. In the meantime, the size and dimensions
of our current prototype needs to be improved to meet the
requirements of real world usage.

Survey Questions Mean Standard Deviation
1. User feels comfortable with contact sensing -0.86 1.07
2. User feels comfortable with HeadScan 0.88 0.35
3. Audio recording is not privacy-intrusive -0.29 1.50
4. Radio recording is not privacy-intrusive 1.29 0.76
5. User does not worry about radio exposure 0.71 0.49
6. User feels HeadScan bulky 1.00 1.15
-2: Strongly Disagree, -1: Disagree, 0: Neutral, 1: Agree, 2: Strongly Agree

TABLE V: List of survey questions and the corresponding Likert
Scale average and standard deviation across all participants.

VI. DISCUSSION

The evaluation results of our HeadScan system strongly
indicate radio is a very promising sensing modality for de-
tecting and recognizing head and mouth-related activities. We
highlight the most prominent results from our experiments.

Competitive Recognition Performance: The activity classi-
fication accuracy of HeadScan exceeds its audio counterpart
when classifying the targeted head and mouth-related activities
(i.e., eating, drinking, coughing, and speaking) with an average
accuracy of 86.3% compared to 81.7%.

Low Bandwidth Requirement: The classification perfor-
mance of HeadScan remains above 80% when the radio signal
transmission rate is lowered to 10Hz. Therefore, high perfor-
mance activity recognition is achieved without sacrificing the
regular wireless data transmission.

Robustness to Sensor Interference: HeadScan not only
performs better in a clean environment, it also demonstrates
stronger robustness to radio interference than audio-based
sensing (e.g., RFI for HeadScan and background acoustic
noise for audio-based sensing). Under reasonable level of
interference, HeadScan classification results drops only 22%
while audio-based sensing drops 55.5%.

Robustness to Nearby People: The classification accuracy
of HeadScan remains relatively unaffected even when there
are moving people in the testing environment. This suggests
HeadScan can still function despite the potential non-user
interferences caused by nearby people in the real world.

VII. LIMITATIONS

While our experiments have demonstrated a number of
positive results, it is important to acknowledge the limitations
of what we have findings, especially for drawing conclusions.
We highlight key limitations here that we plan to address in
future work.

Scripted Data Collection: Since this was the first time the
targeted head and mouth-related activities had been attempted
to be detected and recognized using radio-based sensing on
wearables, we adopted a conservative scripted data collection
protocol that enabled many factors to be controlled during later
data analysis stages. As a result, participants followed our data
collection protocol and did not deliberately confuse our system
(e.g., excessively move or shake their head wildly) during
experiments. In addition, we plan to conduct a prolonged real
world field study to examine the performance of HeadScan.



Number of Participants: In this work, we recruited only
seven participants to contribute to the dataset of HeadScan.
Further verification of the results we have reported in this
paper requires a larger and diverse set of participants.

Prototype Limitation: Although our wearable prototype is
a proof of concept that is adequate for experiments, its
dimensions, weight, and battery life can be further improved.
We are currently investigating the use of the Intel Edison mini-
computer that is built into a much smaller form factor (35.5 x
25.0 x 3.9 mm; 68 g). We estimate the new wearable prototype
based on the Edison will be 10× smaller and 2× lighter.
For battery life, our current wearable prototype can support
approximately five hours of continuous CSI measurement
sampling. We plan to are investigate techniques, such as duty
cycling, to reduce the power consumption.

Antenna Locations: In our experiments, we have tested
four different on-body antenna location combinations. There
are numerous other location combinations where users can
potentially wear the antenna pair. We plan to investigation
other on-body location combinations once we have completed
our new prototype design.

RFI Limitation: In our experiments, we have investigated the
impact of RFI on the activity sensing and recognition perfor-
mance when an interference source was placed one meter away
from the participants. More experiments are needed to fully
understand the impact of RFI on our wearable-based radio
sensing approach when the interference source is placed at
different distances from the participants.

VIII. RELATED WORK

The design of HeadScan is closely related to two research
areas: (1) wearable and mobile sensing systems and (2)
radio-based activity recognition. In this section, we provide
a brief review of the most relevant state-of-the-art research
and compare them with HeadScan.

Wearable and Mobile Sensing Systems: With advances in
MEMS technologies, the past decade has witnessed a surge of
smartphones and wearable devices. These devices are equipped
with miniature sensors that can be used to track a wide
range of human activities. Among them, the accelerometer
is one of the most widely used sensors. Accelerometer-based
sensing systems have been developed for physical exercise
tracking [8], fall detection [27] as well as activities of daily
living (ADL) monitoring [28]. The Microphone is another
extensively explored sensor because of the rich information
contained in audio signals. In [29], Hao et al. developed
iSleep that detects and recognizes sounds of body movement,
coughing and snoring to infer sleep quality. In [30], Georgiev
et al. developed DSP.Ear that recognized stress and emotion
(amongst others) via the microphone using only the DSP of a
smartphone. In [31], Nirjon et al. developed MusicalHeart that
integrated a microphone into an earphone to extract heartbeat
information from audio signals. Finally, in [9], Yatani et al.
developed BodyScope that used a condenser microphone with

a stethoscope head to capture a variety of sounds produced
from activities that involve the mouth and throat such as
eating, drinking, speaking, laughing and coughing. Our work is
similar to BodyScope in the sense that we target a similar set of
activities. However, since BodyScope uses the microphone as
a sensing modality, it brings unwanted negative privacy side-
effects. Moreover, BodyScope has to be worn on a user’s neck
in order to capture the subtle sounds generated by eating and
drinking. The requirement of physical contact to a user’s neck
makes BodyScope intrusive to the user’s daily life. In contrast,
HeadScan resolves both privacy and skin contact issues in that
it uses contactless radio signals to recognize those activities.

Radio-Based Activity Recognition: Recently, radio-based
sensing systems have emerged and drawn considerable atten-
tion as they provide a non-intrusive solution to detect and
recognize human activities. In [1], Wang et al. developed
E-eyes that exploits CSI measurements extracted from radio
signals to detect and recognize a variety of household activities
such as cooking, washing dishes, and walking inside rooms.
In [2], Wei et al. also leveraged the CSI measurements from
radio signals and developed recognition algorithms that are
robust to radio frequency interference (RFI) to recognize a
set of location-oriented stationary and walking activities. In
[32], Kaltiokallio et al. demonstrated the feasibility of using
a single pair of radio transmitter and receiver to accurately
measure an individual’s respiration rate. The fundamental
difference between these works and HeadScan is that they
use radio transmitters and receivers deployed in the ambient
environment to monitor stationary and moving activities that
involve whole-body movements; in comparison, our work uses
a radio transmitter and receiver worn on the human body to
capture activities that involve mouth and head movements.
Finally, in [33], Li et al. developed Tongue-n-Cheek, a radio-
based wearable system for tongue gesture recognition. Our
work is similar to Tongue-n-Cheek in the sense that we both
explore the potential of radio as a new sensing modality
for wearable devices. However, Tongue-n-Cheek uses 24GHz
radio signals generated from an array of dual-channel radar
sensors and leverages the principle of Doppler effect to detect
and recognize tongue movements. In contrast, HeadScan uses
fine-grained CSI measurements extracted from 5GHz radio
signals from a single pair of radio transmitters and receivers
and adopts a novel signal processing pipeline based on a noise-
robust sparse representation framework to detect and recognize
activities involving head and mouth movements.

IX. CONCLUSION

In this paper, we presented the design, implementation and
evaluation of HeadScan, a wearable system that uses radio as
a sensing modality to capture and recognize head and mouth-
related activities including eating, drinking, coughing and
speaking. Through extensive experiments, we have demon-
strated that our radio-based sensing approach achieves compet-
itive performance compared to a state-of-the-art audio-based
sensing approach. We have also empirically identified the best



on-body locations to wear HeadScan and demonstrated the
robustness of the system to non-user interferences. HeadScan
represents our first exploration of radio-based human activity
recognition in the context of a wearable device. We envision
radio-based sensing has the potential to fundamentally trans-
form wearables as we currently know them, allowing them to
have a much broader impact on our lives.

Immediate future work include plans to develop the next
generation of our wearable prototype, with a much smaller
form factor and reduced power consumption. This will en-
able large-scale and prolonged real world experiments. We
also plan to broadly investigate other potential use cases of
radio-based sensing on wearables including sensing human
activities that involve body and limb movements, as well as
physiological signals.
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