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ABSTRACT

Food journaling is an effective way to regulate excessive food
intake. However manual food journaling is burdensome, and
crowd-assisted food journaling has been explored to ease
user burden. The crowd-assisted journaling uses a label &
verify approach where an end-user uploads his/her food im-
age and paid crowd-workers label content of the image. Then
another set of crowd-workers verify the labels for correctness.
In this paper, we propose an alternative approach where we
label food images with only high performing labelers. Since
high performing labelers generally provide good quality la-
bels, our approach achieves high accuracy without verifying
the food labels for correctness. We also propose a machine
learning algorithm to automatically identify high performing
crowd-labelers from a dataset of 3925 images collected over
5 months. Such automated identification of high performing
workers and elimination of needless verification reduce cost
of food labeling. Specially for large scale deployments where
large number of images need to be labeled, our approach can
reduce overall expenses by half.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
In 2007, the World Health Organization (WHO) declared
obesity as a global epidemic [5]. A staple reason for obesity is
excessive food intake. To prevent excessive food intake, past
research explored food journaling as a way to self-regulate
and change behavior [7]. Food journaling has attracted the
Wireless Health community also and recent works explored
the efficacy of food journaling with mobile phones [6]. How-
ever food journaling often requires high effort, since users
need to manually search and log every food ingredient. To
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Figure 1: (a) Traditional methods doesn’t distinguish be-
tween bad or good quality workers. These methods use paid
workers to verify food labels to ensure good quality. (b) our
approach keeps track of good quality workers and engages
them only for good quality food labels.

minimize the effort, researchers have explored the use of
crowd-sourcing for food journaling where food pictures are
labeled by workers from an online service (e.g., Amazon Me-
chanical Turk [1]).

In most traditional crowd-sourcing approaches to food label,
each image is labeled by a set of paid workers. Then another
set of paid workers review if the labels are correct. The most
correct food labels are then defined as final food labels (Fig-
ure 1a). Such a method is oblivious to a worker’s past his-
tory of how well s/he performed in labeling tasks. However,
some workers are consistently good at labeling while some
are bad. Therefore, it is not necessary to verify every food
label by another set of paid workers since labeling quality
is likely to be good if the image is labeled by high quality
labelers. If costs for such verification workers are removed
then the total end saving would be significant in large scale
deployments where large number of images would be labeled.
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Given this insight, we propose a worker performance aware
approach (Figure 1b), where we maintain a set of high per-
forming labelers to gain high labeling accuracy. We also
construct a machine learning model that can determine high
performing labelers automatically. The model can look at
the reply patterns of labelers and predict their food labeling
performance with no cost. Specifically, the novel contribu-
tions of the paper are as follows:

• We construct a dataset of food images with crowd-
worker provided labels. The dataset contains more
than 3925 food images with 27784 food labels by crowd-
workers and is collected by 16 users over 5 months long
deployment (Section 2).

• From our dataset, we quantitatively demonstrate that
it is possible to generate accurate labels for foods by
only removing of low-performing workers (Section 3).

• We propose a machine learning model to distinguish
between low and high performing labelers (i.e., how
accurately the worker labels the food images). The
model uses several characteristics from a worker’s la-
beling patterns as features (Section 4). In addition,
our model can detect low-performing workers at an
early stage (Section 5).

• We implement an end user system that implements our
model as a ready-to-use downloadable mobile applica-
tion for Wireless Health researchers (Section 6).

• Finally, we demonstrate that our approach can yield
accurate labels at a lower price than several baseline
conditions (Section 7).

Figure 2: Food and calorie intake logging based on crowd
sourcing using Amazon Mechanical Turk

2. DATASET

2.1 Mobile Application for Data Collection
We developed a mobile application for Android smartphones
to log foods. Figure 2 shows the basic architecture of the
application. A typical work flow of food logging using the
smartphone application works as follows: first a user takes
a picture of the food using the application (Figure 4a). The
picture is then sent to a server and a Human Intelligence
Task (HIT) is created at Amazon Mechanical Turk (AMT),

Figure 3: Food and calorie intake logging based on crowd
sourcing using Amazon Mechanical Turk

(a) (b) (c)

Figure 4: (a)Taking food picture in the app (b) Replies from
turker about the food image. Each replies consists of a
food ingredient label and a corresponding calorie amount
(c) Replies from turkers on a Starbucks coffee.

a popular crowd sourcing service. Then a set of crowd work-
ers or turkers in AMT look at the picture, and provide the
following information: food ingredient in the picture and an
estimated calorie. A screenshot of the labeling interface that
a turker uses to label a food is shown in Figure 3. In or-
der to make the task easier, we implement an auto-complete
feature - when the worker starts typing the food name, some
suggestions of food appear in a window below the field. If
the user selects a food, the corresponding calorie informa-
tion per portion size is automatically added to the form.
Then the turker only needs to update the food portion sizes
and the number of calories is updated accordingly. The food
suggestions in the auto-complete feature contain 50 popular
foods from MyFitnessPal [8], a popular fitness application
for phones. We decided to use this approach because larger
databases contain many occurrences for the same food name
which is confusing for the worker. Once the crowd-worker
fills out all the required information, s/he earns 4 cents for
completing the task, and the food information is sent and
stored in the server. The server then sends the food labels
and the calorie information to the Google Cloud Messaging
(GCM). GCM then sends the food information to the An-
droid device from which the food picture was taken. Figure 4
shows the application in action. As shown in the figure, the
app lets users to remove wrong labels by unchecking them.
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Figure 5: (a) Unique food images logged overtime during the data collection period (b) Distribution of turker response count.
Large number of turkers replied to a few HITs. Small number of turkers replied to large number of hits (c) The distribution
between turkers first and last response was often as high as 20 weeks. A more blue color and smaller size represents turkers
replied less frequently. Frequently replying turkers often engaged with the food labeling processing for weeks.

Figure 6: A sample of images taken by users.

2.2 Dataset
Our dataset consists of 16 users who logged food using the
smartphone application for 5 months. The data collection
process resulted in 3925 food images captured with 27784
turker replies (each reply corresponds to one HIT). Figure 6
shows a collage of some images taken by users during the
study. Figure 5a shows the counts of food images labeled
across weeks during the study. 1801 unique turkers took
part in labeling the food images. Figure 5b informs that
the number of replies from turkers follow a heavy tail dis-
tribution, i.e. few turkers replied to a lot of requests while
a large number of turkers replied to few requests. Finally,
some turkers engaged with our system for extended period
of time (Figure 5c).

Due to the significant amount of turker replies we received,
it is hard to verify the quality of all 27784 turker replies.
Therefore, we select a representative sample of turker replies
and reason about different turkers’ labeling performance.
We randomly selected 1200 replies out of 27784 replies and

verified their quality as acceptable or not1. Two indepen-
dent verifiers from our research team judged the labels pro-
vided by turkers for acceptability. If there is a disagreement
with a label’s quality then the third verifier was used to judge
for acceptability. A turker label is considered acceptable if
two or more verifiers considered the label to be acceptable.
A similar approach to accept or reject turker replies was
used by Thomaz et al. [11]. After the accept/reject process,
70% of turker labels are found acceptable. In the rest of this
paper, the percentage of “acceptance” for a turker’s replies
is referred to as ground truth accuracy.

3. MOTIVATING WORKER-PERFORMANCE

AWARE APPROACH

3.1 Accuracy of labeling
In our dataset, several frequently-replying low-performing
turkers reduced the overall labeling accuracy significantly.
Such turkers are shown in large blue dots in the lower part
of Figure 7a where ground truth accuracy and frequency of
replies for different turkers are plotted2. Overall 21% of total
27784 turker replies in our dataset are made by low perform-
ing turkers (with below <40% group truth accuracy). In
the worst case, one of these low performing turkers replied
nearly 5.7% of the total replies (Figure 7b). If such bad
turkers are removed then cumulative labeling accuracy hits
85% with remaining turkers. i.e., less than 1 out of 5 labels
can be wrong. Hence, it is unlikely a wrong label would
be selected if 5 turkers are used to label a food image and
majority voting [2] is used to decide final labels. Therefore,
it is possible to get accurate labels by simply removing the
low-performing turkers.

3.2 Cost Reduction
Given the importance of turker performance, how do we
cheaply identify if a turker is doing well or not? The state-
of-the-art relies on other paid turkers to evaluate the quality

1The labeling interface: http://goo.gl/uWabGy
2We use a similar color and sizing scheme for scatter plot
figures in Figure 7 and 8a. The color of the dots represent
ground truth accuracy of the turker. The color bar on the
right represents this accuracy. e.g., yellow represents 100%
ground truth accuracy while blue represents low accuracy.
The size of the dot is proportional to how frequently a turker
answers to the HITs.
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Figure 7: (a-b) Turkers replying to larger number of requests sometimes have low ground truth accuracy (c) Turkers who
replied less than 100 HITs generally had high percentage correct labels (d) Ground truth accuracy varied widely for turkers
who replied more than than 100 HITs (e) Cumulative accuracy as more higher replying turkers are added. Cumulative
accuracy was nearly 85% for turkers replying less than 100 HITs (f) Distribution of match index and information gain (g)
interaction of match index and information gain correlates with ground truth accuracy

of the labels [9]. If the quality is judged as bad, then the
wrongly replying turkers do not receive payment. However
from Figure 7a, we can see some turkers provide good label-
ing accuracy even when they replied to hundreds of HITs.
On the other hand, some turkers provided bad quality la-
bels consistently. Thus, good labeling performance can be
achieved by engaging only high performing labelers during
labeling and we can eliminate the verification of every label
for correctness. Elimination of the verification would also
reduce cost. In addition, we develop a machine learning al-
gorithm to automatically detect turker performance/quality
which can further reduce the cost.

4. A MODEL TO IDENTIFY

WORKER PERFORMANCE
Reply patterns of high and low performing turkers are dif-
ferent. In this section, we propose a machine learning model
that exploits the differences in reply patterns to predict
turker performance. We first introduce some notations. Then
we describe the features and machine learning model.

4.1 Notations
We denote the set of turkers as T = {t1, t2, t3, ..., t|T |}.
The set of images labeled by the turker ti is denoted as

Pi = {p1i , p
2
i , p

3
i , ..., p

|Pi|
i }. Note here the same image can

be labeled by multiple turkers. The replies of image p
j
i by

turker ti are denoted by set r
j
i = {rji (1), r

j
i (2), r

j
i (3), ...}.

For example, if a turker ti replies to image p
j
i with steak,

salad, and fries then r
j
i (1), r

j
i (2), r

j
i (3) will be respectively

“steak”, “salad”, and “fries”. Finally, ground truth accuracy
for turker ti is denoted by yi. Since replies from all turk-
ers are not included in the subsample of 1200 replies in our
dataset, yi isn’t defined for every ti.

4.2 Features
We introduce several metrics that quantify the difference of
reply patterns between high and low performing workers’.

We also illustrate the efficacy of the metrics with illustrative
visualization and verbal explanation. We then use these
metrics as features to build a machine learning model.

4.2.1 Turker’s Reply Frequency

Infrequently replying workers often provide highly accurate
labels whereas the frequently replying workers can be high or
low performing. Figure 7c shows the distribution of ground
truth accuracy of infrequently replying turkers that replied
less than 100 times. Large percentage of these turkers replied
with high accuracy. Such turkers constitute nearly 83% of
our total 1801 turkers in the dataset with 13% of 27784 total
replies. For the turkers with more than 100 replies that gen-
erated the remaining 87% replies, the ground truth accuracy
is mixed with both high and low performances as shown in
Figure 7d. Another way to look the same phenomenon is the
changes in cumulative ground truth accuracy as more fre-
quently replying turkers are considered (Figure 7e). Mathe-
matically, the Y-axis corresponding to the X-axis or number

of replies by a turker is
∑|T |

i=1 yi∗|Pi|∗✶[|Pi|≤x]
∑|T |

i=1 |Pi|∗✶[|Pi|≤x]

. i.e., we include

turkers that replied less than x times and weigh the ground
truth accuracy with frequency of replies to give more im-
portance to highly replying turkers. From Figure 7e, we see
turkers with less than 10 replies and 100 replies, the cu-
mulative ground truth accuracies are around 93% and 85%.
However, as more high replying turkers are considered the
accuracy drops to 70%.

4.2.2 Match Index

Replies from under performing turkers consistently do not
match with replies from other turkers for same food images.
However, the opposite is true for high performing labelers.
Such differences happen because some labels are accurate for
each image since 70% of the replies in the labeled dataset are
acceptable. Thus on the same image, accurate labels from a
high performing turker would consistently match with other
accurate labels from another high performing turker. How-



ever for low-performing turkers, their wrong labels would
not match with accurate labels from high performing turk-
ers. In fact, wrong labels of low-performing turkers would
not even match labels of other turkers since turkers can not
coordinate. With this intuition, we calculate a match index
MIij for an image p

j
i that a turker ti replied to as follows:

fraction of words in the ti’s reply to p
j
i that matches replies

of other turkers to p
j
i . Before the matching, we preprocess

the data with simple stemming from Natural Language Pro-
cessing literature [3]. After stemming, ‘Apple’ and ‘Apples’
would be identical. We then compute a match index MIi
for turker ti by computing the average of all match index
measures MIijs. The exact equation of match index MIi is
as follows:

MIi =
1

|Pi|

|Pi|
∑

j=1

MIij , and MIij =

∑|r
j
i
|

k=1 ✶[r
j
i
(k)∈r

j′

i
]

|rji |

where rj
′

i is defined as the set words replied by turkers other

than ti for image p
j
i . Intuitively, the above equation means

if the words of a turker ti’s reply is contained in replies from
other turkers to the same image then the MIij would be
high. Now accurate replies from a turker has a high chance
to match replies other high performing turkers. Thus a high
performing turker would have high MIijs which means the
average of MIijs denoted as MIi would also be high.

4.2.3 Information Gain

Often under performing turkers use a small set food names
for all replies. i.e., replies from under performing turkers lack
diversity. On the other hand, replies from high performing
turkers exhibit sufficient diversity since food labels would be
different if different users eat different foods. We compute
such diversity with an entropy or information gain measure
in the following two steps (1) we first construct a dictionary
D with unique words {d1, d2, d3, ..., d|D|} contained in replies
from all turkers. We pre-process the words using stemming
techniques from natural language processing [3] (2) then we
compute entropy with the following equation:

entropyi = −

|D|
∑

j=1

pij log pij

where pij =

∑|Pi|
l=1

∑|rli|

k=1 ✶[rl
i
(k)=dj ]

∑|Pi|
l=1

∑|rl
i
|

k=1 1

According to the above equation, if the food labels are pre-
dictable then entropy is low whereas if food labels are less
predictable then entropy is high. Therefore, if turkers reply
accurately then their replies would exhibit high diversity and
their entropies would be high compared to low-performing
turkers.

Figure 7f shows the distribution of match index and in-
formation gain. In the figure, the large blue dots repre-
senting highly replying bad quality turkers are largely lo-
cated where both information gain and match indices are
low. Figure 7g shows the relationship more prominently
where ground truth accuracy positively correlates with the
interaction [10] between match index and information gain
(r = 0.48, p = 0.001).

4.2.4 End-User Acceptance Rate

Throughout the user study, end-users had the option to cor-
rect the labels provided by the turkers (see Figure 4(b-c)).
We compute user acceptance rate of a turker as percentage
of the turker’s labels accepted by end-users. The user ac-
ceptance rate strongly correlates with ground truth accuracy
(r = 0.77, p < 0.0001). Figure 8a shows the correlation of
user acceptance rate with ground truth accuracy. However,
user-corrections are relatively rare and only 1% (168/27784)
turker replies were corrected by end users. Importantly,
end-user corrections is more available for frequently reply-
ing turkers. 93% turkers replying more than 700 replies
received some end-user corrections. In contrary, only 13%
turkers under 700 replies received end-user correction.

4.3 Turker Performance Model
In this section, we formulate two machine learning regres-
sion models to identify turker performance or ground truth
accuracy. One model uses the end-user acceptance rate fea-
ture and the other does not. The model without the user
acceptance rate feature is as follows.

y
′
i = β0 + β1 ∗MIi + β2 ∗ entropyi + β3 ∗ entropyi ∗MIi

where y′
i is the predicted ground truth accuracy. We add an

interaction term between match index and information gain
since such interaction correlates significantly with ground
truth accuracy (Section 4.1.3 and Figure 7g). Our second
model uses end-user acceptance feature. However, we can
use end-user acceptance features for only high replying turk-
ers where the feature is more available. The second model
is as follows:

y
′
i =



















β0 + β1 ∗MIi + β2 ∗ entropyi
+β3 ∗ entropyi ∗MIi, where |Pi| ≤ C

γ0 + γ1 ∗MIi + γ2 ∗ entropyi
+γ3 ∗ entropyi ∗MIi + γ4 ∗ user acci, otherwise

where a separate linear regression model is used with end-
user acceptance feature only when the turker ti replied more
than some constant C number of times. Finally, we fit the
above regression model in piecewise manner [4] for different
turker reply frequency interval. We make the regression de-
pendent of frequency because turker performance is found
to depend on frequency in section 4.1.1. For a window size
of 100 in frequency or |Pi| (i.e., 0-100, 100-200, 200-300 and
so on), we formulate a different linear regression.

4.4 Accuracy of Food Content Labeling
We evaluate the labeling performance of our models in two
ways: (1) an offline evaluation where we count how many
wrong labels are removed from our dataset if we discard low-
performing turkers as predicted by our model; and (2) an
online evaluation where we label new images by turkers that
exclude low-performing turkers as predicted by our model.
The accuracy of the labeling is then compared with several
control conditions.

4.4.1 Offline Evaluation

We investigate the fraction of remaining accurate labels if la-
bels of low-performing turkers from our model are excluded
from our dataset. Such a measure would indicate labeling
accuracy without bad-labelers in an offline setting. We do



Ground-truth accuracy
0 20 40 60 80 100

U
s
e

r 
a

c
c
e

p
ta

n
c
e

 r
a

te

0

20

40

60

80

100

(a)

Number of replies by turkers

0 500 1000 1500 2000 2500

E
x
p
e
c
te

d
 l
a
b
e
lin

g
 a

c
c
u
ra

c
y

65

70

75

80

85

90

95

 Worst case, bad turker included

 Best case, bad turker removed

 Performance with regression model 

 Performance with regression model  adjusted
 with end user corrections

(b)

L
a
b
e
lin

g
 a

c
c
u
ra

c
y

70

75

80

85

90

95

100

With bad
turkers

Without bad
turkers

Master
turkers

Label &
Verify

(c)

Figure 8: (a) Labeling accuracy for turkers replying to larger number of requests have high correlation with end user acceptance.
(b) Predicted accuracy model. If turkers are chosen based on predicted accuracy. Turkers with less than 60% accuracy are
discarded. (c) Accuracy of an online deployment of our system.

the evaluation in two steps (i) we predict labeling perfor-
mance of different turkers based on our model (ii) we esti-
mate the percentage of remaining accurate labels after re-
moving low-performing turkers from our model. To predict
labeling performance of a turker ti, we train a model with
features from T − ti and predict the accuracy y′

i from the
model for ti. Such leave-one-out evaluation is commonly re-
ferred as cross-validation to evaluate machine learning mod-
els. Furthermore, the model trained over T − ti has zero
knowledge of the replies and features of ti. Thus the predic-
tion for ti indicates the way our model would perform for
an unknown turker. Given y′

i, the quantity y′
i ∗ |Pi| would

indicate the expected amount of accurate labels from ti with
our model. Specifically we examine a metric called expected

labeling accuracy, which is defined as
∑|T |

i=1 y′
i∗|Pi|∗✶[|Pi|≤x]

∑|T |
i=1 |Pi|∗✶[|Pi|≤x]

,

to demonstrate efficacy of our model. Here ✶ is an indicator
function and the denominator is a normalization term. Intu-
itively, the expected labeling accuracy means the cumulative
labeling accuracy we can expect if only turkers replying to
x number of queries are considered.

Figure 8b shows the results. We first define a worst and
best case of expected labeling accuracy for different values
of x (i.e., number of replies by turkers). The green curve
shows expected labeling accuracy with no bad turkers re-
moved which is the worst case scenario for our model. The
blue curve on the other hand shows a upper limit or best
case, where we discard all turkers with 60%3 or less ac-
curacy (i.e., ground truth accuracy) known in the labeled
training set. The red curve shows the expected labeling ac-
curacy if we exclude turkers with a predicted accuracy of less
than 60% using the model without user acceptance rate. As
can be seen in Figure 8b, the model always performs better
than the worst case. The expected labeling accuracy also
stays around 83% if the number of replies from a turker is
less than 700. However, after including turkers with 700 or
more replies, the model performance deteriorates. A pos-
sible reason for deterioratation is the heavy tail nature of
the turker reply distribution (Figure 5b) and there are not

360% is chosen heuristically. Other accuracy numbers also
achieve similar results

enough points to learn a reliable model with low number of
turkers that replied higher than 700. However, if we use the
model with user acceptance rate for C = 700 then we get the
black line in Figure 8b. This model maintains accuracy of
near 83% throughout where the possible upper limit model
accuracy is around 84%.

4.4.2 Online Evaluation

Due to the offline nature of the evaluation in last section,
it is essential to know the performance of our model in an
actual real-life deployment. In our online evaluation, we
do so by deploying our model in real-life. We upload a set
of 30 images and get labels for the images. These images
are randomly selected from our dataset. For each image,
we acquire labels from 5 turkers that do not include low-
performing turkers as predicted by our algorithm. Since
a proper evaluation needs comparison with baseline condi-
tions, we evaluate against three conditions when (a) if bad
turkers are not removed (b) against “master turkers”, a list
of high performing turkers in Amazon Mechanical Turk (c)
with label and verify approach used in earlier work [9]. For
label & verify, we recruited 5 turkers for labeling and 5 turk-
ers for verifying. For each turker, we paid 0.04. For “mas-
ter turkers”, we could not get master turkers at $0.04. We
paid $0.15 to each master turker for labeling and recruited
5 master turkers for each food image. For each experiment
scenario, a total of 150 labels are collected.

Two independent evaluators in the research team judged
how many of these labels were acceptable. If there is a dis-
agreement then a third evaluator judged the labels. La-
bels are considered acceptable if they are accepted by two
or more times by the evaluators. Thomaz et al. [11] used
a similar approach to accept or reject turker replies. Fig-
ure 8c shows percentage of acceptance. Acceptance after
removing low-performing turkers with our method (88.7%)
outperforms the control condition with no bad turkers re-
moved (72.9%). Master turkers approach performed simi-
larly to our approach (90.5%). Label and verify approach,
where we considered food content labels that were accepted
by majority of verification turkers, is 92.3% accurate. Al-
though both master or label and verify approach performed
with similar accuracy our approach, these approaches cost



Figure 9: (a) distribution of match index and information gain on small windows of turker replies. Relatively red dots represent
low quality turkers as defined by ground truth accuracy (b) same as ‘a’ but more red color of a dot is due to accuracy inferred
by our model (c) evolution of inferred accuracy on small windows of turker replies.

significantly more than our approach. We will discuss the
cost proposition in more detail in section 7.

5. EARLY DETECTION OF UNDER-

PERFORMING WORKERS
So far, we built a model to identify a turker’s performance
from the turker’s total history of replies. However an im-
portant problem is to detect low performing turkers early,
so that they can be warned and eventually be removed be-
fore they adversely affect the labeling.

Previously discussed features also perform well for early de-
tection of low-performing turkers. Figure 10a shows the
match index and information gain for a window of 50 replies
for turkers with more than 500 replies (i.e., both good and
bad quality turkers)4. Dots from turkers with low quality
replies are shown in more red colors (solid red is 0% ground
truth accuracy) whereas a good quality turker is shown in
more green color (solid green is 100% ground truth accu-
racy). The red dots, with low values of information gain
and match index, are clearly separated from green dots.
A linear regression model can learn these differences. Fig-
ure 10b shows the results of a 10 fold cross validation results
(i.e., only predicted values are shown) of the linear regression
model. Again we color code the dots similar to Figure 10a
but with inferred accuracy rather than ground truth accu-
racy. We can see Figure 10b closely matches with Figure 10a.

In order to demonstrate early detection performance, Fig-
ure 10c shows the predicted accuracy on windows of 50
replies over time. Each curved line in the figure is a turker
and more green lines represent high performing turkers (i.e.,
with high ground truth accuracy). A line representing low
performing turker is shown in a more red line. Predicted ac-
curacy in Y-axis at a point x on X-axis represents predicted
accuracy on the window of [x− 24, x+ 25] replies. i.e., pre-
dicted accuracy at x = 500 is computed from 476th to 525th
replies. In Figure 10c, more red color lines representing low-

4We do not include turkers with less than 500 replies since
the number of turkers are large and they are generally high
performing. Thus including them in the visualization and
discussion would crowd the figure unnecessarily. However,
in our evaluation we get very similar results for turkers with
less than 500 replies.

performing turkers consistently show low predicted accuracy
(i.e., below 50% predicted accuracy) overtime. Thus within
50 replies, it is possible to understand which turkers might
be low performing. Furthermore, the green lines represent-
ing high-performing turkers also show high predicted accu-
racy, so a high-performing turker would not be flagged as
low performing with a cut off of 50% predicted accuracy.

6. END-USER SYSTEM IMPLEMENTATION
Given the efficacy of our system, we implemented our algo-
rithm as an end user system. The end user system consists
of two components: (1) a smartphone application and (2) a
web backend. The smartphone application and web backend
are similar to what we already described in section 2.1.2.
However, we added a module that computes the accuracy
for each turker and uses the Amazon Mechanical Turk API
to create a group of low performing turkers (who replied
at least 100 times with predicted accuracy less than 60%).
The low-perfomring turker group is avoided when new HIT
requests are sent to mechanical turk. Also, the system can
send warning to turkers if the reply quality drops in their
last 50 replies.

Figure 10: System architecture

Finally, the results from predictive model can be accessed
via a dashboard. The dashboard also gives user control to
ban or warn a under performing turker that may override
the predictive model. Manual user control is specially useful
if the predictive model makes a mistake. A running imple-



mentation of this dashboard along with the dataset and a
functioning application can be accessed from here5.

7. COST ANALYSIS
Our system can identify turker performance and early detect
bad turkers. However, how much does our system cost to
label foods? Furthermore, is the end accuracy acceptable?
Our system requires $0.2 to label a image where we recruit 5
turkers, at $0.04 each. According to section 4.3.2, 88.7% of
these turker labels are accurate. However if we deploy tra-
ditional label and verify [9] then we can get an accuracy of
92.3%, although it requires an extra $0.2 per image to filter
wrong labels with additional turkers at $0.04 each. Finally,
if we use master turkers - a set of high quality turkers main-
tained by Mechanical Turk - then we get 90.5% accuracy.
However, assigning master turkers requires a steep price of
$0.15 per label [11] with $0.75 per image.

The small accuracy loss would not affect end accuracy sig-
nificantly, though our method costs significantly less. Our
method incurs 50% and 73% less than all verify and mas-
ter turker based approach respectively. We do so with an
1.8% less accuracy than master turkers and 3.6% less accu-
racy than earlier work [9]. The end effect 1.8% and 3.6%
accuracy loss is minimal given we use majority voting [2] to
decide final labels for an image: if 88.7% of turker labels
are accurate then may be only 1 out of 5 labels received for
an image can go wrong. Thus if we use a majority vote to
select right labels then the wrong labels would not be likely
included in the final set of labels. Therefore our approach
can create accurate labels with 50% or less cost than com-
peting techniques.

8. LIMITATIONS AND FUTURE WORK
Lack of Long Term Field Evaluation: Despite the ef-
ficacy of our system in online and offline evaluation, it is
unknown on how our solution will perform in real life lon-
gitudinal trials. However, it is not be easy to work around
our features. e.g., to get around information gain, a turker
needs to consistently give garbage food labels that do not
match with themselves to increase information gain. It is
even harder to go around match index since wrong labels
will not match with right labels by other high performing
turkers.

Calorie Contents of Foods: In this work, we did not
address the estimation of food calorie amounts. Measuring
appropriate calorie amount from just food picture is unreli-
able, since it is hard to estimate size of foods from pictures.
Furthermore, sometimes users do not consume the whole
food in a picture. As a remedy, we give users control to ad-
just portion sizes. Then we use the portion size and calories
per portion size to measure calories in the food.

Other Limitations: Although Amazon Mechanical Turk
allows for incentivizing turkers, we do not incentivize high
performing workers. It remains to be seen whether incen-
tivizing the turkers increase turker performance even more.
Furthermore, end user corrections are needed to reliably pre-
dict performance of frequently replying turkers. We can run
similar correction step with other turkers and remove end-
users dependence completely from the system. Finally, our

5http://goo.gl/8B3E4e

approach advocates for selection and engineering of crowd-
workers. Since crowd-workers are human labors, there are
ethical concerns of our approach. However, our smart and
cost-effective approach will create easier opportunities for
larger scale data collection. Larger sized data then can en-
able completely automated food content labeling solution
with machine learning that would not require crowd-worker
manipulation.

9. CONCLUSION
In this paper, we introduced a crowd-source based food la-
beling system that produces high quality food content la-
bels by exploiting crowd-workers’ past labeling performance.
Furthermore, we have constructed a machine learning model
that can identify these high performing turkers and can early
detect low performing turkers. Most importantly, our sys-
tem costs significantly less than existing approaches. We
open source our dataset and release a ready-to-use food jour-
naling smartphone application. In our future work, we will
work with experts and deploy the smartphone application
in real world food journaling studies.
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