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Abstract

Background: Depression is a common, burdensome, often recurring mental health disorder that frequently goes undetected
and untreated. Mobile phones are ubiquitous and have an increasingly large complement of sensors that can potentially be useful
in monitoring behavioral patterns that might be indicative of depressive symptoms.
Objective: The objective of this study was to explore the detection of daily-life behavioral markers using mobile phone global
positioning systems (GPS) and usage sensors, and their use in identifying depressive symptom severity.
Methods: A total of 40 adult participants were recruited from the general community to carry a mobile phone with a sensor
data acquisition app (Purple Robot) for 2 weeks. Of these participants, 28 had sufficient sensor data received to conduct analysis.
At the beginning of the 2-week period, participants completed a self-reported depression survey (PHQ-9). Behavioral features
were developed and extracted from GPS location and phone usage data.
Results: A number of features from GPS data were related to depressive symptom severity, including circadian movement
(regularity in 24-hour rhythm; r=-.63, P=.005), normalized entropy (mobility between favorite locations; r=-.58, P=.012), and
location variance (GPS mobility independent of location; r=-.58, P=.012). Phone usage features, usage duration, and usage
frequency were also correlated (r=.54, P=.011, and r=.52, P=.015, respectively). Using the normalized entropy feature and a
classifier that distinguished participants with depressive symptoms (PHQ-9 score ≥5) from those without (PHQ-9 score <5), we
achieved an accuracy of 86.5%. Furthermore, a regression model that used the same feature to estimate the participants’ PHQ-9
scores obtained an average error of 23.5%.
Conclusions: Features extracted from mobile phone sensor data, including GPS and phone usage, provided behavioral markers
that were strongly related to depressive symptom severity. While these findings must be replicated in a larger study among
participants with confirmed clinical symptoms, they suggest that phone sensors offer numerous clinical opportunities, including
continuous monitoring of at-risk populations with little patient burden and interventions that can provide just-in-time outreach.

(J Med Internet Res 2015;17(7):e175)   doi:10.2196/jmir.4273
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Introduction

Depression is a common mental disorder. Estimates of the
12-month prevalence rate for major depressive disorder range
from 6.6-10.3%, while lifetime risk has been estimated at
16.6-17.1% [1-3]. Subthreshold depressive symptoms are far
more common [4], causing significant impairment in people’s
lives and putting them at risk for future mental health concerns
[5]. Depression, at both diagnosable and subthreshold levels,
imposes a very high societal burden in terms of cost, lost
productivity, morbidity, suffering, and mortality [6-8] and is a
leading cause of disability and disease burden worldwide [9].
By the year 2020, the World Health Organization estimates that
depression will be the second largest cause of “lost years of
healthy life” worldwide [10].

Depression is treatable using a variety of methods, including
antidepressants and psychotherapy; however, very few people
who need treatment receive it [11]. It often takes months or
years for depression to be identified and treated in our health
care system, when it is treated at all [12]. One of the most
common settings where depression is managed is primary care
[13,14]; however, primary care physicians might fail to identify
most patients with depressive symptoms [15,16]. Thus, more
efficient methods of monitoring could significantly improve the
delivery of services to those in need.

Mobile phones are becoming the most ubiquitous consumer
device in our world. Equipped with powerful sensing,
computation, and communication capabilities, mobile
phones—specifically smartphones—can continuously monitor
an individual’s context including physical activity, location,
and environment. Depression is associated with several
behavioral components (eg, reduction in activity, psychomotor
retardation, changes in sleep) and motivational states (eg,
anhedonia), some of which may be detectable using mobile
phone sensors [17,18]. Thus, mobile phones hold significant
promise as a platform to monitor behavioral and environmental
indicators of risk and resilience and to improve long-term
management and treatment delivery to people suffering from
depression.

Indeed, some work has shown promise in this area. A first study
in our group found that phone sensor data could detect social
patterns among depressed patients, but this was a small study
with only 8 participants [19]. Other groups have found that
phone sensors were effective at detecting social and sleep
behaviors among patients with depression [20,21], and such
features correlated significantly with severity of depressive
symptoms [22].

The aim of this study was to extend previous work by focusing
specifically on behavioral markers related to movement through
geographic space, which we hypothesized would be related to
depressive symptom severity, given depression results in
decreased motivation, withdrawal, and activity. In addition,
excessive use of mobile phones is considered compulsive
behavior and has been linked to some symptoms of depression
[23,24]. Thus, we also explored the relationship of depression
symptom severity to the use of the phone that was used to collect
the sensor data. To achieve these aims, we used our mobile

phone app, Purple Robot [25,26], to collect global positioning
system (GPS) location and phone usage data from participants
with varying levels of depression severity. We defined a number
of behavioral features based on these data and built classification
and regression models to examine their relationship to
depression symptom severity.

Methods

Participants
We recruited 40 adult participants from April-July 2013 using
craigslist advertisements. Participants were eligible if they had
an email account, computer, and broadband access to the
Internet, were within a cellular network range the majority of
the day, were able to speak and read English, were at least 19
years of age, and lived within the United States of America.
Participants signed an online consent form, and research staff
reviewed the consent over the phone. The study was approved
by the Northwestern University Institutional Review Board.

At the beginning of the study, participants were asked to
complete an online assessment consisting of a demographics
questionnaire and the Patient Health Questionnaire-9 (PHQ-9),
a commonly used measure of self-reported depressive symptom
severity [27], which produces scores ranging from 0-27. Scores
of less than 5 indicate no depression, 5-9 mild depression, 10-14
moderate depression, 15-19 moderately severe, and over 20
severe depression [28].

If participants owned and used an Android device with operating
system 2.3 (Gingerbread) or higher, research staff assisted with
the download, installation, and configuration of Purple Robot
(see the Purple Robot section below). Participants who did not
own a compatible phone were given an Android Nexus 4 with
Purple Robot installed and configured. Phones were either
picked up from the study’s office or mailed directly to the
participant.

Participants were instructed to keep the phone with them and
charged throughout the day for 2 weeks. In addition, research
staff explained that Purple Robot would be collecting GPS
location and phone usage data. As part of the purpose of this
study was to test Purple Robot’s functionality in the field,
research staff checked in periodically, via phone and email, with
the participants to ensure the app was working properly and to
answer questions.

Purple Robot
Purple Robot is an open-source Android app that we developed
to collect mobile phone sensor data [25,26]. The app implements
a store-and-forward architecture wherein the sensor data are
gathered, stored on the device, and transmitted as network
connectivity becomes available. This allows us to collect data
in a variety of wireless connectivity scenarios with the
confidence that intermittent network access did not affect the
nature, quality, or quantity of the collected data.

Purple Robot anonymizes personally identifiable and other
sensitive information before storage and transmission, using
standard MD5 hashing and advanced encryption standard [29]
algorithms. Once the data are anonymized, they are stored and
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later transmitted to the data collection server before being
deleted from the device. Sensor data residing on the server can
be linked with other information gathered during the study only
if the unique identifiers used by the participants and the
study-specific keys used to encrypt the data are known.

The Purple Robot mobile app and supporting server
infrastructure is capable of collecting information about the
user’s physical context (eg, motion), social settings (eg, number
of Facebook friends), and phone usage behavior (eg, screen
state). It also enables us to craft a complete data collection
strategy configured for analyzing the relationship between
depression and behavior data features of daily life.

In this study, we configured Purple Robot to collect the GPS
location and phone usage data, as the aim of this study was to
focus on behavioral markers related to movement through space
and the phone usage behavior. In our next study, we plan to use
Purple Robot to collect data from a variety of phone sensors.

Purple Robot sampled the GPS location sensor once every 5
minutes and collected phone usage data by detecting the screen
on and off events.

Data Preprocessing
The goal of the data preprocessing stage was to facilitate the
extraction of features from both the GPS location and the phone
usage data.

For the location data (Figure 1), we used two procedures. The
first procedure determined whether each GPS location data
sample came from a stationary state (eg, working in an office)
or a transition state (eg, walking on the street). To do so, we
estimated the movement speed at each location data sample by
calculating its time derivative and then used a threshold speed
that defined the boundary between these two states. In this study,
we set this threshold to 1 km/h.

The second procedure was clustering. We applied clustering
only to the data samples in the stationary state. The goal was to
identify the places where participants spent most of their time,
such as home, workplaces, parks, etc. We used a distance-based
clustering algorithm called K-means [30], in which the data
were partitioned into K clusters such that the overall distances
of the data points to the centers of their clusters were minimized.
Because the number of clusters was unknown, we started with
one cluster and increased the number of clusters until the
distance of the farthest point in each cluster to its cluster center
fell below a threshold. This threshold determined the maximum
radius of a cluster, which was set to 500 meters in our study.

Phone usage data were gathered by looking at the periods of
time when the phone screen was on (Figure 2). Given that the
phone screen would go on when receiving notifications from
apps such as text messages, we eliminated brief screen-on events
not initiated by the participant that had durations of less than
30 seconds.

Figure 1. Example GPS location data, overlaid on satellite image. Each small circle represents a histogram bin, which has a size of 500 by 500 meters.
The colors indicate the number of samples captured by each bin (brighter means more samples). The bigger blue circles show the center of the clusters
detected by the clustering algorithm.
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Figure 2. Example phone usage data from a participant. Each row is a day, and the black bars show the extent of time during which the phone has been
is use. The bars on the right side show the overall phone usage duration for each day.

Feature Extraction

Location Variance
We defined location variance to measure the variability in a
participant’s GPS location. To calculate location variance, we
used only the location data of stationary states (see Data
Preprocessing). Specifically, location variance was computed
as the logarithm of the sum of the statistical variances of the
latitude and the longitude components of the location data:

Location Variance = log(σlat
2+ σlong

2) (1)

We applied the logarithm to compensate for the skewness in
the distribution of location variance across participants.

Number of Clusters
Number of clusters represented the number of location clusters
found by the K-means algorithm in the preprocessing stage.

Entropy
We defined entropy to measure the variability of the time the
participant spent at the location clusters. This feature was
developed based on the concept of entropy from information
theory [31]. It was calculated as:

Entropy = −∑ipilog pi(2)

where each i=1, 2, …, N represented a location cluster, N
denoted the total number of location clusters, and pi was the
percentage of time the participant spent at the location cluster
i. High entropy indicated that the participant spent time more
uniformly across different location clusters, while lower entropy
indicated greater inequality in the time spent across the clusters.
For example, if a participant spent 80% of time at home and
20% at work, the resulting entropy would be −(0.8log0.8 +
0.2log0.2) ≈ 0.500, while if they spent 50% at home and 50%
at work, the resulting entropy would be −(0.5log0.5 + 0.5log0.5)
≈ 0.693.

Normalized Entropy
We defined normalized entropy by dividing the entropy by its
maximum value, which is the logarithm of the total number of
clusters:

Normalized Entropy = Entropy ∕ log N (3)

Unlike entropy, normalized entropy is invariant to the number
of clusters and thus depends solely on the distribution of the
visited location clusters. The value of normalized entropy ranges
from 0-1, where 0 indicates that all location data points belong
to the same cluster, and 1 implies that they are uniformly
distributed across all the clusters.

Home Stay
Home stay measured the percentage of time a participant spent
at home relative to other location clusters. To obtain this
measure, we first needed to know which cluster represented the
participant’s home. We identified the home cluster based on
two heuristics: (1) the home cluster is among the first to the
third most visited clusters, and (2) the home cluster is the cluster
most visited during the time period between 12 a.m. and 6 a.m.
In our dataset, which did not contain participants having night
shift work, these two heuristics led to one and only one location
cluster for every participant.

Circadian Movement
We defined circadian movement to capture the temporal
information of the location data. This feature measured to what
extent the participants’ sequence of locations followed a
24-hour, or circadian, rhythm. For example, if a participant left
home for work and returned home from work around the same
time each day, the circadian movement was high. On the
contrary, a participant with a more irregular pattern of moving
between locations had a lower circadian movement.

To calculate circadian movement, we first used the least-squares
spectral analysis, also known as the Lomb-Scargle method [32],
to obtain the spectrum of the GPS location data. Then, we
calculated the amount of energy that fell into the frequency bins
within a 24±0.5 hour period, in the following way:

E = ∑i psd(fi) ∕ (i1−i2) (4)

where i = i1, i1+1, i1+2, …, i2, and i1 and i2 represent the
frequency bins corresponding to 24.5 and 23.5 hour periods.
psd(fi) denotes the power spectral density at each frequency bin
fi. We calculated E separately for longitude and latitude and
obtained the total circadian movement as:
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CM = log(Elat + Elong) (5)

We applied the logarithm to account for the skewness in the
distribution.

Transition Time
Transition time represented the percentage of time during which
a participant was in a non-stationary state (see Data
Preprocessing). This was calculated by dividing the number of
GPS location samples in transition states by the total number
of samples.

Total Distance
Total distance measured the total distance in kilometers taken
by a participant. It was calculated by accumulating the distances
between the location samples.

Phone Usage Frequency
Phone usage frequency indicated, on average, how many times
during a day a participant interacted with their phone.

Phone Usage Duration
Phone usage duration measured, on average, the total time in
seconds that a participant spent each day interacting with their
phone.

Relationship Between Features and Levels of
Depression
We performed a preliminary statistical analysis to find out how
each feature would correspond to levels of depressive symptoms
and whether it would be able to distinguish people with any
level of depression from those with none. The former was
investigated by correlating each feature with the PHQ-9 score
that was obtained at the beginning of the study. The latter was
explored first by dividing participants into those with depressive
symptoms (PHQ-9 ≥5) and the ones without (PHQ-9 <5). The
cutoff of 5 on the PHQ-9 score was used because scores in this
range are indicative of “no symptoms” of depression and those
who reach this range after treatment are considered to be in full
remission.

Estimating Depression States from Features

Score Estimation Model
We used a linear regression model to estimate each participant’s
PHQ-9 score using the features extracted from their phone
sensor data. The model was defined as the following:

Depression Score=a0+aiFi+a2F2+…+anFn (6)

where n is the number of features. The coefficients a0, a1,… an
were obtained by minimizing the squared error between the
estimated and the true PHQ-9 scores (see Model Optimization).

Classification Model
We used a logistic regression classifier to identify participants
who had symptoms of depression (PHQ-9 ≥5) versus the ones
with no symptoms (PHQ-9 <5). This classifier consisted of a
linear model and a logistic sigmoid function, g(x) = 1 ∕
(1+exp(−x)), that generated values between 0 and 1 indicating
the probability of the participant having depressive symptoms:

P(Depressive Symptoms) = g(b0 + b1F1 + b2F2 + … + bnFn) (7)

When P(Depressive Symptoms) was higher than 0.5, we
considered the participant to have depressive symptoms.
Otherwise, we considered there was no sign of depression.

We used an optimization procedure to adjust the parameters b0,
b1, … , bn (see Model Optimization).

Model Optimization
We used the least squares approach to adjust the parameters of
both score estimation and classification models. This method
performs well as long as the number of features relative to the
number of samples is low. Otherwise, the model overfits the
data. To minimize the overfitting problem, we used the
elastic-net regularization method when the number of features
was high.

The elastic-net regularization prevents the coefficient from
becoming too large by adding the following penalizing term to
the cost function:

H(K,λ1,λ2)=λ1||K||1+λ1||K||2 (8)

where K=k0, k1, … , kn is the vector containing the regression
or the classification model parameters, and ‖K‖1 = ∑i|ki| and ‖K‖2
= √∑iki

2 are its first (L1) and second (L2) norms (i=1,2,…,n).
The coefficients λ1 and λ2 are optimized by cross-validating on
the training data. Elastic-net regularization has been shown to
outperform other regularization methods especially in cases
where some of the features are strongly correlated [33].

Model Evaluation
To evaluate regression and classification models, we created
1000 bootstrapped sets of features and their corresponding
PHQ-9 scores. Then we trained and cross-validated the models
on each set using the leave-one-participant-out method.

To assess the performance of each score estimation model, we
calculated the normalized root mean square deviation (NRMSD),
which measures the percent difference between the PHQ-9
scores estimated by the model on the test participants and their
true scores. We used the observed range of PHQ-9 scores, which
was 0-17, to normalize the NRMSDs. To evaluate the
performance of each classification model, we evaluated its
accuracy, sensitivity, and specificity in identifying participants
with depressive symptoms as compared to the ground truth.

Results

Participant Characteristics and Adherence
All 40 participants completed the 2 weeks of the study.
However, due to insufficient sensor data for a number of
participants, we considered 28 of them for the data analysis.
Among these, 18 were considered for GPS location and 21 for
phone usage data analysis. These two analyses were performed
independently.

The 12 excluded participants did not provide sufficient GPS
location and/or phone usage data for our analysis, meaning that
their data were not available for more than 50% of the time.
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The reasons for unavailability of data included problems in the
connection between the early version of Purple Robot and the
data server, patients not charging their phones, and unavailability
of any network connections for a long period of time for certain
locations.

The 28 participants included in the analysis were 20 females
and 8 males. Their ages ranged from 19-58, with a mean of 28.9
(SD 10.1). Their PHQ-9 scores ranged from 0-17, with a mean
of 5.57 (SD 4.9). Of the 28 participants, 14 (50%) had no signs
of depression (PHQ-9 <5) with an average PHQ-9 score of 1.5
(SD 1.34), and the other 14 participants (50%) were in the mild
to severe range (PHQ-9 ≥5), with an average PHQ-9 score of
9.64 (SD=3.54). Participants who were not included in any
analyses due to inadequate data were not statistically different
from these 28 participants in their age, gender, or PHQ-9 scores.

Among the participants who were considered for location data
analysis, 9 had depressive symptoms and 9 did not. For the ones
considered for phone usage data analysis, these numbers were
10 and 11, respectively.

Relationship Between Features and Levels of
Depression
GPS location and phone usage sensor features were calculated
as described in Feature Extraction. The number of location
clusters that was found by the K-means algorithm ranged from
1-9, with an average of 4.06. The average daily phone usage
duration across the participants was about 41 minutes (SD 57

minutes) with an average daily usage frequency of 14.2 times
(SD 8.69).

The correlation analysis between the features and the PHQ-9
scores revealed that 6 of the 10 features were significantly
correlated to the scores (Figure 3). Specifically, circadian
movement, normalized entropy, and location variance showed
strong correlations with Pearson’s correlation coefficients of
-.63, -.58, and -.58, respectively. Both phone usage features,
usage duration and usage frequency, were also significantly
correlated with r=-.54 and 0.52, respectively.

The t tests between participants with depressive symptoms and
the ones without (Figure 4) also revealed that the value of the
same six features (circadian movement, normalized entropy,
location variance, home stay, phone usage duration, and phone
usage frequency) were significantly different between the
participants with no sign of depression (PHQ-9 <5) and the rest
(PHQ-9 ≥5).

A correlation analysis across the features revealed that a number
of them were highly correlated (Figure 5). Noticeably, there
was a significant correlation between normalized entropy,
location variance, and home stay. This is not surprising, as all
these variables measure the amount of movement through space
in different ways. However, the significant correlation between
circadian movement and location variance is interesting and
indicates that participants with more mobility also had more
regular patterns of movement. The correlation between phone
usage duration and frequency was also high (r=.89).

Figure 3. Scatter plots for location and phone usage data versus PHQ-9 scores, respectively. The coefficient of correlation between each feature and
PHQ-9 scores and its corresponding P-value is shown on top of each plot. Solid and dashed lines, shown only for strong correlations (P<.05), show the
fitted regression model and +/- root mean square deviation from the model, respectively.
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Figure 4. Comparison of location and usage feature statistics between participants with no symptoms of depression (blue) and the ones with (red).
Feature values are scaled between 0 and 1 for easier comparison. Boxes extend between 25th and 75th percentiles, and whiskers show the range.
Horizontal solid lines inside the boxes are medians. One, two, and three asterisks show significant differences at P<.05, P<.01, and P<.001 levels,
respectively (ENT, entropy; ENTN, normalized entropy; LV, location variance; HS, home stay; TT, transition time; TD, total distance; CM, circadian
movement; NC, number of clusters; UF, usage frequency; UD, usage duration).

Figure 5. Coefficients of correlation between location features. One, two, and three asterisks indicate significant correlation levels at P<.05, P<.01,
and P<.001, respectively (ENT, entropy; ENTN, normalized entropy; LV, location variance; HS, home stay; TT, transition time; TD, total distance;
CM, circadian movement; NC, number of clusters).

Estimating Depression States from Location Features
The results of the earlier statistical analysis suggested that we
may be able to estimate an unseen subject’s depression state
using some of our features. To test this hypothesis, we trained
and cross-validated score prediction and classification models
(Equations 6-7) using the procedure described in Model
Evaluation.

We trained the models first on each individual feature and then
all features combined together. As the results (Table 1) show,
the models trained on the features that had stronger correlations
with PHQ-9 scores were better able to distinguish the

participants with depressive symptoms from those who had
none. Columns 2-4 show the cross-validated accuracy,
sensitivity, and specificity of each classification model (Equation
7) in classifying participants into the ones with and without
depressive symptoms. Column 5 shows the cross-validated
NRMSDs of the PHQ-9 score estimation models (Equation 6).
Specifically, the four features normalized entropy, location
variance, home stay, and circadian movement achieved the
lowest NRMSDs and highest accuracies. These performances,
however, did not improve by combining the features. This can
be the result of some unavoidable overfitting as the number of
input variables increases, which leads to a poor generalization.
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Table 1. Classification of participants with and without depressive symptoms and estimating their PHQ-9 scores using location features individually
and aggregated.

PHQ-9 score estimationClassification (PHQ9<5 vs PHQ9≥5)

Mean NRMSD (SD)% mean specificity% mean sensitivity% mean accuracy (SD)Training features

0.262 (0.017)72.766.869.7 (3.5)Entropy

0.235 (0.016)84.988.486.5 (3.4)Normalized entropy

0.229 (0.014)71.580.275.7 (4.6)Location variance

0.253 (0.015)71.780.575.9 (4.9)Home stay

0.303 (0.020)38.743.441.1 (9.2)Transition time

0.343 (0.041)43.469.656.4 (6.6)Total distance

0.222 (0.014)77.580.178.6 (4.1)Circadian movement

0.305 (0.022)35.547.441.5 (8.9)Number of clusters

0.251 (0.023)74.583.678.8 (6.2)All

Estimating Depression States from Phone Usage
Features
We performed the same analyses on the phone usage features.
Since the number of these features (n=2) was much smaller than
the number of samples (n=21), both score prediction and
classification models could be directly applied to the combined
feature space without using elastic-net regularization. The results

(Table 2) show that each of the usage frequency and usage
duration features could provide acceptable accuracies and
NRMSDs without further improvement by aggregating them.
Columns 2-4 show the cross-validated accuracy, sensitivity,
and specificity of each classification model (Equation 7) in
classifying participants into the ones with and without depressive
symptoms. Column 5 shows the cross-validated NRMSDs of
the PHQ-9 score estimation models (Equation 6).

Table 2. Classification of participants with and without depressive symptoms and estimating their PHQ-9 scores using phone usage features individually
and aggregated.

PHQ9 score estimationClassification (PHQ9<5 vs PHQ9≥5)

Mean NRMSD (SD)% mean specificity% mean sensitivity% mean accuracy (SD)Training features

0.268 (0.018)83.964.074.2 (3.4)Usage duration

0.249 (0.013)79.656.468.6 (4.1)Usage frequency

0.273 (0.019)74.955.765.7 (4.9)All

Discussion

Principal Findings
This study reported on the potential to use commonly available
mobile phone sensor data, including GPS and phone usage, to
identify depressive symptom severity. We extracted a number
of semantically meaningful features from these data and found
a strong correlation between a number of them and the PHQ-9
scores. These features included normalized entropy, location
variance, home stay, circadian movement, and phone usage
duration and frequency. By training score estimation models
on each of these six features, we could estimate the PHQ-9
scores of unseen participants with a relatively low error
(NRMSD). In addition, classifiers trained on these features were
able to discriminate between those with and those without
symptoms with a high degree of accuracy, good sensitivity, and
specificity.

The normalized entropy feature measured the frequency with
which a person visited different locations and the distribution
of that frequency across locations. The high negative correlation
that was found between this feature and the PHQ-9 scores
indicated that people with greater depressive symptom severity

visited fewer locations and were more likely to favor some
locations over others. Part of this was likely due to the increased
amount of time people with depressive symptoms spent at home,
measured by the home stay feature. The finding for the location
variance feature, on the other hand, indicated that people with
depressive symptoms tend to move less through geographic
space. These findings are consistent with the patterns of loss of
motivation, decreased activity, and social withdrawal that
characterize depression [17,18].

The finding for the circadian rhythm of movement through space
fits into well-established literature investigating alterations to
the wake-sleep patterns associated with depression [34,35].
These data suggest that disruptions in behavioral patterns during
waking hours include not only the volume of activity but may
also extend to the patterns of behavior. These pattern changes
may be due to the genetic and hormonal factors [36] that have
been implicated in depression-related circadian rhythm changes
or may be a result of low motivation and decreased organization.

Phone usage data were also strongly correlated to depressive
symptom severity. Greater levels of depressive symptom severity
were related to greater phone usage duration and frequency.
This observation is supported by a number of previous studies
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that have found a correlation between mobile phone use and
some depressive symptoms [23,24]. However, we should note
that phone usage in this context was defined as any interaction
with the phone, and we were not able to isolate the specific
types of interactions (eg, using apps, texting). Thus, it is difficult
to determine which specific behaviors were related to symptom
severity.

Limitations
While we believe that our study has revealed some of the
daily-life correlates of depression that can be captured by mobile
phones, the results are very preliminary, and a number of caveats
must be mentioned. First, this study examined only the
association between self-reported depressive symptoms and
features derived from location and phone usage data. Thus, we
cannot infer any causal relationship here. In fact, while the
PHQ-9 is a well-validated measure of depression, we cannot
exclude the possibility that factors other than depressive
symptoms are responsible for these relationships. For example,
the results may be due to other unmeasured factors, such as
chronic illness or dispositional factors, which result both in
depressive symptoms and differences in behavioral patterns.

Second, while some participants demonstrated levels of
depressive symptoms consistent with clinical levels of
depression, this was a small sample that was not necessarily
representative of typical trends seen in people with depression.
Future research could recruit more representative participants
with depression and match them on characteristics that might
impact one’s pattern of movements through geographic locations
(eg, occupational status, size of social network, or chronic health
problems).

Finally, we did not attempt to correct for the possible effect of
multiple comparison. However, given our interest in exploring
potential indicators of depressive symptoms, the increased
likelihood of Type II errors introduced by such corrections might
undermine important features. A major goal of such corrections
is to increase confidence in one’s findings and given the

preliminary nature of our results, we urge future efforts to
cross-validate these relationships in larger-scale investigations.
Nevertheless, we believe the computation of behaviorally
meaningful features (eg, normalized entropy, circadian
movement) and the relationship of these features with depression
found in this study might provide a valuable starting place for
subsequent investigations of the use of sensor data for the
monitoring and the detection of depression.

Conclusions
Regardless of these limitations, the ability to passively detect
behavioral factors related to depression, such as activity levels
and their patterns, opens the possibility of a new generation of
behavioral intervention technologies that can passively detect
and positively reinforce behaviors that are likely to improve
depression (eg, engagement in activities that provide pleasure,
a sense of accomplishment, or involve social engagement) and
offer support when risk states are detected (eg, withdrawal,
staying at home). This can improve the identification of
depression and the ability of health care settings to allocate
resources to those in need and overcome the individual and
systemic barriers to conventional psychological treatment [37].

The use of phone sensors allows the capture of information that
is potentially indicative of depressive symptoms without the
use of questionnaires or requiring the person to use special
devices. Phones fit into the fabric of people’s lives. People tend
to keep phones with them all or most of the time, and phones
can provide data unobtrusively and with no effort on the part
of the user. This capacity offers new opportunities to identify
human behavior patterns associated with depression or other
health and mental health disorders. Furthermore, behavioral
features might be more sensitive to changes in a person’s daily
life that indicate early benefit from treatment or highlight
potential areas for improvement. As such, as these features and
the link between them and depression become better understood,
they may play an important role in understanding the progression
of depression and its response to treatment.
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